首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This paper gives an overview of Cluster observations in the high-altitude cusp region of the magnetosphere. The low and mid-altitude cusps have been extensively studied previously with a number of low-altitude satellites, but only little is known about the distant part of the magnetospheric cusps. During the spring-time, the trajectory of the Cluster fleet is well placed for dayside, high-altitude magnetosphere investigations due to its highly eccentric polar orbit. Wide coverage of the region has resulted and, depending on the magnetic dipole tilt and the solar wind conditions, the spacecraft are susceptible to encounter: the plasma mantle, the high-altitude cusp, the dayside magnetosphere (i.e. dayside plasma sheet) and the distant exterior cusp diamagnetic cavity. The spacecraft either exit into the magnetosheath through the dayside magnetopause or through the exterior cusp–magnetosheath interface. This paper is based on Cluster observations made during three high-altitude passes. These were chosen because they occurred during different solar wind conditions and different inter-spacecraft separations. In addition, the dynamic nature of the cusp allowed all the aforementioned regions to be sampled with different order, duration and characteristics. The analysis deals with observations of: (1) both spatial and temporal structures at high-altitudes in the cusp and plasma mantle, (2) signatures of possible steady reconnection, flux transfer events (FTE) and plasma transfer events (PTE), (3) intermittent cold (<100 eV) plasma acceleration associated with both plasma penetration and boundary motions, (4) energetic ions (5–40 keV) in the exterior cusp diamagnetic cavity and (5) the global structure of the exterior cusp and its direct interface with the magnetosheath. The analysis is primarily focused on ion and magnetic field measurements. By use of these recent multi-spacecraft Cluster observations we illustrate the current topics under debate pertaining to the solar wind–magnetosphere interaction, for which this region is known to be of major importance.  相似文献   

2.
Based on the DMSP F6 and F7 satellite observations, the characteristics of precipitating particles in different auroral precipitation regions of the dayside sector have been studied depending on the solar wind plasma density. Under quiet geomagnetic conditions (|AL| < 100 nT and B z > 0), a considerable increase in the fluxes of precipitating ions is observed in the zones of structured auroral oval precipitation (AOP) and soft diffuse precipitation (SDP). A decrease in the mean energy of precipitating ions is observed simultaneously with the flux growth in these regions. The global pattern of variations in the fluxes of precipitating ions, which shows the regions of effective penetration of solar wind particles into the magnetosphere at a change in the solar wind density from 2 to 20 cm?3, has been constructed. The maximal flux variation (ΔJ i = 1.8 · 107 cm?2 s?1, i.e., 3.5% of an increase in the solar wind particle flux) is observed in the SDP region on the dayside of the Earth. The dependence of precipitating ion fluxes in the low-latitude boundary layer (LLBL), dayside polar cusp, and mantle on the solar wind density at positive and negative values of the IMF B z component has been studied. In the cusp region, an increase in the precipitating ion flux is approximately 17% of an increase in the solar wind density. The IMF southward turning does not result in an appreciable increase in the ion precipitation fluxes either in the cusp or in the mantle. This fact can indicate that the reconnection of the geomagnetic field with southward IMF is not the most effective mechanism for penetration of solar wind particles into these regions.  相似文献   

3.
The polar cusps have traditionally been described as narrow funnel-shaped regions of magnetospheric magnetic field lines directly connected to magnetosheath ones, allowing the magnetosheath plasma to precipitate into the ionosphere. However, recent middle- to high-altitude observations (i.e., the Interball, Hawkeye, Polar, Image, and Cluster spacecraft) reported the cusps to encompass a broad area near local noon. The present paper focuses on a statistical study of the high-altitude cusp and surrounding magnetosheath regions as well as on some peculiarities of the cusp-magnetosheath transition. For a comparison of high- and low-altitude cusp determination, we present a mapping of two-year Magion-4 (a part of the Interball project) observations of cusp-like plasma along model magnetic field lines (according to the Tsyganenko 96 model) down to the Earth’s surface. The footprint positions show a substantial latitudinal dependence on the dipole tilt angle. The dependence can be fitted by a line with a slope of 0.14° MLAT per 1° of tilt. In contrary to previously reported IMF or solar wind influences on the cusp shape or location, some differences exist: (1) a possible IMF BX dependence of the cusp location, (2) a split cusp for BY≠ 0, and (3) a smaller cusp during periods of higher solar wind dynamic pressure. The conclusions following from the statistical analysis are confirmed by case studies which reveal the physical mechanisms leading to the observed phenomena. Results have shown that (1) reconnection near the cusp does not necessarily lead to observable precipitation, (2) the cusp precipitation in one hemisphere can be supplied from the conjugate hemisphere, and (3) the cusp geometry at a certain time depends on the IMF history.  相似文献   

4.
Energetic electrons (e.g., 50 keV) travel along field lines with a high speed of around 20 REs−1. These swift electrons trace out field lines in the magnetosphere in a rather short time, and therefore can provide nearly instantaneous information about the changes in the field configuration in regions of geospace. The energetic electrons in the high latitude boundary regions (including the cusp) have been examined in detail by using Cluster/RAPID data for four consecutive high latitude/cusp crossings between 16 March and 19 March 2001. Energetic electrons with high and stable fluxes were observed in the time interval when the IMF had a predominately positive Bz component. These electrons appeared to be associated with a lower plasma density exhibiting no obvious tailward plasma flow (<20 keV). On the other hand, no electrons or only spike-like electron events have been observed in the cusp region during southward IMF. At that time, the plasma density was as high as that in the magnetosheath and was associated with a clear tailward flow. The fact that no stable energetic electron fluxes were observed during southward IMF indicates that the cusp has an open field line geometry. The observations indicate that both the South and North high latitude magnetospheric boundary regions (including both North and South cusp) can be energetic particle trapping regions. The energetic electron observations provide new ways to investigate the dynamic cusp processes. Finally, trajectory tracing of test particles has been performed using the Tsyganenko 96 model; this demonstrates that energetic particles (both ions and electrons) may be indeed trapped in the high latitude magnetosphere.  相似文献   

5.
处于高纬向日面的极隙区是太阳风能量、动量和质量可以直接进入地球磁场并到达地球的近地空间的区域。本文简要介绍了极隙区的观测和研究,综述了极隙区的粒子沉降、场向电流、等离子体对流和电离层电流的特征。  相似文献   

6.
Observations of a unique cusp feature at low and mid altitudes are reported. This feature has a consistent double-peaked or “V”-shaped structure at the equatorward edge of high-latitude particle precipitation flux, and is predominantly present for high IMF By conditions. The observations are consistent with the Crooker (‘A split separator line merging model of the dayside magnetopause’, J. Geophys. Res. 90 (1985) 12104, ‘Mapping the merging potential from the magnetopause to the ionosphere through the dayside cusp’, J. Geophys. Res. (1988) 93 7338.) antiparallel merging model, which predicts a narrow wedge-shaped cusp whose geometry depends greatly on the dawn/dusk component of the IMF. Various observations are presented at low altitudes (DE-2, Astrid-2, Munin, UARS, DMSP) and at mid altitudes (DE-1, Cluster) that suggest a highly coherent cusp feature that is consistent with the narrow, wedge-shaped cusp of Crooker (1988), and contains persistent wave signatures that are compatible with previously reported high-altitude measurements. A statistical survey of Astrid-2 and DMSP satellite data is also presented, which shows this feature to be persistent and dependent on the IMF angle at the magnetopause, as expected. Thus, the cusp signatures observed at a wide range of altitudes present a coherent picture that may be interpreted in terms of a footprint of the magnetopause current layer.  相似文献   

7.
高纬日侧电离层离子上行的地磁活动依赖性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对比分析了太阳活动高、低年期间高纬日侧顶部电离层离子上行随地磁活动水平的变化特征.按地磁活动水平,将DMSP卫星在太阳活动高年(2000-2002年,F13和F15)及太阳活动低年(2007-2009年,F13;2007-2010年,F15)期间的SSIES离子漂移速度观测数据分为三组:地磁平静期(Kp<3),中等地磁扰动期(3 ≤ Kp < 5)和强地磁活动期(Kp ≥ 5),分别统计分析了高纬日侧顶部电离层离子上行特征的时空分布.对比分析发现:(1)太阳活动低年期间,高纬日侧电离层离子上行发生率以及上行速度峰值均是太阳活动高年的2倍多,而离子上行通量峰值只有高年的1/6-1/4;(2)在相同太阳活动条件下,地磁活动水平对日侧电离层离子上行发生率峰值的影响并不明显,但对离子上行发生率的空间分布有着显著的控制作用:电离层离子上行高发区随地磁活动向低纬度扩展,并在强地磁活动期间呈现饱和的趋势;(3)日侧顶部电离层等离子体似乎存在两个效率相当的上行区域,一个位于极尖/极隙区纬度附近,离子可沿开放磁力线上行进入磁尾;另一个位于晨侧亚极光区附近,离子沿闭合磁力线上行,有可能进入日侧等离子体层边界层.  相似文献   

8.
A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz <0). The ionosondes measured electron densities of up to 9 × 1011 m−3 in the patch center, an increase above the density minimum between patches by a factor of ≈4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.  相似文献   

9.
Cluster Observations of the CUSP: Magnetic Structure and Dynamics   总被引:1,自引:0,他引:1  
This paper reviews Cluster observations of the high altitude and exterior (outer) cusp, and adjacent regions in terms of new multi-spacecraft analysis and the geometry of the surrounding boundary layers. Several crossings are described in terms of the regions sampled, the boundary dynamics and the electric current signatures observed. A companion paper in this issue focuses on the detailed plasma distributions of the boundary layers. The polar Cluster orbits take the four spacecraft in a changing formation out of the magnetosphere, on the northern leg, and into the magnetosphere, on the southern leg, of the orbits. During February to April the orbits are centred on a few hours of local noon and, on the northern leg, generally pass consecutively through the northern lobe and the cusp at mid- to high-altitudes. Depending upon conditions, the spacecraft often sample the outer cusp region, near the magnetopause, and the dayside and tail boundary layer regions adjacent to the central cusp. On the southern, inbound leg the sequence is reversed. Cluster has therefore sampled the boundaries around the high altitude cusp and nearby magnetopause under a variety of conditions. The instruments onboard provide unprecedented resolution of the plasma and field properties of the region, and the simultaneous, four-spacecraft coverage achieved by Cluster is unique. The spacecraft array forms a nearly regular tetrahedral configuration in the cusp and already the mission has covered this region on multiple spatial scales (100–2000 km). This multi-spacecraft coverage allows spatial and temporal features to be distinguished to a large degree and, in particular, enables the macroscopic properties of the boundary layers to be identified: the orientation, motion and thickness, and the associated current layers. We review the results of this analysis for a number of selected crossings from both the North and South cusp regions. Several key results have been found or have confirmed earlier work: (1) evidence for magnetically defined boundaries at both the outer cusp/magnetosheath interface and the␣inner cusp/lobe or cusp/dayside magnetosphere interface, as would support the existence of a distinct exterior cusp region; (2) evidence for an associated indentation region on the magnetopause across the outer cusp; (3) well defined plasma boundaries at the edges of the mid- to high-altitude cusp “throat”, and well defined magnetic boundaries in the high-altitude “throat”, consistent with a funnel geometry; (4) direct control of the cusp position, and its extent, by the IMF, both in the dawn/dusk and North/South directions. The exterior cusp, in particular, is highly dependent on the external conditions prevailing. The magnetic field geometry is sometimes complex, but often the current layer has a well defined thickness ranging from a few hundred (for the inner cusp boundaries) to 1000 km. Motion of the inner cusp boundaries can occur at speeds up to 60 km/s, but typically 10–20 km/s. These speeds appear to represent global motion of the cusp in some cases, but also could arise from expansion or narrowing in others. The mid- to high-altitude cusp usually contains enhanced ULF wave activity, and the exterior cusp usually is associated with a substantial reduction in field magnitude.  相似文献   

10.
Measurements with the ion charge-energy-mass spectrometer CHEM on the AMPTE/CCE spacecraft were used to investigate the origin of energetic He+ and He++ ions observed in the equatorial plane at 3\leqL\leq9. Special emphasis was laid on the dependence of long-term average distributions on magnetic local time (MLT) and the geomagnetic activity index Kp. The observations are described in terms of the phase space densities f1 (for He+) and f2 (for He++). They confirm preliminary results from a previous study: f1 is independent of MLT, whereas f2 is much larger on the nightside than on the dayside. They show, furthermore, that f1 increases slightly with Kp on intermediate drift shells, but decreases on high drift shells (L\geq7). f2 increases with Kp on all drift shells outside the premidnight sector. Within this sector a decrease is observed on high drift shells. A simple ion tracing code was developed to determine how and from where the ions move into the region of observations. It provides ion trajectories as a function of the ion charge, the magnetic moment and Kp. The ion tracing enables a distinction between regions of closed drift orbits (ring current) and open convection trajectories (plasma sheet). It also indicates how the outer part of the observation region is connected to different parts of the more distant plasma sheet. Observations and tracing show that He++ ions are effectively transported from the plasma sheet on convection trajectories. Their distribution in the observation region corresponds to the distribution of solar wind ions in the plasma sheet. Thus, energetic He++ ions most likely originate in the solar wind. On the other hand, the plasma sheet is not an important source of energetic He+ ions. Convection trajectories more likely constitute a sink for He+ ions, which may diffuse onto them from closed drift orbits and then get lost through the magnetopause. An ionospheric origin of energetic He+ ions is unlikely as well, since the source mechanism should be almost independent of Kp. There is considerable doubt, however, that a plausible mechanism also exists during quiet periods that can accelerate ions to ring current energies, while extracting them from the ionosphere. It is concluded, therefore, that energetic He+ ions are mainly produced by charge exchange processes from He++ ions. This means that most of the energetic He+ ions constituting the average distributions also very likely originate in the solar wind. Additional ionospheric contributions are possible during disturbed periods.  相似文献   

11.
极尖区是太阳风进入磁层的一个重要窗口,极尖区密度是反映这一物理过程的重要参量,通常情况下极尖区密度约为1~10 cm-3,但有时卫星会观测到密度大于40 cm-3的极尖区,本文称之为高密度极尖区.我们分析了Cluster卫星2001—2009年的观测数据,在470个极尖区穿越中找到28个高密度极尖区穿越事件并进行了统计研究,分析了高密度极尖区事件的形成原因,进而讨论了太阳风高效地进入极尖区的外部条件.结果表明:距正午的距离(|MLT-12|)较小,太阳风的密度高,低纬有磁层顶磁重联发生以及正偶极倾角都是观测到高密度极尖区事件的有利条件,并且当同时满足上述4个条件时,高密度极尖区事件发生率为100%;而低纬磁层顶磁重联以及大的正偶极倾角被认为是太阳风高效地进入极尖区的重要条件.这些研究结果有助于我们更进一步地理解太阳风进入极尖区的物理机制.  相似文献   

12.
Cusp geometry in MHD simulations   总被引:2,自引:0,他引:2  
The MHD simulations described here show that the latitude of the high-altitude cusp decreases as the IMF swings from North to South, that there is a pronounced dawn–dusk asymmetry at high-altitude associated with a dawn–dusk component of the IMF, and that at the same time there is also a pronounced dawn–dusk asymmetry at low-altitude. The simulations generate a feature that represents what has been called the cleft. It appears as a tail (when the IMF has a By component) attached to the cusp, extending either toward the dawn flank or the dusk flank depending on the dawn–dusk orientation of the IMF. This one-sided cleft connects the cusp to the magnetospheric sash. We compare cusp geometry predicted by MHD simulations against published observations based on Hawkeye and DMSP data. Regarding the high-altitude predictions, the comparisons are not definitive, mainly because the observations are incomplete or mutually inconsistent. Regarding the low-altitude prediction of a strong dawn–dusk asymmetry, the observations are unambiguous and are in good qualitative agreement with the prediction.  相似文献   

13.
The antiparallel merging hypothesis states that reconnection takes place on the dayside magnetopause where the solar and geomagnetic fields are oppositely directed. With this criterion, we have mapped the predicted merging regions to the ionosphere using the Tsyganenko 96 magnetic field model, distinguishing between regions of sub-Alfvénic and super-Alfvénic magnetosheath flow, and identifying the day-night terminator. We present the resulting shape, width and latitude of the ionospheric dayside merging regions in both hemispheres, showing their dependence on the Earths dipole tilt. The resulting seasonal variation of the longitudinal width is consistent with the conjugate electric fields in the northern and southern cusps, as measured by the SuperDARN HF radars, for example. We also find a seasonal shift in latitude similar to that observed in satellite cusp data.  相似文献   

14.
In the solar system, our Sun is Nature’s most efficient particle accelerator. In large solar flares and fast coronal mass ejections (CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flares and fast CMEs often occur together. However there are clues that different acceleration mechanisms exist in these two processes. In solar flares, particles are accelerated at magnetic reconnection sites and stochastic acceleration likely dominates. In comparison, at CME-driven shocks, diffusive shock acceleration dominates. Besides solar flares and CMEs, which are transient events, acceleration of particles has also been observed in other places in the solar system, including the solar wind termination shock, planetary bow shocks, and shocks bounding the Corotation Interaction Regions (CIRs). Understanding how particles are accelerated in these places has been a central topic of space physics. However, because observations of energetic particles are often made at spacecraft near the Earth, propagation of energetic particles in the solar wind smears out many distinct features of the acceleration process. The propagation of a charged particle in the solar wind closely relates to the turbulent electric field and magnetic field of the solar wind through particle-wave interaction. A correct interpretation of the observations therefore requires a thorough understanding of the solar wind turbulence. Conversely, one can deduce properties of the solar wind turbulence from energetic particle observations. In this article I briefly review some of the current state of knowledge of particle acceleration and transport in the inner heliosphere and discuss a few topics which may bear the key features to further understand the problem of particle acceleration and transport.  相似文献   

15.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

16.
WIND observations of coherent electrostatic waves in the solar wind   总被引:4,自引:0,他引:4  
The time domain sampler (TDS) experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s.) waves: coherent wave packets of Langmuir waves with frequencies ffpe, coherent wave packets with frequencies in the ion acoustic range fpiffpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF) ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES) and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ≃25D, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations). The type (wave packet or IES) of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.  相似文献   

17.
We have used a global time-dependent magnetohydrodynamic (MHD) simulation of the magnetosphere and particle tracing calculations to determine the access of solar wind ions to the magnetosphere and the access of ionospheric O+ ions to the storm-time near-Earth plasma sheet and ring current during the September 24–25, 1998 magnetic storm. We found that both sources have access to the plasma sheet and ring current throughout the initial phase of the storm. Notably, the dawnside magnetosphere is magnetically open to the solar wind, allowing solar wind H+ ions direct access to the near-Earth plasma sheet and ring current. The supply of O+ ions from the dayside cusp to the plasma sheet varies because of changes in the solar wind dynamic pressure and in the interplanetary magnetic field (IMF). Most significantly, ionospheric O+ from the dayside cusp loses access to the plasma sheet and ring current soon after the southward turning of the IMF, but recovers after the reconfiguration of the magnetosphere following the passage of the magnetic cloud. On average, during the first 3 h after the sudden storm commencement (SSC), the number density of solar wind H+ ions is a factor of 2–5 larger than the number density of ionospheric O+ ions in the plasma sheet and ring current. However, by 04:00 UT, ∼4 h after the SSC, O+ becomes the dominant species in the ring current and carries more energy density than H+ ions in both the plasma sheet and ring current.  相似文献   

18.
We report on the response of high-latitude ionospheric convection during the magnetic storm of March 20–21 1990. IMP-8 measurements of solar wind plasma and interplanetary magnetic field (IMF), ionospheric convection flow measurements from the Wick and Goose Bay coherent radars, EISCAT, Millstone Hill and Sondrestrom incoherent radars and three digisondes at Millstone Hill, Goose Bay and Qaanaaq are presented. Two intervals of particular interest have been identified. The first starts with a storm sudden commencement at 2243 UT on March 20 and includes the ionospheric activity in the following 7 h. The response time of the ionospheric convection to the southward turning of the IMF in the dusk to midnight local times is found to be approximately half that measured in a similar study at comparable local times during more normal solar wind conditions. Furthermore, this response time is the same as those previously measured on the dayside. An investigation of the expansion of the polar cap during a substorm growth phase based on Faraday’s law suggests that the expansion of the polar cap was nonuniform. A subsequent reconfiguration of the nightside convection pattern was also observed, although it was not possible to distinguish between effects due to possible changes in By and effects due to substorm activity. The second interval, 1200–2100 UT 21 March 1990, included a southward turning of the IMF which resulted in the Bz component becoming -10 nT. The response time on the dayside to this change in the IMF at the magnetopause was approximately 15 min to 30 min which is a factor of \sim2 greater than those previously measured at higher latitudes. A movement of the nightside flow reversal, possibly driven by current systems associated with the substorm expansion phases, was observed, implying that the nightside convection pattern can be dominated by substorm activity.  相似文献   

19.
The statistical features of the magnetic field and ion flux fluctuations in the boundary regions of the Earth’s magnetosphere have been studied on different timescales based on the Interball satellite measurements. Changes in the form and parameters of the probability density function have been studied for the periods when the satellite was in the solar wind plasma, different magnetosheath regions, and the turbulent boundary layer (TBL) at the polar cusp outer boundary. Variations in the probability density function maximum (P 0) and the kurtosis value as characteristics of the turbulence property evolution on different timescales have been studied. Two asymptotic regimes of P 0, which are characterized by different power laws, have been found. The structural functions of different orders and the types of diffusion processes in different regions, depending on time variations in the generalized diffusion coefficient, have been studied in order to analyze the character of diffusion processes. For the magnetosheath regions, TBL, and polar cusp, it has been found that the diffusion coefficient increases in the course of time (i.e., the regime of superdiffusion has been obtained). In the foreshock region before the main shock, turbulent processes are described by the Kolmogorov model of classical diffusion.  相似文献   

20.
The event of March 12–19, 2009, when a moderately high-speed solar wind stream flew around the Earth’s magnetosphere and carried millihertz ultralow-frequency (ULF) waves, has been analyzed. The stream caused a weak magnetic storm (D st min = −28 nT). Since March 13, fluxes of energetic (up to relativistic) electrons started increasing in the magnetosphere. Comparison of the spectra of ULF oscillations observed in the solar wind and magnetosphere and on the Earth’s surface indicated that a stable common spectral peak was present at frequencies of 3–4 mHz. This fact is interpreted as evidence that waves penetrated directly from the solar wind into the magnetosphere. Possible scenarios describing the participation of oscillations in the acceleration of medium-energy (E > 0.6 MeV) and high-energy (E > 2.0 MeV) electrons in the radiation belt are discussed. Based on comparing the event with the moderate magnetic storm of January 21–22, 2005, we concluded that favorable conditions for analyzing the interaction between the solar wind and the magnetosphere are formed during a deep minimum of solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号