首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jamal Asfahani 《水文研究》2007,21(21):2934-2943
Twenty‐nine Schlumberger electrical soundings were carried out in the Salamiyeh region in Syria using a maximum current electrode separation of 1 km. Three soundings were made at existing boreholes for comparison. Aquifer parameters of hydraulic conductivity and transmissivity were obtained by analysing pumping test data from the existing boreholes. An empirical relationship between hydraulic conductivity determined from the pumping test and both resistivity and thickness of the Neogene aquifer has been established for these boreholes in order to calculate the geophysical hydraulic conductivity. A close agreement has been obtained between the computed hydraulic conductivity and that determined from the pumping test. The relationship established has, therefore, been generalized in the study area in order to evaluate hydraulic conductivity and transmissivity at all the points where geoelectrical measurements have been carried out. This generalization allows one to derive maps of the hydraulic conductivity and transmissivity in the study area based on geoelectrical measurements. These maps are important in future modelling processes oriented towards better exploitation of the aquifers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Accurate estimation of aquifer parameters, especially from crystalline hard rock area, assumes a special significance for management of groundwater resources. The aquifer parameters are usually estimated through pumping tests carried out on water wells. While it may be costly and time consuming for carrying out pumping tests at a number of sites, the application of geophysical methods in combination with hydro-geochemical information proves to be potential and cost effective to estimate aquifer parameters. Here a method to estimate aquifer parameters such as hydraulic conductivity, formation factor, porosity and transmissivity is presented by utilizing electrical conductivity values analysed via hydro-geochemical analysis of existing wells and the respective vertical electrical sounding (VES) points of Sindhudurg district, western Maharashtra, India. Further, prior to interpolating the distribution of aquifer parameters of the study area, variogram modelling was carried out using data driven techniques of kriging, automatic relevance determination based Bayesian neural networks (ARD-BNN) and adaptive neuro-fuzzy neural networks (ANFIS). In total, four variogram model fitting techniques such as spherical, exponential, ARD-BNN and ANFIS were compared. According to the obtained results, the spherical variogram model in interpolating transmissivity, ARD-BNN variogram model in interpolating porosity, exponential variogram model in interpolating aquifer thickness and ANFIS variogram model in interpolating hydraulic conductivity outperformed rest of the variogram models. Accordingly, the accurate aquifer parameters maps of the study area were produced by using the best variogram model. The present results suggest that there are relatively high value of hydraulic conductivity, porosity and transmissivity at Parule, Mogarne, Kudal, and Zarap, which would be useful to characterize the aquifer system over western Maharashtra.  相似文献   

3.
ABSTRACT

Viguier et al. propose an alternative conceptual model to the one presented by Scheihing to explain observed groundwater table variations at the foothills of the Andean piedmont in the Pampa del Tamarugal. It is demonstrated that the conceptual model of Viguier et al. is deficient. New findings underline that the confined aquifer of the Pampa del Tamarugal exhibits a hydraulic continuity over regional scales as proposed by Scheihing. Accordingly, short hydraulic response times of several months to distant recharge events can be confirmed. It is suggested that the investigated confined aquifer exhibits transient easterly boundary conditions, with easterly boundaries located in the Andean piedmont. These boundaries underly a periodic forcing due to occasional recharge. Several arguments are presented that support that alluvial fan channel recharge is in the investigated cases likely not a significant recharge mechanism (not to be confused with fan apex recharge).  相似文献   

4.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

5.
ABSTRACT

The current state of kriging in subsurface hydrology is critically reviewed. In an application to a region where boreholes already exist, methods of optimal location of additional observation wells for geophysical parameter investigation and optimal interpolation for the purpose of solving the inverse problem are investigated. The particular case of the location of wells for the measurements of transmissivity and hydraulic head in the Kennet Valley Chalk aquifer, UK, is examined. Results of interpolation of measured hydraulic conductivity values by kriging are compared with results from a standard graphical package for interpolation. Reference is also made to the distribution obtained by the inverse method (in which the conductivity distribution is obtained from the head distribution). On the basis of the application, the conditional simulation (in which the generated data are both consistent with field values and the field statistical structure) is deemed to be the best. It is also found that different methods of interpolation give widely different distributions in the case of hydraulic conductivity. It is suggested that the kriged map or conditional map of the transmissivity should serve as the basis for regional discretization to which corrections via the inverse model may be made.  相似文献   

6.
A combined analysis of lineament length density from radar imagery and surface resistivity data is used to assess the hydrogeological conditions in the Oban massif, Nigeria. The results show that the data guided the qualitative and quantitative estimation of some aquifer parameters. These include resistivity of the water bearing formations (280–740 ω m), thickness (5–140 m), limited hydraulic conductivity (8.53-13.18 m/day) and transmissivity (410.65–725.88 m2/day) data. In addition, the lineament length density for the area ranged between less than 0.2 to slightly more than 0.4. Site evaluation for the location of productive boreholes/wells using a groundwater potential index (GWPI) indicates that areas with a GWPI of greater than 35 are consistent with relatively high yield.  相似文献   

7.
Vertical electrical sounding technique (VES) is used as an alternative approach to pumping test for computing the Quaternary aquifer transmissivity in the Khanasser Valley, Northern Syria. The method is inexpensive, easy and gives faster results with higher special resolution than the traditional pumping technique. The hydraulic conductivity values obtained using VES agree with the pumping test results, which in the Khanasser Valley vary between the order of 0.864 and 8.64 m/day (10−5 and 10−4 m/s). The probable location of the Quaternary aquifer in the Khanasser Valley is obtained through the transmissivity map derived from VES. The knowledge of transmissivity is fundamental for modeling and management processes in the Khanasser Valley. Other similar semiarid regions can benefit from the approach successfully applied in the study area.  相似文献   

8.
Delineating alluvial aquifer heterogeneity using resistivity and GPR data   总被引:6,自引:0,他引:6  
Conceptual geological models based on geophysical data can elucidate aquifer architecture and heterogeneity at meter and smaller scales, which can lead to better predictions of preferential flow pathways. The macrodispersion experiment (MADE) site, with >2000 measurements of hydraulic conductivity obtained and three tracer tests conducted, serves as an ideal natural laboratory for examining relationships between subsurface flow characteristics and geophysical attributes in fluvial aquifers. The spatial variation of hydraulic conductivity measurements indicates a large degree of site heterogeneity. To evaluate the usefulness of geophysical methods for better delineating fluvial aquifer heterogeneities and distribution of preferential flow paths, a surface grid of two-dimensional ground penetrating radar (GPR) and direct current (DC) resistivity data were collected. A geological model was developed from these data that delineate four stratigraphic units with distinct electrical and radar properties including (from top to bottom) (1) a meandering fluvial system (MFS); (2) a braided fluvial system (BFS); (3) fine-grained sands; and (4) a clay-rich interval. A paleochannel, inferred by other authors to affect flow, was mapped in the MFS with both DC resistivity and GPR data. The channel is 2 to 4 m deep and, based on resistivity values, is predominantly filled with clay and silt. Comparing previously collected hydraulic conductivity measurements and tracer-plume migration patterns to the geological model indicates that flow primarily occurs in the BFS and that the channel mapped in the MFS has no influence on plume migration patterns.  相似文献   

9.
The relationship between aquifer hydraulic conductivity and aquifer resistivity, either measured on the ground surface by vertical electrical sounding (VES) or from resistivity logs, or measured in core samples have been published for different types of aquifers in different locations. Generally, these relationships are empirical and semi-empirical, and confined in few locations. This relation has a positive correlation in some studies and negative in others. So far, there is no potentially physical law controlling this relation, which is not completely understood. Electric current follows the path of least resistance, as does water. Within and around pores, the model of conduction of electricity is ionic and thus the resistivity of the medium is controlled more by porosity and water conductivity than by the resistivity of the rock matrix. Thus, at the pore level, the electrical path is similar to the hydraulic path and the resistivity should reflect hydraulic conductivity. We tried in this paper to study the effect of degree of groundwater saturation in the relation between hydraulic conductivity and bulk resistivity via a simple numerical analysis of Archie’s second law and a simplified Kozeny-Carmen equation. The study reached three characteristic non-linear relations between hydraulic conductivity and resistivity depending on the degree of saturation. These relations are: (1) An inverse power relation in fully saturated aquifers and when porosity equals water saturation, (2) An inverse polynomial relation in unsaturated aquifers, when water saturation is higher than 50%, higher than porosity, and (3) A direct polynomial relation in poorly saturated aquifers, when water saturation is lower than 50%, lower than porosity. These results are supported by some field scale relationships.  相似文献   

10.
An integrated study using geophysical method in combination with pumping tests and geochemical method was carried out to delineate groundwater potential zones in Mian Channu area of Pakistan. Vertical electrical soundings (VES) using Schlumberger configuration with maximum current electrode spacing (AB/2 = 200 m) were conducted at 50 stations and 10 pumping tests at borehole sites were performed in close proximity to 10 of the VES stations. The aim of this study is to establish a correlation between the hydraulic parameters obtained from geophysical method and pumping tests so that the aquifer potential can be estimated from the geoelectrical surface measurements where no pumping tests exist. The aquifer parameters, namely, transmissivity and hydraulic conductivity were estimated from Dar Zarrouyk parameters by interpreting the layer parameters such as true resistivities and thicknesses. Geoelectrical succession of five‐layer strata (i.e., topsoil, clay, clay sand, sand, and sand gravel) with sand as a dominant lithology was found in the study area. Physicochemical parameters interpreted by World Health Organization and Food and Agriculture Organization were well correlated with the aquifer parameters obtained by geoelectrical method and pumping tests. The aquifer potential zones identified by modeled resistivity, Dar Zarrouk parameters, pumped aquifer parameters, and physicochemical parameters reveal that sand and gravel sand with high values of transmissivity and hydraulic conductivity are highly promising water bearing layers in northwest of the study area. Strong correlation between estimated and pumped aquifer parameters suggest that, in case of sparse well data, geophysical technique is useful to estimate the hydraulic potential of the aquifer with varying lithology.  相似文献   

11.
Our study focuses on the potential usefulness of surface geophysical data to constrain the water content within an alluvial aquifer. On a study area where two wells have been drilled, we have performed several geophysical measurements, including ground penetrating radar, DC resistivity prospecting, seismic refraction survey and magnetic resonance soundings. From these data, we estimated several parameters, namely, the water height in the deposits, the effective porosity, the water content, the permeability, and the transmissivity of alluvial deposits. These physical parameters allow us to characterize the alluvial deposits in order to constrain the estimation of the potential water flow. The lithology and water flow rate known from the wells enabled us to compare geophysical results obtained in a high water flow rate zone to those in a low water flow rate zone. Correlation has been found between the water flow rate observed in both wells and the geophysical data obtained in the vicinity of these wells.  相似文献   

12.
Stauffer F 《Ground water》2005,43(6):843-849
A method is proposed to estimate the uncertainty of the location of pathlines in two-dimensional, steady-state confined or unconfined flow in aquifers due to the uncertainty of the spatially variable unconditional hydraulic conductivity or transmissivity field. The method is based on concepts of the semianalytical first-order theory given in Stauffer et al. (2002, 2004), which allows estimates of the lateral second moment (variance) of the location of a moving particle. However, this method is reformulated in order to account for nonuniform recharge and nonuniform aquifer thickness. One prominent application is the uncertainty estimation of the catchment of a pumping well by considering the boundary pathlines starting at a stagnation point. In this method, the advective transport of particles is considered, based on the velocity field. In the case of a well catchment, backtracking is applied by using the reversed velocity field. Spatial variability of hydraulic conductivity or transmissivity is considered by taking into account an isotropic exponential covariance function of log-transformed values with parameters describing the variance and correlation length. The method allows postprocessing of results from ground water models with respect to uncertainty estimation. The code PPPath, which was developed for this purpose, provides a postprocessing of pathline computations under PMWIN, which is based on MODFLOW. In order to test the methodology, it was applied to results from Monte Carlo simulations for catchments of pumping wells. The results correspond well. Practical applications illustrate the use of the method in aquifers.  相似文献   

13.
Geographical Information System (GIS) has been used in this paper to delineate groundwater resources potential in the western part of greater Kushtia district of Bangladesh, where urgent attention for augmentation of irrigation water supply is required. Thematic maps of transmissivity, hydraulic conductivity, specific yield, net recharge, aquifer thickness, surface water bodies, aquifer resistivity, overburden aquitard thickness and its resistivity have been prepared and assigned weight according to their relative importance using Analytical Hierarchical Process for the preparation of groundwater potential model. Since the values within each thematic map vary significantly, they are classified into various ranges or types and assigned ratings. Finally, the thematic maps are integrated using GIS to prepare the groundwater potential map for the study area in terms of Ground Water Potential Index (GWPI). The evolved map indicates that 22.51% of the study area have GWPI more than 0.70 and therefore, have excellent prospective for exploitation. About 69.12% of the area with GWPI ranging from 0.50 to 0.70 is also quite promising for groundwater abstraction, while the rest 8.37% area having GWPI below 0.50 indicates moderate potential. The obtained map of groundwater potential is found in good agreement with the yields of available pumping test data.  相似文献   

14.
Management of water resources in alluvial aquifers relies mainly on understanding interactions between hydraulically connected streams and aquifers. Numerical models that simulate this interaction often are used as decision support tools for water resource management. However, the accuracy of numerical predictions relies heavily on unknown system parameters (e.g., streambed conductivity and aquifer hydraulic conductivity), which are spatially heterogeneous and difficult to measure directly. This paper employs an ensemble smoother to invert groundwater level measurements to jointly estimate spatially varying streambed and alluvial aquifer hydraulic conductivity along a 35.6‐km segment of the South Platte River in Northeastern Colorado. The accuracy of the inversion procedure is evaluated using a synthetic experiment and historical groundwater level measurements, with the latter constituting the novelty of this study in the inversion and validation of high‐resolution fields of streambed and aquifer conductivities. Results show that the estimated streambed conductivity field and aquifer conductivity field produce an acceptable agreement between observed and simulated groundwater levels and stream flow rates. The estimated parameter fields are also used to simulate the spatially varying flow exchange between the alluvial aquifer and the stream, which exhibits high spatial variability along the river reach with a maximum average monthly aquifer gain of about 2.3 m3/day and a maximum average monthly aquifer loss of 2.8 m3/day, per unit area of streambed (m2). These results demonstrate that data assimilation inversion provides a reliable and computationally affordable tool to estimate the spatial variability of streambed and aquifer conductivities at high resolution in real‐world systems.  相似文献   

15.
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced‐gradient tracer test. We estimated the three dimensional (3D) hydraulic‐conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot‐point method. We compared the estimated parameter field to available profiles of hydraulic‐conductivity variations from direct‐push injection logging (DPIL), and validated the hydraulic‐conductivity field with hydraulic‐head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual‐domain transport were estimated by fitting tracer data collected during a forced‐gradient tracer test. The dual‐domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic‐conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.  相似文献   

16.
Models for contaminant transport in streams commonly idealize transient storage as a well mixed but immobile system. These transient storage models capture rapid (near‐stream) hyporheic storage and transport, but do not account for large‐scale, stage‐dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large‐scale, stage‐dependent preferential flow pathways (PFPs). Long‐term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P‐laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re‐entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams' total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 µm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage‐dependent transient storage in alluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Estimation of hydraulic parameters is essential to understand the interaction between groundwater flow and seawater intrusion. Though several studies have addressed hydraulic parameter estimation, based on pumping tests as well as geophysical methods, not many studies have addressed the problem with clayey formations being present. In this study, a methodology is proposed to estimate anisotropic hydraulic conductivity and porosity values for the coastal aquifer with unconsolidated formations. For this purpose, the one-dimensional resistivity of the aquifer and the groundwater conductivity data are used to estimate porosity at discrete points. The hydraulic conductivity values are estimated by its mutual dependence with porosity and petrophysical parameters. From these estimated values, the bilinear relationship between hydraulic conductivity and aquifer resistivity is established based on the clay content of the sampled formation. The methodology is applied on a coastal aquifer along with the coastal Karnataka, India, which has significant clayey formations embedded in unconsolidated rock. The estimation of hydraulic conductivity values from the established correlations has a correlation coefficient of 0.83 with pumping test data, indicating good reliability of the methodology. The established correlations also enable the estimation of horizontal hydraulic conductivity on two-dimensional resistivity sections, which was not addressed by earlier studies. The inventive approach of using the established bilinear correlations at one-dimensional to two-dimensional resistivity sections is verified by the comparison method. The horizontal hydraulic conductivity agrees with previous findings from inverse modelling. Additionally, this study provides critical insights into the estimation of vertical hydraulic conductivity and an equation is formulated which relates vertical hydraulic conductivity with horizontal. Based on the approach presented, the anisotropic hydraulic conductivity of any type aquifer with embedded clayey formations can be estimated. The anisotropic hydraulic conductivity has the potential to be used as an important input to the groundwater models.  相似文献   

18.
The value of subsidence data in ground water model calibration   总被引:2,自引:0,他引:2  
Yan T  Burbey TJ 《Ground water》2008,46(4):538-550
The accurate estimation of aquifer parameters such as transmissivity and specific storage is often an important objective during a ground water modeling investigation or aquifer resource evaluation. Parameter estimation is often accomplished with changes in hydraulic head data as the key and most abundant type of observation. The availability and accessibility of global positioning system and interferometric synthetic aperture radar data in heavily pumped alluvial basins can provide important subsidence observations that can greatly aid parameter estimation. The aim of this investigation is to evaluate the value of spatial and temporal subsidence data for automatically estimating parameters with and without observation error using UCODE-2005 and MODFLOW-2000. A synthetic conceptual model (24 separate cases) containing seven transmissivity zones and three zones each for elastic and inelastic skeletal specific storage was used to simulate subsidence and drawdown in an aquifer with variably thick interbeds with delayed drainage. Five pumping wells of variable rates were used to stress the system for up to 15 years. Calibration results indicate that (1) the inverse of the square of the observation values is a reasonable way to weight the observations, (2) spatially abundant subsidence data typically produce superior parameter estimates under constant pumping even with observation error, (3) only a small number of subsidence observations are required to achieve accurate parameter estimates, and (4) for seasonal pumping, accurate parameter estimates for elastic skeletal specific storage values are largely dependent on the quantity of temporal observational data and less on the quantity of available spatial data.  相似文献   

19.
A. Altunkaynak  Z. Şen 《水文研究》2011,25(11):1778-1783
Darcian flow law in aquifers assumes that the aquifer hydraulic conductivity is constant and the groundwater movement is due only to the piezometric level changes through hydraulic gradient. In practice, after the well development the aquifer just around the well has comparatively larger hydraulic conductivity and gradient. Patchy aquifer solutions in the literature consider sudden hydraulic conductivity changes with distance for the steady state flow. The change of transmissivity is demonstrated by the application of slope‐matching procedure to actual field data. It is the main purpose of this paper to derive simple analytical expressions for aquifer parameter evaluations with steadily decreasing hydraulic conductivity around the well. Spatial nonlinear hydraulic conductivity changes around a large‐diameter well within the depression cone of a confined aquifer are considered as exponentially decreasing functions of the radial distance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Geophysical methods were applied for hydrogeological targets in many countries including Vietnam. This paper presents results of using complex geophysical techniques as well as 2D electrical resistivity imaging (ERI), vertical electrical sounding (VES), very low frequency (VLF), and seismic refraction for geological structure investigation for locating the aquifers and assessing the hydrogeological conditions for groundwater potential in industrial zones of North Hanoi, Vietnam. The locations of two aquifers are determined by their depth and thickness on the basis of resistivity and seismic velocity values which were proved by stratifications of three boreholes to 40–60 m of depth on the study area. There are connections from surface water to shallow aquifer by hydraulic windows, as follows from VLF data. The deeper aquifer can be considered as a potential groundwater supply, but the water level is descending in time, as shown by hydrological monitoring. However, with careful use and by reducing sources of pollution, groundwater can continue to be an important natural resource for future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号