首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (~800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity ‘hotspot’. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.  相似文献   

2.
Information regarding climatic conditions during plant growth is preserved by the oxygen-isotope composition of biogenic silica (phytoliths) deposited in grasses. The O-isotope compositions of phytoliths and the plant water from which they precipitate are dependent on soil-water δ18O values, relative humidity, evapotranspiration rates, and temperature. Plant water and phytoliths from two grass species, Ammophila breviligulata (C3) and Calamovilfa longifolia (C4) at Pinery Provincial Park in southwestern Ontario, Canada, were examined to determine the variability in their δ18O values. Stem water was unfractionated from soil-water in oxygen isotopic composition and the δ18O values of stem silica provide a good proxy for the soil water available to roots during the growing season. Greater spatial and temporal variation in the δ18O values of water in the top 5 cm of the soil, and their enhanced sensitivity to evaporative 18O enrichment, are reflected in the generally higher δ18O values of water in the shallow roots and rhizomes of these grasses. Water within the sheath and lower and upper leaf tissues experiences continual evaporation, becoming progressively enriched in 18O as it moves towards the tip of the leaf. However, the water from which leaf silica precipitates has not acquired the extreme 18O enrichment predicted using steady-state models, or measured for midday or average daily leaf water. Possible explanations for this behaviour include preferential deposition of silica at night; the existence of a secluded water fraction within the leaf, which experiences smaller diurnal variations in isotopic composition than leaf water at sites of evaporation; kinetic isotope effects during rapid precipitation of leaf silica; and incomplete exchange between the oxygen in the silicic acid and the leaf water.  相似文献   

3.
以云南省蒙自断陷盆地东山山区典型岩溶洼地为研究区,通过野外采集土壤样品与实验室测试分析相结合的方法,运用稳定同位素技术研究旱季不同深度土壤水氢氧同位素组成,揭示区内土壤水氢氧同位素时空变化特征,为进一步研究云南断陷盆地山区土壤水分运移机制和当地农业合理利用和管理水资源提供科学依据。结果表明:(1)土壤水δD、δ18O同位素值的变化范围分别为-128.3‰~-27.6‰和-17.5‰~2.5‰,平均值分别为-96.1‰±20.7‰和-12.3‰±3.7‰,降雨转化为土壤水和水分在土壤中重新分布时发生一定程度的氢氧同位素分馏。(2)旱季两个月份土壤水氢氧同位素组成发生变化,4月份土壤水δD、δ18O同位素平均值分别为-86.3‰±23.83‰和-10.6‰±4.3‰,显著高于2月份(δD:-106.1‰±9.5‰;δ18O:-14.1‰±1.6‰)(p<0.05),主要和4月份土壤水的蒸发作用强烈有关。(3)在空间上,坡地与洼地之间土壤水氢氧同位素组成存在差异,2月份坡地与洼地之间土壤水δD、δ18O值差异显著(p<0.05),洼地土壤水δD、δ18O比坡地偏轻;4月份坡地与洼地之间土壤水δD、δ18O值差异不显著(p>0.05)。(4)土壤垂直剖面方向上土壤水δD、δ18O值随着土壤深度的增加而减小,浅层土壤水δ18O和深层土壤水δ18O存在显著差异,2月份浅层土壤水δ18O比深层土壤水δ18O偏正2.8‰,4月份浅层土壤水δ18O比深层土壤水δ18O偏正10.5‰。   相似文献   

4.
Environmental tracers (CFCs, stable isotopes 18O, 2H, and 3H) and major ions were employed to study river infiltration and groundwater recharge in the aquifer system in the basin of the Lower Heihe River, Northwest China. Three groups of waters have been recognized: (1) young groundwater, connected to the river, with large variation of CFC apparent ages ranging from <10 a to 40 a, and δ18O and δ2H values which are similar to the river water; (2) regional background water, unaffected by the river, having CFC apparent ages >40 a, and being depleted in 18O and 2H compared with the river water; and (3) groundwater in Gurinai, a grassland located about 100 km from the river, in which the predominant discharge is from the Badain Jaran desert, with CFC apparent ages ranging from 25 to >50 a and being enriched in 18O and 2H compared to the river water. The groundwater along the river contains CFCs and 3H down to depths of about 120 m, and the shallow groundwater exhibits CFC apparent ages in a wide range which are not dependent on the well depth. Groundwaters along the river show a similar trend of enrichment in 18O and 2H as the river water whereas groundwaters in depression cones are depleted in heavier isotopes, and have low CFC and 3H concentrations. The CFC apparent age of the groundwater increases with increasing distance downstream, indicating that the dominant part of the groundwater is from infiltration of river water in the upper reaches. Modifications of groundwater recharge are reflected in variations of stable isotope compositions, as well as CFC and 3H concentrations in the groundwater that was recharged from the river over the last decades. Despite recharging from river water, groundwater abstraction has induced a water balance deficit. The riparian ecosystem in the Ejina Oasis is constrained by both decreased river flow and increased groundwater abstraction. The vegetation degradation in the Ejina Oasis is controlled not only by natural aridification but also worsened by heavy groundwater abstraction and decreased river flow.  相似文献   

5.
隧道建设引起地下水流场改变,对区域水分运移过程造成严重影响.以重庆市中梁山岩溶槽谷为例,于2017年4月~2019年4月收集降水、土壤水、地下水和隧道排水,利用氢氧稳定同位素分析隧道影响区和非隧道影响区的土壤水和地下水运移过程,探索隧道建设对其产生的影响.结果表明:隧道影响区土壤水δ2H和δ18O变化幅度较非隧道影响区...  相似文献   

6.
Dual isotopic analysis of nitrate (15N/14N and 18O/16O) is increasingly used to investigate the environmental impacts of human-induced elevated atmospheric nitrate deposition. In forested ecosystems, the nitrate found in surface water and groundwater can originate from two sources: (1) atmospheric deposition, and (2) nitrate produced from nitrification in forest soils (microbial nitrate). Application of the dual nitrate isotope technique for determining the relative importance of nitrate sources in forested catchments requires knowledge of the isotopic composition of microbial nitrate. We excluded precipitation inputs to three zero-tension lysimeters installed below the F-horizon (Oe) at the Turkey Lakes Watershed (TLW) in order to measure the isotopic composition of microbial nitrate produced in situ. To our knowledge, this is the first in situ study of the isotopic composition of microbial nitrate in forest soils. Over a 2-week period, nitrate produced by nitrification was periodically flushed to the lysimeters by watering the area with a nitrogen-free solution. Nitrate produced in the forest floor had δ18O values ranging from +3.1‰ to +10.1‰ with a mean of +5.2‰. These values were only slightly higher than from the expected value of +1.0‰ calculated for chemolithoautotrophic nitrification, which depends on the δ18O of available O2 and H2O. In addition to nitrate, we also collected soil gas to determine if soil respiration and O2 diffusion affected soil gas δ18O-O2, which is typically assumed to be identical to atmospheric O2 (+23.5‰) when calculating microbial nitrate δ18O values. No significant difference in δ18O-O2 from atmospheric O2 was found in forest soils to a depth of 55 cm, and therefore 18O-enrichment of soil gas O2 could not explain the modest enrichment of nitrate 18O. Evaporative 18O-enrichment of soil water available to nitrifiers in the forest floor is a plausible mechanism for slightly elevated nitrate δ18O values. However, the observed nitrate δ18O values could also be explained by a minor contribution of nitrate from heterotrophic nitrifiers. The δ15N of nitrate produced ranged from −10.4 to −7.3‰ and, as expected, was depleted in 15N relative to soil organic nitrogen. Microbial nitrate produced in the forest floor was also significantly depleted in 15N relative to microbial nitrate exported in groundwater and headwater streams at the TLW. We hypothesize that 15N-depleted forest floor nitrate is not detected in groundwaters largely because of: (1) the immobilization of forest floor nitrate in the mineral soil and (2) the mixing of the remaining forest floor nitrate with nitrate generated in the mineral soil, which is expected to have higher δ15N values. This study demonstrates that current methods of calculating a priori the δ18O of microbial nitrate provide a reasonable value for nitrate produced by nitrification at the TLW.  相似文献   

7.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

8.
The stable isotopic characteristics were used together with the total chloride to assess changes in groundwater from recharge zones into the carbonate aquifer in an arid environment. The aquifer under study represents a major source of groundwater and thermal springs in Al-Ain city, which are located at the northern part of Jabal Hafit in the United Arab Emirates (UAE). The relationship between oxygen and hydrogen isotopic composition of groundwater is established and is described by δD?=?2.2δ18O???9.96. The lower slope and y-intercept of groundwater samples relative to the local meteoric waterline suggests that the isotopic enrichment is due to the evaporation of shallow groundwater after recharge occurs. The majority of the shallow groundwater samples have a negative deuterium excess (d-excess) which might be ascribed to high a degree of evaporation, while most of the groundwater samples from deep wells, have a positive value of d-excess which may be related to a low degree of evaporation. The δ18O values of the thermal waters suggest enrichment towards δ18O of the carbonate rocks because of the exchange with oxygen at higher temperatures. A possible mixing between thermal or hot water and shallow groundwater is evident in some samples as reflected by δD vs. Cl and d-excess vs. δ18O plots.  相似文献   

9.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

10.
Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both δ18O profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0–115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.  相似文献   

11.
《Applied Geochemistry》1999,14(7):953-962
Isotopic compositions of C (δ13C), O (δ18O) and Sr (δ87Sr) were determined for calcite fracture fillings in the crystalline rock penetrated by a 1.6 km drill hole at Laxemar, near the Äspö Hard Rock Laboratory (ÄHRL) in southern Sweden. These calcites precipitated from groundwater some time in the past, and their δ13C, δ18O and δ87Sr values reflect those of the source waters. The present-day groundwater system is hydrochemically stratified with highly saline water underlying more shallow brackish and fresh water. The origin of this stratified system is probably related to past glaciations although the ultimate origin of the deep, highly saline water is still problematical. None of the calcite fracture fillings sampled below 900 m could have precipitated from any of the present-day ground waters which in view of the glacial history of the region is not surprising. However, several shallow calcite fracture fillings are formed by precipitation from the present-day groundwater. Coupled variations in δ13C, δ18O and δ87Sr isotopes at depths in excess of 900 m suggest that these isotope systems in calcite are recording a time-dependent evolution of groundwater composition.  相似文献   

12.
Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55–71 mm yr?1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160–400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July–September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.  相似文献   

13.
We investigated major ions, stable isotopes, and radiocarbon dates in a Quaternary aquifer in semi-arid northwestern China to gain insights into groundwater recharge and evolution. Most deep and shallow groundwater in the Helan Mountains was fresh, with total dissolved solids <1,000 mg L?1 and Cl? <250 mg L?1. The relationships of major ions with Cl? suggest strong dissolution of evaporites. However, dissolution of carbonates, albite weathering, and ion exchange are also the major groundwater process in Jilantai basin. The shallow desert groundwater is enriched in δ18O and intercepts the local meteoric water line at δ18O = ?13.4 ‰, indicating that direct infiltration is a minor recharge source. The isotope compositions in intermediate confined aquifers resemble those of shallow unconfined groundwater, revealing that upward recharge from intermediate formations is a major source of shallow groundwater in the plains and desert. The estimated residence time of 10.0 kyr at one desert site, indicating that some replenishment of desert aquifers occurred in the late Pleistocene and early Holocene with a wetter and colder climate than at present.  相似文献   

14.
为了探究平朔矿区所在流域不同水体同位素的时空变化规律, 揭示采煤活动下区域水循环规律, 于2020年8月和12月对流域内地表水、地下水和矿井水进行采样, 测试样品的D和18O同位素组成, 并利用贝叶斯混合模型MixSIAR计算了矿井水不同来源的贡献率。结果表明: ①地表水和矿井水δD和δ18O夏季较冬季高; 地下水δD和δ18O季节差异不明显。地表水氢氧同位素值沿程呈增加趋势, 但局部受到矿井水的补给, 出现贫化; 地下水氢氧同位素值沿径流方向呈逐渐增加趋势。②采煤区氢氧同位素值较非采煤区明显增加。受季节效应影响, 在空间分布上8月浅层地下水氢氧同位素高值区域较12月明显增多。③ δ18O与δD关系图表明, 地表水在接受大气降水的补给之后受到了蒸发分馏作用的影响; 浅层地下水的补给源较复杂, 深层地下水由于采煤形成的导水裂隙带受到了浅层地下水和地表水的补给; 矿井水受地表水、浅层地下水和深层地下水的补给。④ MixSIAR模型揭示出深层地下水是矿井水的主要补给来源, 占61.60%~67.20%, 且补给比例冬季大于夏季; 浅层地下水对矿井水的补给存在明显季节差异。  相似文献   

15.
The environmental isotopes such as deuterium and oxygen-18 and the deuterium excess values have been used to assess groundwater recharge sources and their dynamics in Khan Younis City in the Gaza Strip in Palestine. Three isotopic lines for the relationship between δ2H and δ18O were used in the assessment. These lines are the global meteoric water line, the local meteoric water line and the groundwater evaporation line. The δ2H, δ18O and D-excess values indicate that deuterium and oxygen-18 isotopes originated in the groundwater from groundwater mixing with rainfall and other water sources; the groundwater in the area recharged from rainfall from a distant source that came from the Mediterranean Sea and from other sources such as wastewater, irrigation return flow and saline water.  相似文献   

16.
The paleohydrological and sedimentological characteristics of a playa lake in northern Kuwait (Arabian Gulf) are reconstructed using sedimentological, geochemical, and isotopic techniques. The sequence consists of up to 8 cycles of S-poor, alluvial sediments capped by a thin organic soil interbedded with gravity-fall calcrete sediments. The succession is locally derived from mainly Quaternary sediments and is regressive with upsection filling of the subsiding basin by cycles of sheetwash flow in response to climatic change. There is no natural, open-water lake water as indicated by low total organic carbon (TOC) data, but the presence of incised calcrete yardangs suggests that more extensive open-water conditions were operative in the past. Stable isotope (δ18O‰ and δ13C‰) values of the authigenic carbonates indicate the following three distinct processes: evaporation, meteoric fluid infiltration, and rapid per-descensum flow (rapid downward movement of water and playa sediment through pipes) through a porous, clastic sequence. Because evaporites are scarce, other factors besides evaporation action control chemical and isotopic compositions of the per-decensum lake fluids. Consequently, the isotopic composition cannot be interpreted exclusively as an indicator of salinity or evaporation ratio. The degassing of CO2 during groundwater discharge may explain the enriched carbon isotope values for the authigenic carbonates precipitated in the sediments. Hydrologically closed lake water bodies tend to show low negative carbonate oxygen and carbon isotopic signatures. Isotopically negative δ13C values imply a strong input of soil-zone carbon to the groundwater of the top 60 cm of the sediment. Lakes that are hydrologically closed and evaporate or equilibrate with atmospheric CO2 will tend to have low negative δ18O and δ13C values in the carbonates as reported by Talbot (Chem Geol: Isotope Geosci Sect 80(4):261–279, 1990). Biologically active lakes will tend toward lower δ13C of dissolved carbon due to the photosynthetic effects of 12C withdrawal as reported by Dunagan and Driese (J Sed Res 69:772–783, 1999). Increased biological activity during sedimentation may account for low carbon isotope values where plants were abundant, but in shrinkage-dominated systems (those of clay-rich soil subjecting to wet-dry conditions), carbon isotopes will be largely inherited from the calcretic limestones in the land extending landward of the coast and not influenced by coastal processes (known as hinterland), such as Umm Ar-Rimam depression. This basin does not fit the classic shallow playa-type basins of the Arabian Peninsula but rather the recharge playas of the southwestern USA.  相似文献   

17.
根据焉耆盆地开都河水及其两岸地下水中的氢氧稳定同位素资料及氘过量参数(d)值,分析了焉耆盆地内不同水体的δ(D)、δ(18O)和d值的分布规律,并得到地下水的主要补给来源及其与开都河水的相互作用关系;地下水的δ(D)在-87.60‰~-61.82‰间,δ(18O)在-10.90‰~-9.73‰间;开都河水的δ(D)在-71.95‰~-58.58‰间,δ(18O)在-9.57‰~-8.64‰间。结果表明:焉耆盆地内地下水和地表水同源于山区的降水和冰雪融水,且经历了较强的蒸发作用;地下水与地表水之间的直接水力联系较弱,深层地下水主要接受开都河水在洪积扇区的入渗补给,浅层地下水主要接受河流引水灌溉入渗;不同深度地下水之间的水力联系较为密切,为统一的地下水系统。  相似文献   

18.
通过对黑河源区降水、 黑河下游河岸林生态系统、 人工梭梭林生态系统梭梭及戈壁红砂生态系统土壤水和浅层地下水稳定氢氧同位素组成(δD、 δ18O)的测定, 对黑河下游典型生态系统土壤水和浅层地下水的补给源进行了研究. 同时通过对比分析河岸林生态系统胡杨和柽柳、 人工梭梭林生态系统梭梭及戈壁红砂生态系统红砂等优势植物根系水及其对应的土壤水及浅层地下水的δ18O, 对黑河下游典型荒漠植物水分来源进行了研究, 并对不同潜在水源对植物水分来源的贡献率进行了计算. 结果表明: 河岸林生态系统和人工梭梭林生态系统的土壤水和浅层地下水来自黑河源区的降水, 源区降水通过黑河河道输水补给河岸林进而形成土壤水和浅层地下水, 但人工梭梭林的土壤水蒸发作用强烈. 戈壁红砂生态系统由于远离黑河, 土壤水不受黑河源区中上游输水的补给. 就植物水分来源而言, 在河岸林生态系统中, 乔木胡杨主要利用40~60 cm的土壤水和地下水, 灌木柽柳主要利用40~80 cm的土壤水; 人工梭梭主要利用200 cm至饱和层土壤水和地下水; 戈壁红砂主要利用175~200 cm的土壤水. 因此, 在黑河下游极端干旱区, 土壤水和地下水是维持荒漠植物生存、 生长及发育的主要来源.  相似文献   

19.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

20.
The characteristics of δD and δ18O in precipitation, groundwater and surface water have been used to understand the groundwater flow system in the Ordos Plateau, north-central China. The slope of the local meteoric water line (LMWL) is smaller than that of the global meteoric water line (GMWL), which signifies secondary evaporation during rainfall. The distribution of stable isotopes of precipitation is influenced by temperature and the amount of precipitation. The lake water is enriched isotopically due to evaporation and its isotopic composition is closely related to the source of recharge and location in the groundwater flow systems. River water is enriched isotopically, indicating that it suffers evaporation. The deep groundwater (more than 150?m) is depleted in heavy isotopes relative to the shallow groundwater (less than 150?m), suggesting that deep groundwater may have been recharged during the late Pleistocene and early Holocene, when the climate was wetter and colder than at present. All groundwater samples plot around the LMWL, implying groundwater is of meteoric origin. Shallow groundwater has undergone evaporation and the average evaporation loss is 53%. There are two recharge mechanisms: preferential flow, and the mixture of evaporated soil moisture and subsequent rain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号