首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this article, we present the solutions for the stresses induced by four different loads associated with an axially loaded pile in a continuously inhomogeneous cross‐anisotropic half‐space. The planes of cross‐anisotropy are parallel to the horizontal surface of the half‐space, and the Young's and shear moduli are assumed to vary exponentially with depth. The four loading types are: an embedded point load for an end‐bearing pile, uniform skin friction, linear variation of skin friction, and non‐linear parabolic variation of skin friction for a friction pile. The solutions for the stresses due to the pile load are expressed in terms of the Hankel integral and are obtained from the point load solutions of the same inhomogeneous cross‐anisotropic half‐space which were derived recently by the authors (Int. J. Rock Mech. Min. Sci. 2003; 40 (5):667–685). A numerical procedure is proposed to carry out the integral. For the special case of homogeneous isotropic and cross‐anisotropic half‐space, the stresses predicted by the numerical procedure agree well with the solutions of Geddes and Wang (Geotechnique 1966; 16 (3):231–255; Soils Found. 2003; 43 (5):41–52). An illustrative example is also given to investigate the effect of soil inhomogeneity, the type and degree of soil anisotropy, and the four different loading types on the vertical normal stress. The presented solutions are more realistic in simulating the actual stratum of loading problem in many areas of engineering practice. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical solution of the plane strain problem of the deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half‐space due to two‐dimensional seismic sources buried in the elastic half‐space has been obtained. The integral expressions for the displacements, stresses and pore pressure have been obtained using the stress function approach by applying suitable boundary conditions at the free surface and the interface. The solution obtained is in the Laplace–Fourier transform domain. The case of a vertical dip‐slip line dislocation for the oceanic crust model of Earth is studied in detail. Schapery's formula is used for the Laplace inversion and the extended Simpson's formula for the Fourier inversion. Diffusion of pore pressure in the layer is studied numerically. Contour maps showing the pore pressure in the poroelastic layer have been plotted. The effect of the compressibility of the solid and fluid constituents on pore pressure has also been studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
An analytical investigation of a half‐space containing transversely isotropic material under forced vertical and horizontal displacements applied on a rectangular rigid foundation is presented in this paper. With the goal of a rigorous solution to the shape‐ and rigidity‐ induced singular mixed boundary value problem, the formulation employs scalar potential representation, the Fourier expansion and the Hankel integral transforms method to obtain the surface arbitrary point‐load solution in cylindrical coordinate system. The obtained Green's functions are rewritten in rectangular coordinate system, allowing the response of the half‐space because of an arbitrary distributed load on a rectangular surface area be given in terms of a double integral. The numerical evaluations of stresses are done with the use of an element, which is singular at the edge and the corner of the rectangle. Upon the imposition of the rigidity displacement boundary condition for a rigid foundation and the use of a set of two‐dimensional adaptive‐gradient elements, which can capture the singular behavior in the contact stress effectively, a set of new numerical results are presented to illustrate the effect of transverse isotropy on the foundation response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, frequency domain dynamic response of a pile embedded in a half‐space porous medium and subjected to P, SV seismic waves is investigated. According to the fictitious pile methodology, the problem is decomposed into an extended poroelastic half‐space and a fictitious pile. The extended porous half‐space is described by Biot's theory, while the fictitious pile is treated as a bar and a beam and described by the conventional 1‐D structure vibration theory. Using the Hankel transformation method, the fundamental solutions for a half‐space porous medium subjected to a vertical or a horizontal circular patch load are established. Based on the obtained fundamental solutions and free wave fields, the second kind of Fredholm integral equations describing the vertical and the horizontal interaction between the pile and the poroelastic half‐space are established. Solution of the integral equations yields the dynamic response of the pile to plane P, SV waves. Numerical results show the parameters of the porous medium, the pile and incident waves have direct influences on the dynamic response of the pile–half‐space system. Significant differences between conventional single‐phase elastic model and the poroelastic model for the surrounding medium of the pile are found. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents a new fully coupled elastoplastic solution for the response of a poroelastic thick-walled soil cylinder around an elastoplastic stone column using Biot’s (J Appl Phys 12:155–164, 1941) consolidation theory. A unit cell concept is adopted for the soil–stone column analysis, and the problem is formulated in cylindrical coordinates. Expressions for excess pore pressure, stresses and displacements in the Laplace domain are derived analytically taking into account elastic or plastic behavior of the column. The inverse of the Laplace transform is evaluated numerically using an efficient scheme to obtain the final elastoplastic solution in time domain. The validity of the new solution has been checked against finite element solution and compared with some previously developed analytical methods for the stone column analysis. The results showing settlements, change in excess pore pressures and stresses with time are presented in terms of time factor. The proposed solution can be used to calculate transient state of settlements, distribution of deformations, stresses and excess pore pressures in soil and column under instantaneous or time-dependent monotonically increasing rigid vertical load.  相似文献   

6.
This paper presents a numerical solution for the analysis of the axisymmetric thermo‐elastic problem in transversely isotropic material due to a buried heat source by means of extended precise integral method. By virtue of the Laplace–Hankel transform applied into the basic governing equations, an ordinary differential matrix equation is achieved, which describes the relationship between the generalized stresses and displacements in transformed domain. An extended precise integration method is introduced to solve the aforementioned matrix equation, and the actual solution in the physical domain is acquired by inverting the Laplace–Hankel transform. Numerical examples are carried out to demonstrate the accuracy of the proposed method and elucidate the influence of the character of transverse isotropy, the anisotropy of linear expansion coefficient, the anisotropy of thermal diffusivity, and medium's stratification on the thermo‐elastic response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Based on the Biot's poroelastic theory and using scalar potential functions both the ring load and point load displacement Green's functions for a transversely isotropic saturated porous full‐space composed of an upper half‐space, a finite thickness middle layer and a lower half‐space is analytically presented for the first time. It is assumed that each region consists of a different transversely isotropic material. The equations of poroelastodymanics in terms of the solid displacements and the pore fluid pressure are uncoupled with the help of two scalar potential functions, so that the governing equations for the potential functions are either a second order wave equation or a repeated wave‐heat transfer equation of sixth order. With the aid of Fourier expansion with respect to circumferential direction and Hankel integral transforms with respect to the radial direction in cylindrical coordinate system, the response is determined in the form of line integrals in the real space, followed by theorem of inverse Hankel integral transforms. The solutions degenerate to a single phase elastic material, and the results are compared with previous studies, where an excellent agreement may be observed with the results provided in the literature. Some examples of displacement Green's functions are finally given to illustrate the solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is interested in the hydro‐mechanical behaviour of an underground cavity abandoned at the end of its service life. It is an extension of a previous study that accounted for a poro‐elastic behaviour of the rock mass (Int. J. Comput. Geomech. 2007; DOI: 10.1016/j.compgeo.2007.11.003 ). Deterioration of the lining support with time leads to the transfer of the loading from the exterior massif to the interior backfill. The in situ material has a poro‐visco‐elastic constitutive behaviour while the backfill is poro‐elastic, both saturated with water. This loading transfer is accompanied by an inward cavity convergence, thereby compressing the backfill, and induces an outward water flow. This leads to a complex space–time evolution of pore pressures, displacements and stresses, which is not always intuitive. In its general setting, a semi‐explicit solution to this problem is developed, using Laplace transform, the inversion being performed numerically. Analytical inversion leading to a quasi‐explicit solution in the time domain is possible by identifying the characteristic creep and relaxation times of volumetric strains with those of the deviatoric strains, on the basis of a parametric study. A few numerical examples are given to illustrate the hydro‐mechanical behaviour of the cavity and highlight the influence of key parameters (e.g. stiffness of backfill, lining deterioration rate, etc.). Further studies accounting for more general material behaviours for the backfill and external ground are ongoing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The Biot linearized theory of fluid saturated porous materials is used to study the plane strain deformation of a two-phase medium consisting of a homogeneous, isotropic, poroelastic half-space in welded contact with a homogeneous, isotropic, perfectly elastic half-space caused by a two-dimensional source in the elastic half-space. The integral expressions for the displacements and stresses in the two half-spaces in welded contact are obtained from the corresponding expressions for an unbounded elastic medium by applying suitable boundary conditions at the interface. The case of a long dip-slip fault is discussed in detail. The integrals for this source are solved analytically for two limiting cases: (i) undrained conditions in the high frequency limit, and (ii) steady state drained conditions as the frequency approaches zero. It has been verified that the solution for the drained case (ω → 0) coincides with the known elastic solution. The drained and undrained displacements and stresses are compared graphically. Diffusion of the pore pressure with time is also studied.  相似文献   

10.
Thermal oil recovery processes involve high pressures and temperatures, leading to large volume changes and induced stresses. These cannot be handled by traditional reservoir simulation because it does not consider coupled geomechanics effects. In this paper we present a fully coupled, thermal half‐space model using a hybrid DDFEM method. A finite element method (FEM) solution is adopted for the reservoir and the surrounding thermally affected zone, and a displacement discontinuity method is used for the surrounding elastic, non‐thermal zone. This approach analyzes stress, pressure, temperature and volume change in the reservoir; it also provides stresses and displacements around the reservoir (including transient ground surface movements) in a natural manner without introducing extra spatial discretization outside the FEM zone. To overcome spurious spatial temperature oscillations in the convection‐dominated thermal advection–diffusion problem, we place the transient problem into an advection–diffusion–reaction problem framework, which is then efficiently addressed by a stabilized finite element approach, the subgrid‐scale/gradient subgrid‐scale method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Elastic lateral dynamic impedance functions are defined as the ratio of the lateral dynamic force/moment to the corresponding lateral displacement/rotation at the top ending of a foundation at very small strains. Elastic lateral dynamic impedance functions have a defining influence on the natural frequencies of offshore wind turbines supported on cylindrical shell type foundations, such as suction caissons, bucket foundations, and monopiles. This paper considers the coupled horizontal and rocking vibration of a cylindrical shell type foundation embedded in a fully saturated poroelastic seabed in contact with a seawater half‐space. The formulation of the coupled seawater–shell–seabed vibration problem is simplified by treating the shell as a rigid one. The rigid shell vibration problem is approached by the integral equation method using ring‐load Green's functions for a layered seawater‐seabed half‐space. By considering the boundary conditions at the shell–soil interface, the shell vibration problem is reduced to Fredholm integral equations. Through an analysis of the corresponding Cauchy singular equations, the intrinsic singular characteristics of the problem are rendered explicit. With the singularities incorporated into the solution representation, an effective numerical method involving Gauss–Chebyshev method is developed for the governing Fredholm equations. Selected numerical results for the dynamic contact load distributions, displacements of the shell, and lateral dynamic impedance functions are examined for different shell length–radius ratio, poroelastic materials, and frequencies of excitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This work presents analytical solutions for displacements caused by three‐dimensional point loads in a transversely isotropic full space, in which transversely isotropic planes are inclined with respect to the horizontal loading surface. In the derivation, the triple Fourier transforms are employed toyield integral expressions of Green's displacement; then, the triple inverse Fourier transforms and residue calculus are performed to integrate the contours. The solutions herein indicate that the displacements are governed by (1) the rotation of the transversely isotropic planes (?), (2) the type and degree of material anisotropy (E/E′, ν/ν′, G/G′), (3) the geometric position (r, φ, ξ) and (4) the types of loading (Px, Py, Pz). The solutions are identical to those of Liao and Wang (Int. J. Numer. Anal. Methods Geomechanics 1998; 22 (6):425–447) if the full space is homogeneous and linearly elastic and the transversely isotropic planes are parallel to the horizontal surface. Additionally, a series of parametric study is conducted to demonstrate the presented solutions, and to elucidate the effect of the aforementioned factors on the displacements. The results demonstrate that the displacements in the infinite isotropic/transversely isotropic rocks, subjected to three‐dimensional point loads could be easily determined using the proposed solutions. Also, these solutions could realistically imitate the actual stratum of loading situations in numerous areas of engineering. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Earlier solutions of deformations resulting from the movements of shear and tensile faults in a half space (Bull. Seismol. Soc. Amer. 1985; 75 :1135, 1992; 82 :1018) have been revised in view of cross‐anisotropic stress–strain relationships. The dislocation theory (Canad. J. Phys. 1958; 36 :192) is reviewed and the displacement field due to a concentrated force in an anisotropic half space is solved analytically for developing the current research. A fault is simulated as a point source of strain nuclei in applying the dislocation theory. Data (Terr. Atmos. Oceanic Sci. 2000; 11 (3):591, 631) that were used to study the Chi‐Chi earthquake (ML=7.3; 1999/9/21 AM 1:47) are introduced to compare the solution with the isotropic results. Results indicate that the anisotropy of stress–strain relationships does affect the results of predicted deformations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, forced rocking vibration of a rigid circular disc placed in a transversely isotropic full‐space, where the axis of material symmetry of the full‐space is normal to the surface of the plate, is analytically investigated. Because of using the Fourier series and Hankel integral transforms, the mixed boundary‐value problem is transformed into two separate pairs of integral equations called dual integral equations. The dual integral equations involved in this paper are reduced to Fredholm integral equations of the second kind. With the aid of contour integration, the governing integral equation is numerically evaluated in the general dynamic case. The reduced static case of the dual integral equations is solved analytically and the vertical displacement, the contact pressure and the static impedance/compliance function are explicitly determined, and it is shown that the pressure in between the plate and the full‐space and the compliance function reduced for isotropic half‐space are identical to the previously published solutions. The dynamic contact pressure in between the disc and the space and also the related impedance function are numerically evaluated in general dynamic case and illustrated. It is shown that the singularity exists in the contact pressure at the edge of the disc is the same as the static case. To show the effect of material anisotropy, the numerical evaluations are given for some different transversely isotropic materials and compared. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A numerically efficient and stable method is developed to analyze Biot's consolidation of multilayered soils subjected to non‐axisymmetric loading in arbitrary depth. By the application of a Laplace–Hankel transform and a Fourier expansion, the governing equations are solved analytically. Then, the analytical layer‐element (i.e. a symmetric stiffness matrix) describing the relationship between generalized displacements and stresses of a layer is exactly derived in the transformed domain. Considering the continuity conditions between adjacent layers, the global stiffness matrix of multilayered soils is obtained by assembling the inter‐related layer‐elements. Once the solution in the Laplace–Hankel transformed domain that satisfies the boundary conditions has been obtained, the actual solution can be derived by the inversion of the Laplace–Hankel transform. Finally, numerical examples are presented to verify the theory and to study the influence of the layered soil properties and time history on the consolidation behavior. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In the framework of elastostatics, a mathematical treatment is presented for the boundary value problem of the interaction of a flexible cylindrical pile embedded in a transversely isotropic half‐space under transverse loadings. Taking the pile region as a stiffened subdomain of an extended half‐space, the formulation of the interaction problem is reduced to a Fredholm integral equation of the second kind. The necessary set of Green's functions for the transversely isotropic half‐space is obtained by means of a method of potentials. The resulting Green's functions are incorporated into a numerical procedure for the solution of the integral equation. The theoretical response of the pile is presented in terms of bending moment, displacement and slope profiles for a variety of transversely isotropic materials so that the effect of different anisotropy parameters can be meaningfully discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
An analytical solution is presented for a buoyant tunnel in an elastic half‐plane. The tunnel undergoes a prescribed displacement along its boundary, and the surface of the half‐plane is stress‐free. The solution uses the complex variable method and consists of conformally mapping the hole and half‐plane to an annular region. The complex potentials each contain two logarithmic terms due to the resultant buoyancy force acting on the tunnel, and as a result the displacements at infinity are unbounded. An example is presented for the case of a rigid buoyant tunnel in a half‐plane with gravity loading. Even though the tunnel does not deform, the buoyancy effect can be clearly seen in the contours of the displacements and stresses. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The problem of the dynamic responses of a semi‐infinite unsaturated poroelastic medium subjected to a moving rectangular load is investigated analytical/numerically. The dynamic governing equations are obtained with consideration of the compressibility of solid grain and pore fluid, inertial coupling, and viscous drag as well as capillary pressure in the unsaturated soil, and they can be easily degraded to the complete Biot's theory. Using the Fourier transform, the general solution for the equations is derived in the transformed domain, and then a corresponding boundary value problem is formulated. By introducing fast Fourier transform algorithm, the unsaturated soil vertical displacements, effective stresses, and pore pressures induced by moving load are computed, and some of the calculated results are compared with those for the degenerated solution of saturated soils and confirmed. The influences of the saturation, the load speed, and excitation frequency on the response of the unsaturated half‐space soil are investigated. The numerical results reveal that the effects of these parameters on the dynamic response of the unsaturated soil are significant.  相似文献   

19.
This article derives the closed‐form solutions for estimating the vertical surface displacements of cross‐anisotropic media due to various loading types of batter piles. The loading types include an embedded point load for an end‐bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The planes of cross‐anisotropy are assumed to be parallel to the horizontal ground surface. The proposed solutions are never mentioned in literature and can be developed from Wang and Liao's solutions for a horizontal and vertical point load embedded in the cross‐anisotropic half‐space. The present solutions are identical with Wang's solutions when batter angle equals to 0°. In addition, the solutions indicate that the surface displacements in cross‐anisotropic media are influenced by the type and degree of material anisotropy, angle of inclination, and loading types. An illustrative example is given at the end of this article to investigate the effect of the type and degree of soil anisotropy (E/E′, G′/E′, and ν/ν′), pile inclination (α), and different loading types (a point load, a uniform skin friction, and a linear variation of skin friction) on vertical surface displacements. Results show that the displacements accounted for pile batter are quite different from those estimated from plumb piles, both driven in cross‐anisotropic media. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper generalizes the finite strain Coulomb solution of Vrakas and Anagnostou (Int J Numer Anal Meth Geomech 2014; 38(11): 1131–1148) for the classic tunnel mechanics problem of the ground response curve to elastoplastic grounds satisfying a non‐linear Mohr's failure criterion. A linear (Coulomb‐type) plastic potential function is used, leading to a non‐associated flow law, and edge plastic flow is considered in the plastic zone. The solution for a general non‐linear Mohr's failure criterion is semi‐analytical in that it requires the evaluation of definite integrals. In the special case of the Hoek–Brown criterion, however, these integrals are calculated analytically, resulting in a rigorous closed‐form series solution. The applicability of the derived solution is illustrated through the example of the Yacambú‐Quibor tunnel, where very large deformations were observed when crossing of weak graphitic phyllites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号