首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
This paper investigates wave-by-wave control of a wave energy converter using incident wave prediction based on up-wave surface elevation measurement. The goal of control is to approach the hydrodynamically optimum velocity leading to optimum power absorption. This work aims to study the gains in energy conversion from a deterministic wave propagation model that accounts for a range of group velocities in deriving the prediction. The up-wave measurement distance is assumed to be small enough to allow a deterministic propagation model, and further, both wave propagation and device response are assumed to be linear. For deep water conditions and long-crested waves, the propagation process is also described using an impulse response function (e.g. [1]). Approximate low and high frequency limits for realistic band-limited spectra are used to compute the corresponding group velocity limits. The prediction time into the future is based on the device impulse response function needed for the evaluation of the control force. The up-wave distance and the duration of measurement are then determined using the group velocity limits above.A 2-body axisymmetric heaving device is considered, for which power capture is through the relative heave oscillation between the two co-axial bodies. The power take-off is assumed to be linear and ideal as well as capable of applying the necessary resistive and reactive load components on the relative heave oscillation. The predicted wave profile is used along with device impulse response functions to compute the actuator force components at each instant. Calculations are carried out in irregular waves generated using a number of uni-modal wave spectra over a range of energy periods and significant wave heights. Results are compared with previous studies based on the use of instantaneous up-wave wave-profile measurements, both without and with oscillation constraints imposed. Considerable improvements in power capture are observed with the present approach over the range of wave conditions studied.  相似文献   

2.
Several Wave Energy Converters (abbreviated as WECs) have intensively been studied and developed during the last decade and currently small farms of WECs are getting installed. WECs in a farm are partly absorbing, partly redistributing the incident wave power. Consequently, the power absorption of each individual WEC in a farm is affected by its neighbouring WECs. The knowledge of the wave climate around the WEC is needed to predict its performance in the farm. In this paper a technique is developed to implement a single and multiple WECs based on the overtopping principle in a time-dependent mild-slope equation model. So far, the mild-slope equations have been widely used to study wave transformations around coastal and offshore structures, such as breakwaters, piles of windmills and offshore platforms. First the limitations of the WEC implementation are discussed through a sensitivity analysis. Next the developed approach is applied to study the wave height reduction behind a single WEC and a farm. The wake behind an isolated WEC is investigated for uni- and multidirectional waves; it is observed that an increase of the directional spread leads to a faster wave redistribution behind the WEC. Further the wake in the lee of multiple WECs is calculated for two different farm lay-outs, i.e. an aligned grid and a staggered grid, by adapting the performance of each WEC to its incident wave power. The evolved technique is a fast tool to find the optimal lay-out of WECs in a farm and to study the possible influence on surrounding activities in the sea.  相似文献   

3.
The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.  相似文献   

4.
To assist in the prototyping and controller design of point-absorber wave energy converters (WECs), an easy-to-implement hybrid integral-equation method is presented for computing the frequency-domain hydrodynamic properties of bodies with a vertical axis of symmetry in waves. The current hybrid method decomposes the flow domain into two parts: an inner domain containing the body and an outer domain extending to infinity. The solution in the inner domain is computed using the boundary-element method, and the outer-domain solution is expressed using eigenfunctions. Proper matching at the domain boundary is achieved by enforcing continuity of velocity potential and its normal derivative. Body symmetry allows efficient computation using ring sources in the inner domain. The current method is successfully applied to three different body geometries including a vertical truncated floating cylinder, the McIver toroid, and the coaxial-cylinder WEC being developed in the authors’ laboratory. In particular, the current results indicate that, by replacing the flat bottom of the coaxial-cylinder WEC with the Berkeley-Wedge (BW) shape, viscous effect can be significantly reduced with only minor negative impact on wave-exciting force, thus increasing WEC efficiency. Finally, by comparing to experimental measurements, the current method is demonstrated to accurately predict the heave added mass and wave-exciting force on the coaxial-cylinder WEC with BW geometry. If a viscous damping correction factor is used, the heave motion amplitude can also be accurately computed.  相似文献   

5.
Statistical analysis of nonlinear random waves is important in coastal and ocean engineering. One approach for modeling nonlinear waves is second-order random wave theory, which involves sum- and difference-frequency interactions between wave components. The probability distribution of the non-Gaussian surface elevation can be solved using a technique developed by Kac and Siegert [21]. The wave field can be significantly modified by wave diffraction due to a structure, and the nonlinear diffracted wave elevation can be of interest in certain applications, such as the airgap prediction for an offshore structure. This paper investigates the wave statistics due to second-order diffraction, motivated by the scarcity of prior research. The crossing rate approach is used to evaluate the extreme wave elevation over a specified duration. The application is a bottom-supported cylindrical structure, for which semi-analytical solutions for the second-order transfer functions are available. A new efficient statistical method is developed to allow the distribution of the diffracted wave elevation to be obtained exactly, accounting for the statistical dependency between the linear, sum-frequency and difference-frequency components. Moreover, refinements are proposed to improve the efficiency for computing the free surface integral. The case study yields insights into the problem. In particular, the second-order nonlinearity is found to significantly amplify the extreme wave elevation, especially in the upstream region; conversely, the extreme elevation at an oblique location downstream is attenuated due to sheltering effects. The statistical dependency between the linear and sum-frequency components is also shown to be important for the extreme wave statistics.  相似文献   

6.
If Scottish Government targets are met, the equivalent of 100% of Scotland's electricity demand will be generated from renewable sources by 2020. There are several possible risks posed to seabirds from marine renewable energy installations (MREIs) and many knowledge gaps still exist around the extent to which seabird habitats can overlap with MREIs. In this study, underlying seasonal and interannual variation in seabird distributions was investigated using kernel density estimation (KDE) to identify areas of core habitat use. This allowed the potential interactions between seabirds and a wave energy converter (WEC) to be assessed. The distributions of four seabird species were compared between seasons, years, and in the presence and absence of WECs. Although substantial interannual variation existed in baseline years prior to WEC deployment, the KDEs for all four species analysed were closer to the mooring points in the presence of a WEC in at least one season. The KDEs for all four species also increased in area in at least one season in the presence of a WEC. The KDEs of the northern fulmar and great skua overlapped the mooring points during spring in the presence of a device. The density of observations close to the mooring points increased for great skua, northern gannet, and northern fulmar during summer in the presence of a device. These results suggest that none of the four species analysed have shown avoidance or an extreme change in distribution as a result of the presence of a WEC. The continued monitoring of seabirds during WEC deployments is necessary to provide further data on how distributions may change in response to the presence of WECs.  相似文献   

7.
A virtual wave gauge (VWG) technique based on stereo imaging is developed to remotely measure water wave height, period, and direction. VWG minimizes computational costs by directly tracking the elevation of the water surface at selected points of interest using a Eulerian based dynamic searching algorithm. Results show that the VWG technique developed in this paper dramatically improves efficiency by two orders of magnitude compared to the traditional Lagrangian–Eulerian based point cloud method of stereo image processing. VWG is tested against traditional wave wire gauges to within 98% accuracy for significant wave height. Furthermore, the flexibility of the VWG is demonstrated in two field applications. First in an offshore breaking wave case, an array of VWGs is used to efficiently measure wave directionality. Second to investigate the reflection coefficient of a rock-mounted structure interacting with nearshore waves, linear and spatial VWG arrays are designed and implemented based on a priori information of the wave field from a preliminary VWG measurement. Overall, we demonstrate that the flexible and computational efficient VWG technique has the potential to make real-time remote stereo imaging wave measurements a reality.  相似文献   

8.
This paper presents a nonlinear frequency domain model and uses this to assess the performance of a wave energy converter (WEC) array with a nonlinear power take-off (PTO). In this model, the nonlinear PTO forces are approximated by a truncated Fourier series, while the dynamics of the WEC array are described by a set of linear motion equations in the frequency domain, and the hydrodynamic coefficients are obtained with the boundary element method. A single heave absorber is firstly investigated to establish the accuracy of the new model in capturing the nonlinear behaviour of the pumping system. Subsequently, simulations of a 2D array with 18 WECs and a pillar in the centre (representing the tower of a wind turbine) are carried out to understand wave interference effects. Several optimisation strategies are proposed to improve the overall performance of the WEC array. These results demonstrate a computationally effective method for accounting for nonlinear effects in large WEC arrays. The proposed approach may potentially be applied for developing control algorithms for the adaptability of a 2D array to incoming wave excitation.  相似文献   

9.
The present paper deals with a mathematical model of a heaving-buoy Wave Energy Converter (WEC) equipped with high-pressure hydraulic power take-off machinery for energy conversion. This model is based on linear hydrodynamic theory, and a hybrid frequency-time domain model is used to study the dynamics of the heaving-body exposed to an irregular incident wave. For the power take-off system, end-stop devices are provided to protect the hydraulic machinery when the buoy is exposed to severe sea states. The model also takes into account the lubricated friction force and pressure drops of orifice flow through the valves in the hydraulic system. All the forces mentioned in the hydraulic power take-off machinery have non-linear features. A complete non-linear state space model for the WEC system is presented in this study.The WEC system was numerically simulated for different cylinder lengths under a fixed volume. The effect of fluid compressibility in the cylinder has been investigated in the mathematical model. High frequency oscillations (HFOs) caused by the compressibility of the fluid are displayed in the time series and in corresponding power spectra, and variation is shown for different cylinder sizes. Piston ring and cylinder bore wear damage is estimated by using Archard’s equation on the basis of the simulation results. A comparison of these results with a performance of an identical WEC system which neglects fluid compressibility has been done in this work. It shows that although the spectral power is small, HFO can make a large contribution to both the ring and cylinder bore wear. For the purpose of wear prediction, oscillations at or below the wave frequency and HFO may be equally important.  相似文献   

10.
A lift based cycloidal wave energy converter (WEC) was investigated using potential flow numerical simulations in combination with viscous loss estimates based on published hydrofoil data. This type of wave energy converter consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel to the wave crests and submerged at a fixed depth. The operation of the WEC as a wave-to-shaft energy converter interacting with straight crested waves was estimated for an actual ocean wave climate. The climate chosen was the climate recorded by a buoy off the north-east shore of Oahu/Hawaii, which was a typical moderate wave climate featuring an average annual wave power PW = 17 kWh/m of wave crest. The impact of the design variables radius, chord, span and maximum generator power on the average annual shaft energy yield, capacity factor and power production time fraction were explored. In the selected wave climate, a radius R = 5 m, chord C = 5 m and span of S = 60 m along with a maximum generator power of PG = 1.25 MW were found to be optimal in terms of annual shaft energy yield. At the design point, the CycWEC achieved a wave-to-shaft power efficiency of 70%. In the annual average, 40% of the incoming wave energy was converted to shaft energy, and a capacity factor of 42% was achieved. These numbers exceeded the typical performance of competing renewables like wind power, and demonstrated that the WEC was able to convert wave energy to shaft energy efficiently for a range of wave periods and wave heights as encountered in a typical wave climate.  相似文献   

11.
12.
This paper investigates the evolution of wave shape over a low-crested structure (LCS) using a 2-D RANS-VOF model. The model predictions of surface elevation and wave skewness and asymmetry are in good agreement with the recent measurements collected in a small scale wave channel at the University of Cantabria (UCA). The empirical formulae relating wave skewness and asymmetry to local Ursell number by Peng et al. (2009) have been extended to include the effect of wave reflection and the ramp in front of LCS and a wider range of Ursell number in the present study. In the presence of LCS, wave skewness decreases slightly above the seaward slope, then increases rapidly up to a maximum value above the structure crest, and decreases drastically above the leeward slope. Wave asymmetry decreases sharply above the seaward slope to a negative minimum value at the structure crest, and then increases rapidly to a positive value above the leeward slope. Our bispectral analysis indicates that sum interactions increase skewness and decrease asymmetry while difference interactions have opposite effects and that the former dominate above the seaward slope and on the structure crest but the latter dominate above the leeward slope of LCS. The observed wave shape evolution over a LCS can be attributed to the changes in the interplay of sum and difference interactions. We found that incident wave height and wave period, relative structure freeboard, structure crest width and structure porosity are the controlling factors for wave shape evolution over LCS. This study provides new insights on the role of wave skewness and asymmetry in the breakwaters stability and sediment transport around the structure and on the beaches behind it.  相似文献   

13.
An increasing number of experiments are being conducted to study the design and performance of wave energy converters. Often in these tests, a real-time realization of prospective control algorithms is applied in order to assess and optimize energy absorption as well as other factors. This paper details the design and execution of an experiment for evaluating the capability of a model-scale WEC to execute basic control algorithms. Model-scale hardware, system, and experimental design are considered, with a focus on providing an experimental setup capable of meeting the dynamic requirements of a control system. To more efficiently execute such tests, a dry bench testing method is proposed and utilized to allow for controller tuning and to give an initial assessment of controller performance; this is followed by wave tank testing. The trends from the dry bench test and wave tank test results show good agreement with theory and confirm the ability of a relatively simple feedback controller to substantially improve energy absorption. Additionally, the dry bench testing approach is shown to be an effective and efficient means of designing and testing both controllers and actuator systems for wave energy converters.  相似文献   

14.
The power performances of a point absorber wave energy converter(WEC) operating in a nonlinear multidirectional random sea are rigorously investigated. The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter. This is a new approach, and, as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea, avoids the inaccuracies resulting from using a first order linear wave model in the simulation process. The predicted results have been systematically analyzed and compared, and the advantages of using this new approach have been convincingly substantiated.  相似文献   

15.
Nobuhito Mori   《Ocean Engineering》2003,30(2):658-220
The experimental studies of the breaking effects on wave statistics for deep-water random waves are presented. It is especially focused on the behavior of kurtosis of surface elevations due to wave breaking. Wave breaking suppresses the maximum limit of kurtosis of the surface elevation, although skewness depends on characteristic wave steepness. The mean instantaneous wave steepness of breaking waves defined using the zero-down-crossing method was much lower than expected from the Stokes waves.  相似文献   

16.
Spectral observations from pitch-and-roll buoys have been assimilated in a North Sea wave model, in order to study their impact on the wave analysis and forecast. The assimilation is based on Optimal Interpolation (OI) of a limited number of characteristic spectral parameters. In a case study, the propagation of the corrections through the model domain is followed, and it is clarified for which wave conditions the data assimilation has the largest influence on the forecast: this is especially the case for swell waves with long travel times between the assimilation site and the location where validation is carried out. A 1-year test has been carried out in which an analysis and subsequent forecast were produced four times a day. From a statistical analysis of the results a modest but systematic improvement of the 12-h forecast is found. When only swell cases are selected, the impact is more pronounced. It is argued that for shelf seas like the North Sea, more progress is to be expected from extension of the ‘conventional' observations network (buoys and wave radars) than from satellite measurements.  相似文献   

17.
In the design of any floating or fixed marine structure, it is vital to test models in order to understand the fluid/structure interaction involved. A relatively inexpensive method, compared to physical model testing, of achieving this is to numerically model the structure and the wave conditions in a numerical wave tank. In this paper, a methodology for accurately replicating measured ocean waves in a numerical model at full scale is detailed. A Fourier analysis of the measured record allows the wave to be defined as a summation of linear waves and, therefore, Airy's linear wave theory may be used to input the wave elevation and associated water particle velocities. Furthermore, a structure is introduced into the model to display the ability of the model to accurately predict wave–structure interaction. A case study of three individual measured waves, which are recorded at the Atlantic marine energy test site, off the west coast of Ireland, is also presented. The accuracy of the model to replicate the measured waves and perform wave–structure interaction is found to be very high. Additionally, the absolute water particle velocity profile below the wave from the numerical model is compared to a filtered analytical approximation of the measured wave at a number of time-steps and is in very good agreement.  相似文献   

18.
Compared with solar and wind energy, wave energy is a kind of renewable resource which is enormous and still under development. In order to utilize the wave energy, various types of wave energy converters (WECs) have been proposed and studied. And oscillating-body WEC is widely used for offshore deployment. For this type of WEC, the oscillating motion of the floater is converted into electricity by the power take off (PTO) system, which is usually mathematically simplified as a linear spring and a damper. The linear PTO system is characteristic of frequency-dependent response and the energy absorption is less powerful for off resonance conditions. Thus a nonlinear snap through PTO system consisting of two symmetrically oblique springs and a linear damper is applied. A nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two oblique springs to the original length of both springs. JONSWAP spectrum is utilized to generate the time series of irregular waves. Time domain method is used to establish the motion equation of the oscillating-body WEC in irregular waves. And state space model is applied to replace the convolution term in the time domain motion equation. Based on the established motion equation, the motion response of both the linear and nonlinear WEC is numerically calculated using 4th Runge–Kutta method, after which the captured power can be obtained. Then the influences of wave parameters such as peak frequency, significant wave height, damping coefficient of the PTO system and the nonlinear parameter γ on the power capture performance of the nonlinear WEC is discussed in detail. Results show that compared with linear PTO system, the nonlinear snap through PTO system can increase the power captured by the oscillating body WEC in irregular waves.  相似文献   

19.
This paper presents recent advances in knowledge on wave loads, based on experimental work carried out in the CIEM/LIM large flume at Barcelona within the framework of the VOWS (Violent Overtopping by Waves at Seawalls) project. Both quasi-static and impact wave forces from the new data set have been compared with predictions by empirical and analytical methods. The scatter in impact forces has been found to be large over the whole range of measurements, with no existing method giving especially good predictions. Based on general considerations, a simple and intuitive set of prediction formulae has been introduced for quasi-static and impact forces, and overturning moments, giving good agreement with the new measurements. New prediction formulae have been compared with previous measurements from physical model tests at small and large scale, giving satisfactory results over a relatively wide range of test conditions. The time variation of wave impacts is discussed, together with pressure distribution up the wall, which shows that within experimental limitations the measured pressures are within existing limits of previous study.  相似文献   

20.
The paper aims at introducing practical methods for power capture performance enhancement of a heaving wave energy converter in irregular seas. The optimum control solution requires tuning to wave frequency based on wave force information. However, identification of the wave frequency in irregular seas is considered to be a complex and difficult task. This is partly due to technical difficulties in determination of the wave force. Besides, there are no clear guidelines for identification of wave frequency from an irregular sea state based wave force information. In a typical application, one of the available sources of information about the wave properties is the wave elevation record. The proposed approach presents a method for estimation of the wave frequency information from the wave elevation data by using signal processing and filtering techniques. The proposed method uses filters to generate an estimation of wave force information, which is used to identify the local wave frequency by method of a time-series analysis of the data. This wave frequency information is then used in tuning the device. The details of the proposed techniques, the model of the wave energy converter, the simulated sea states and the related simulation results are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号