首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A shallow unconfined low-lying coastal aquifer in southern Finland surrounded by the Baltic Sea is vulnerable to changes in groundwater recharge, sea-level rise and human activities. Assessment of the intrinsic vulnerability of groundwater under climate scenarios was performed for the aquifer area by utilising the results of a published study on the impacts of climate change on groundwater recharge and sea-level rise on groundwater–seawater interaction. Three intrinsic vulnerability mapping methods, the aquifer vulnerability index (AVI), a modified SINTACS and GALDIT, were applied and compared. According to the results, the degree of groundwater vulnerability is greatly impacted by seasonal variations in groundwater recharge during the year, and also varies depending on the climate-change variability in the long term. The groundwater is potentially highly vulnerable to contamination from sources on the ground surface during high groundwater recharge rates after snowmelt, while a high vulnerability to seawater intrusion could exist when there is a low groundwater recharge rate in dry season. The AVI results suggest that a change in the sea level will have an insignificant impact on groundwater vulnerability compared with the results from the modified SINTACS and GALDIT. The modified SINTACS method could be used as a guideline for the groundwater vulnerability assessment of glacial and deglacial deposits in inland aquifers, and in combination with GALDIT, it could provide a useful tool for assessing groundwater vulnerability to both contamination from sources on the ground surface and to seawater intrusion for shallow unconfined low-lying coastal aquifers under future climate-change conditions.  相似文献   

2.
Dar es Salaam Quaternary coastal aquifer is a major source of water supply in Dar es Salaam City used for domestic, agricultural, and industrial uses. However, groundwater overdraft and contamination are the major problems affecting the aquifer system. This study aims to define the principal hydrogeochemical processes controlling groundwater quality in the coastal strip of Dar es Salaam and to investigate whether the threats of seawater intrusion and pollution are influencing groundwater quality. Major cations and anions analysed in 134 groundwater samples reveal that groundwater is mainly affected by four factors: dissolution of calcite and dolomite, weathering of silicate minerals, seawater intrusion due to aquifer overexploitation, and nitrate pollution mainly caused by the use of pit latrines and septic tanks. High enrichment of Na+ and Cl? near the coast gives an indication of seawater intrusion into the aquifer as also supported from the Na–Cl signature on the Piper diagram. The boreholes close to the coast have much higher Na/Cl molar ratios than the boreholes located further inland. The dissolution of calcite and dolomite in recharge areas results in Ca–HCO3 and Ca–Mg–HCO3 groundwater types. Further along flow paths, Ca2+ and Na+ ion exchange causes groundwater evolution to Na–HCO3 type. From the PHREEQC simulation model, it appears that groundwater is undersaturated to slightly oversaturated with respect to the calcite and dolomite minerals. The results of this study provide important information required for the protection of the aquifer system.  相似文献   

3.
Groundwater degradation from irrigated agriculture is of concern in semi-arid northern China. Data-scarcity often means the causes and extent of problems are not fully understood. An irrigated area in Inner Mongolia was studied, where abstraction from an unconfined Quaternary aquifer has increased threefold over 20 years to 20 million m3/year; groundwater levels are falling at up to 0.5 m/year; and groundwater is increasingly mineralised (TDS increase from 400 to 700–1,900 mg/L), with nitrate concentrations up to 137 mg/L N. Residence-time (chlorofluorocarbons), stable-isotope and hydrogeochemical indicators helped develop a conceptual model of groundwater system evolution, demonstrating a direct relationship between modern water proportion and the degree of groundwater mineralisation, indicating that irrigation-water recycling is reducing groundwater quality. The investigations suggest that before irrigation development, active recharge to the aquifer from wadis significantly exceeded groundwater inflow from nearby mountains, previously held to be the main groundwater input. Away from active wadis, groundwater is older with a probable pre-Holocene component. Proof-of-concept groundwater modelling supports geochemical evidence, indicating the importance of wadi recharge and irrigation return flows. Engineering works protecting the irrigated area from flooding have reduced good quality recharge; active recharge is now dominated by irrigation returns, which are degrading the aquifer.  相似文献   

4.
Groundwater depletion and seawater intrusion constitute major challenges along coastal aquifers in arid areas. This paper assesses the role of groundwater recharge dams constructed to replenish aquifers and fight seawater intrusion with reference to AlKhod dam, Oman, sited 7 km from the coast on a gravely unconfined aquifer. Water table rise in piezometers located downstream from the dam shows regular patterns correlating with magnitude of wadi flow, whereas upstream piezometers show irregular patterns. Controlled release of water captured by the dam optimizes water percolation and enhances artificial recharge which was estimated in the wet years 1997, 2003 and 2005 as 15, 22 and 27 Mm3, respectively, using water table fluctuation method. Recharge contributed 40–60 % of the total annual abstraction. Groundwater salinity increased in the 1980s and 1990s and the saline/freshwater interface advanced inland, but has receded partially after 1997 (highest rainfall) and completely after 2005 indicated by reduction in electrical conductivity and thickening of freshwater lens. The recession is attributed to the dam’s induced recharge and reduction of pumping in 2004 following the commissioning of Barka desalination plant. Integrating artificial recharge with groundwater resources management is therefore an effective measure to replenish aquifers in arid areas and mitigate seawater intrusion along the coasts.  相似文献   

5.
Recently, Ras Sudr (the delta of Wadi Sudr) area received a great amount of attention due to different development expansion activities directed towards this area. Although Quaternary aquifer is the most prospective aquifer in Ras Sudr area, it has not yet completely evaluated. The present work deals with the simulation of the Quaternary groundwater system using a three-dimensional groundwater flow model. MODFLOW code was applied for designing the model of the Ras Sudr area. This is to recognize the groundwater potential as well as exploitation plan of the most prospective aquifer in the area. The objectives were to determine the hydraulic parameters of the Quaternary aquifer, to estimate the recharge amount to the aquifer, and to determine the hydrochemistry of groundwater in the aquifer. During this work, available data has been collected and some field investigation has been carried out. Groundwater flow model has been simulated using pilot points’ method. SEAWAT has been also applied to simulate the variable-density flow and sea water intrusion from the west. It can be concluded that: (1) the direction of groundwater flow is from the east to the west, (2) the aquifer system attains a small range of log-transformed hydraulic conductivity. It ranges between 3.05 and 3.35 m/day, (3) groundwater would be exploited by about 6.4 × 106 m3/year, (4) the estimated recharge accounts for 3 × 106 m3/year, (5) an estimated subsurface flow from the east accounts for 2.7 × 106 m3/year, (6) the increase of total dissolved solids (TDS) most likely due to dilution of salts along the movement way of groundwater from recharge area to discharge area in addition to a contribution of sea water intrusion from the west. Moreover, it is worth to note that a part of TDS increase might be through up coning from underlying more saline Miocene sediments. It is recommended that: (1) any plan for increasing groundwater abstraction is unaffordable, (2) reliable estimates of groundwater abstraction should be done and (3) automatic well control system should be made.  相似文献   

6.
A density-dependent numerical groundwater model was applied to study the climate change impact in a shallow aquifer in the Mediterranean coast of Morocco, the Saïdia aquifer. The stresses imposed to the model were derived from the IPCC emission scenarios and included recharge variation and sea level rise. The main effect of the climate change in the Saïdia aquifer will be a decrease in renewable resources, which in the worst-case scenario may decrease to 50–60% of present-day values, due to the decline in recharge and to a reduced inflow from the adjacent Triffa aquifer. The water quality will be affected mostly in the area immediately adjacent to the seashore, where salinity may increase up to 30 g/l. Localised areas may see a decrease in salinity due to the induced freshwater recharge from Oued Moulouya River and diminished inflow from high-salinity springs.  相似文献   

7.
This study investigates the hydraulic conductivity field and the groundwater flow pattern as predicted by a calibrated steady state groundwater flow model for the Keta Strip, southeastern Ghana. The hydraulic conductivity field is an important parameter in evaluating aquifer properties in space, and in general basin-wide groundwater resources evaluation and management. This study finds that the general hydraulic conductivity of the unconsolidated unconfined aquifer system of the Keta Strip ranges between 2 m/d and 20 m/d, with an average of 15 m/d. The spatial variation in horizontal hydraulic conductivity appears to take the trend in the variations in the nature of the material in space. Calibrated groundwater recharge suggests that 6.9–34% of annual precipitation recharges the shallow aquifer system. This amount of recharge is significant and suggests high fortunes in terms of groundwater resources development for agriculture and industrial activities in the area. A spatial distribution of groundwater recharge from precipitation is presented in this study. The spatial pattern appears to take the form of the distribution in horizontal hydraulic conductivity, and suggests that the vertical hydraulic conductivity takes the same pattern of spatial variation as the horizontal hydraulic conductivity. This is consistent with observations in other areas. The resulting groundwater flow is dominated by local flow systems as the unconfined system is quite shallow. A general northeast – southwest flow pattern has been observed in the study area.  相似文献   

8.
Groundwater systems in the San Luis Valley, Colorado, USA have been re-evaluated by an analysis of solute and isotopic data. Existing stream, spring, and groundwater samples have been augmented with 154 solute and isotopic samples. Based on geochemical stratification, three groundwater regimes have been identified within 1,200 m of the surface: unconfined, upper active confined, and lower active confined with maximum TDS concentrations of 35,000, 3,500 and 600 mg/L, respectively. The elevated TDS of northern valley unconfined and upper active confined systems result from mineral dissolution, ion exchange and methanogenesis of organic and evaporate lake sediments deposited in an ancient lake, herein designated as Lake Sipapu. Chemical evolutions along flow paths were modeled with NETPATH. Groundwater ages, and δ13C, δ2H and δ18O compositions and distributions, suggest that mountain front recharge is the principle recharge mechanism for the upper and lower confined aquifers with travel times in the northern valley of more than 20,000 and 30,000 14C years, respectively. Southern valley confined aquifer travel times are 5,000 14C years or less. The unconfined aquifer contains appreciable modern recharge water and the contribution of confined aquifer water to the unconfined aquifer does not exceed 20%.  相似文献   

9.
Salinization in coastal aquifers is usually related to both seawater intrusion and water–rock interaction. The results of chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai, southern China. The concentrations of the major ions that dominate in seawater (Cl?, Na+, Ca2+, Mg2+ and SO 4 2– ), as well as the isotopic content and ratios (2H, 18O, 87Sr/86Sr and 13C), suggest that the salinization occurring in the aquifer of the coastal plain is related to seawater and that the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization has occurred in an area that is significantly influenced by land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds are identified in the shallowest confined aquifer (I) in the middle of the area (site BBW2). Leakage from this polluted confined aquifer causes the salinization of groundwater in the underlying confined aquifer (II). At the coastal monitoring site (BBW3), confined aquifer I and lower confined aquifer II are heavily contaminated by seawater intrusion. The weak connectivity between the upper aquifers, and the seaward movement of freshwater, prevents saltwater from encroaching the deepest confined aquifer (III). A conceptual model is presented. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for the planning and sustainable management of groundwater resources in this region.  相似文献   

10.
Seawater intrusion is one of the most serious environmental problems in many coastal regions all over the world. Mixing a small quantity of seawater with groundwater makes it unsuitable for use and can result in abandonment of aquifers. Therefore, seawater intrusion should be prevented or at least controlled to protect groundwater resources. This paper presents development and application of a simulation‐optimization model to control seawater intrusion in coastal aquifers using different management scenarios; abstraction of brackish water, recharge of freshwater, and combination of abstraction and recharge. The model is based on the integration of a genetic algorithm optimisation technique and a coupled transient density‐dependent finite element model. The objectives of the management scenarios include determination of the optimal depth, location and abstraction/recharge rates for the wells to minimize the total costs for construction and operation as well as salt concentrations in the aquifer. The developed model is applied to analyze the control of seawater intrusion in a hypothetical confined coastal aquifer. The efficiencies of the three management scenarios are examined and compared. The results show that combination of abstraction and recharge wells is significantly better than using abstraction wells or recharge wells alone as it gives the least cost and least salt concentration in the aquifer. The results from this study would be useful in designing the system of abstraction/recharge wells to control seawater intrusion in coastal aquifers and can be applied in areas where there is a risk of seawater intrusion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10?5 m/d to 7.14 × 10?4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast–southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.  相似文献   

12.
Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.  相似文献   

13.
The first documented interpretation of the regional-scale hydrostratigraphy and groundwater flow is presented for a ~21,000-km2 area of the arsenic-affected districts of West Bengal [Murshidabad, Nadia, North 24 Parganas and South 24 Parganas (including Calcutta)], India. A hydrostratigraphic model demonstrates the presence of a continuous, semi-confined sand aquifer underlain by a thick clay aquitard. The aquifer thickens toward the east and south. In the south, discontinuous clay layers locally divide the near-surface aquifer into several deeper, laterally connected, confined aquifers. Eight 22-layer model scenarios of regional groundwater flow were developed based on the observed topography, seasonal conditions, and inferred hydrostratigraphy. The models suggest the existence of seasonally variable, regional, north–south flow across the basin prior to the onset of extensive pumping in the 1970s. Pumping has severely distorted the flow pattern, inducing high vertical hydraulic gradients across wide cones of depression. Pumping has also increased total recharge (including irrigational return flow), inflow from rivers, and sea water intrusion. Consequently, downward flow of arsenic contaminated shallow groundwater appears to have resulted in contamination of previously safe aquifers by a combination of mechanical mixing and changes in chemical equilibrium.  相似文献   

14.

Three-dimensional transient groundwater flow and saltwater transport models were constructed to assess the impacts of groundwater abstraction and climate change on the coastal aquifer of Tra Vinh province (Vietnam). The groundwater flow model was calibrated with groundwater levels (2007–2016) measured in 13 observation wells. The saltwater transport model was compared with the spatial distribution of total dissolved solids. Model performance was evaluated by comparing observed and simulated groundwater levels. The projected rainfalls from two climate models (MIROC5 and CRISO Mk3.6) were subsequently used to simulate possible effects of climate changes. The simulation revealed that groundwater is currently depleted due to overabstraction. Towards the future, groundwater storage will continue to be depleted with the current abstraction regime, further worsening in the north due to saltwater intrusion from inland trapped saltwater and on the coast due to seawater intrusion. Notwithstanding, the impact from climate change may be limited, with the computed groundwater recharge from the two climate models revealing no significant change from 2017 to 2066. Three feasible mitigation scenarios were analyzed: (1) reduced groundwater abstraction by 25, 35 and 50%, (2) increased groundwater recharge by 1.5 and 2 times in the sand dunes through managed aquifer recharge (reduced abstraction will stop groundwater-level decline, while increased recharge will restore depleted storage), and (3) combining 50% abstraction reduction and 1.5 times recharge increase in sand dune areas. The results show that combined interventions of reducing abstraction and increasing recharge are necessary for sustainable groundwater resources development in Tra Vinh province.

  相似文献   

15.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

16.
 The coastal aquifer of Oropesa is affected by salinization processes undoubtedly associated with intense groundwater exploitation for agriculture supply. The aquifer corresponds geologically to a tectonic depression with Plioquaternary fill. Hydrogeologically, this aquifer is detrital, with intergranular porosity, which receives substantial recharge from adjacent Mesozoic aquifers. Contact with the sea, in addition to the presence of cultivated soil requiring extreme exploitation of groundwater, frequently give rise to processes of seawater intrusion. The present research is an attempt to understand the saltwater intrusion in this aquifer, using hydrochemical analyses of the behavior of certain minor ions that could help in the characterization process. In the case of the Oropesa sector, groundwater salinization does not appear to be attributable solely to the intrusion of seawater, but there are also anomalies related largely to the geology of the sector and its surroundings, the type of recharge, the hydrodynamic conditions in the specific area, etc. Received: 23 January 1995 · Accepted: 12 September 1995  相似文献   

17.
Stable isotopes (??2H, ??18O and ??13C) and radiocarbon (14C) have been used in conjunction with chemical data to evaluate recharge mechanisms and groundwater residence time, and to identify inter-aquifer mixing in the Djeffara multi-aquifer in semi-arid southeastern Tunisia. The southern part of this basin, the Djeffara of Medenine aquifer system, is comprised of two main aquifers of Triassic and Miocene sandstone. The Triassic aquifer presents two compartments; the first one (west of the Medenine fault system) is unconfined with a well-defined isotope fingerprint; the second compartment is deeper and confined. Multi-tracer results show groundwater of different origins, ages and salinities, and that tectonic features control groundwater flows. Fresh and brackish groundwater from the unconfined part of the Triassic aquifer was mostly recharged during the Holocene. The recharge rates of this aquifer, inferred by 14C ages, are variable and could reach 3.5?mm/year. Brackish water of the deep confined part of the Triassic aquifer has stable isotope composition and 14C content that indicates earlier recharge during late Pleistocene cold periods. Brackish to saline water of the Miocene aquifer presents variable isotope composition. Groundwater flowing through the Medenine fault system is mainly feeding the Miocene aquifer rather than the deep confined part of the Triassic aquifer.  相似文献   

18.
吉林省西部是我国主要粮食产区,但区内农业水利规划管理同时面临潜水资源与生态环境双重风险。近20年来,区内曾尝试多种水资源利用模式,但缺少不同模式应用效果的定量化对比。文章建立了不同水资源利用模式,对比分析各模式的水资源与次生盐碱化风险。以洮儿河流域为例,采用循环神经网络预测2019—2023年该地区大气降水和地表水对地下水补给量;通过随机数值模拟预测现状开采、连续干旱、无序开采、地下水库建设、节水灌溉、旱田改水田6种情形下,区内潜水水位空间分布特征。以防止次生盐碱化为目标,定义水位埋深上限为1 m;以含水介质厚度为参考,定义水位埋深下限为12 m。遴选适合吉林省西部地区地下水资源可持续利用模式。结果显示:无序开采是导致区内水资源枯竭的主要诱因;地下水库建设和旱改水工程有助于潜水资源维护,但长期运行可加剧生态环境风险。节水灌溉(净采强度为2.0×108~3.0×108 m3/a)是降低区内水资源风险和生态环境风险的最佳方式。文章采用的神经网络—随机模拟分析方法成功预测了地下水位变化驱动因子和地下水位中长期变化趋势,为我国干旱半干旱地区潜水资源利用方案制定提供了新方法。  相似文献   

19.
 The Hadejia–Nguru Wetlands are annually inundated flood plains in semi-arid northeastern Nigeria. The area has a unique ecosystem that forms a natural barrier against the encroachment of the Sahara desert. Both the rich wetland vegetation and local farmers using shallow tube wells depend on a groundwater mound (with a water table less than 6 m below the surface) that is present in the unconfined aquifer under the flood-plain area. Using well records (1991–97) and a hydrogeologic profile based on piezometers that were monitored for two years, it is shown that recharge through the annually inundated flood plains is the source of the groundwater mound. Maintenance of the groundwater-recharge function of the flood plains depends on wet-season releases from two large upstream dams. On the basis of a water-budget method, the mean (1991–97) wet-season unconfined groundwater recharge in the flood-plain area between Hadejia and Nguru and in the immediate vicinity (1250 km2) is estimated to be 132 mm (range, 73–197 mm). Outflow from the unconfined flood-plain aquifer to the unconfined upland aquifer is approximately 10% of the wet-season flood-plain recharge. The unconfined groundwater outflow from the flood-plain area can provide a significant contribution to the present-day rural water supply in the surrounding uplands, but it does not offer much potential for additional groundwater abstraction. In addition to outflow to the upland aquifer (∼14 mm), the distribution of the annually recharged water volume of the shallow flood-plain aquifer is (1) domestic uses (3 mm), (2) small-scale irrigation (∼15 mm), and (3) evapotranspiration ( 1 100 mm). Along the hydrogeologic profile, the recharge in the upland (i.e., outflow from the unconfined flood-plain aquifer and possibly diffuse rain-fed recharge) is in balance with the water uses (i.e., domestic uses, groundwater outflow, and evapotranspiration). The absence of a seasonal water-level trend in the two piezometers in the upland indicates that no rain-fed recharge occurs through preferential path-way (macropore) flow. Received, June 1998 / Revised, November 1998, January 1999 / Accepted, January 1999  相似文献   

20.
A transient finite difference groundwater flow model has been calibrated for the Nasia sub-catchment of the White Volta Basin. This model has been validated through a stochastic parameter randomization process and used to evaluate the impacts of groundwater abstraction scenarios on resource sustainability in the basin. A total of 1500 equally likely model realizations of the same terrain based on 1500 equally likely combinations of the data of the key aquifer input parameters were calibrated and used for the scenario analysis. This was done to evaluate model non-uniqueness arising from uncertainties in the key aquifer parameters especially hydraulic conductivity and recharge by comparing the realizations and statistically determining the degree to which they differ from each other. Parameter standard deviations, computed from the calibrated data of the key parameters of hydraulic conductivity and recharge, were used as a yardstick for evaluating model non-uniqueness. All model realizations suggest horizontal hydraulic conductivity estimates in the range of 0.03–78.4 m/day, although over 70 % of the area has values in the range of 0.03–14 m/day. Low standard deviations of the horizontal hydraulic conductivity estimates from the 1500 solutions suggest that this range adequately reflects the properties of the material in the terrain. Lateral groundwater inflows and outflows appear to constitute significant components of the groundwater budgets in the terrain, although estimated direct vertical recharge from precipitation amounts to about 7 % of annual precipitation. High potential for groundwater development has been suggested in the simulations, corroborating earlier estimates of groundwater recharge. Simulation of groundwater abstraction scenarios suggests that the domain can sustain abstraction rates of up to 200 % of the current estimated abstraction rates of 12,960 m3/day under the current recharge rates. Decreasing groundwater recharge by 10 % over a 20-year period will not significantly alter the results of this abstraction scenario. However, increasing abstraction rates by 300 % over the period with decreasing recharge by 10 % will lead to drastic drawdowns in the hydraulic head over the entire terrain by up to 6 m and could cause reversals of flow in most parts of the terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号