首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
With the increase of stellar spectra, how to automatically classify these spectra have attracted astronomer's attention. Support Vector Machine (SVM), as a typical classifier, has widely used in stellar spectra classification. Due to its limited performance in various classification problems and higher training time, a model with a pair of hyperspheres named Twin Hypersphere Model (THM), proposed by Peng and Xu, is utilized for stellar spectra classification in this paper. In THM, the samples in one hypersphere is far from another according to the Euclidean distance. The comparative experiments with SVM and Twin Support Vector Machine (TWSVM) on the SDSS datasets shows that the THM model gives the best classification accuracy of 0.8836 for type F, 0.9446 for type G, and 0.9509 for type K, which are better than the classification accuracies of 0.8000, 0.8484, 0.8911 obtained by SVM and 0.8413, 0.8699, 0.9109 obtained by TWSVM. It can be concluded that THM perform better than traditional techniques such as SVM and TWSVM on the K-, F-, G- type stellar spectra classification.  相似文献   

2.
巡天观测与高能物理、黑洞天文等领域均有密切的联系.基于星系-超新星二分类问题,研究光谱数据预处理,结合余弦相似度改善PCA(Principal Component Analysis)光谱分解特征提取方法,用SDSS(the Sloan Digital Sky Survey)、WISeREP(the Weizmann Interactive Supernova data REPository)组成的5620条光谱数据集训练支持向量机,可以得到0.498%泛化误差的识别模型和新样本分类概率.使用Neyman-Pearson决策方法建立NPSVM(Neyman-Pearson Support Vector Machine)模型可进一步降低超新星的漏判率.  相似文献   

3.
Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher’s Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.  相似文献   

4.
Support Vector Machine (SVM) is a popular data mining technique, and it has been widely applied in astronomical tasks, especially in stellar spectra classification. Since SVM doesn’t take the data distribution into consideration, and therefore, its classification efficiencies can’t be greatly improved. Meanwhile, SVM ignores the internal information of the training dataset, such as the within-class structure and between-class structure. In view of this, we propose a new classification algorithm-SVM based on Within-Class Scatter and Between-Class Scatter (WBS-SVM) in this paper. WBS-SVM tries to find an optimal hyperplane to separate two classes. The difference is that it incorporates minimum within-class scatter and maximum between-class scatter in Linear Discriminant Analysis (LDA) into SVM. These two scatters represent the distributions of the training dataset, and the optimization of WBS-SVM ensures the samples in the same class are as close as possible and the samples in different classes are as far as possible. Experiments on the K-, F-, G-type stellar spectra from Sloan Digital Sky Survey (SDSS), Data Release 8 show that our proposed WBS-SVM can greatly improve the classification accuracies.  相似文献   

5.
With the help of computer tools and algorithms, automatic stellar spectral classification has become an area of current interest. The process of stellar spectral classification mainly includes two steps: dimension reduction and classification. As a popular dimensionality reduction technique, Principal Component Analysis (PCA) is widely used in stellar spectra classification. Another dimensionality reduction technique, Locality Preserving Projections (LPP) has not been widely used in astronomy. The advantage of LPP is that it can preserve the local structure of the data after dimensionality reduction. In view of this, we investigate how to apply LPP+SVM in classifying the stellar spectral subclasses. In the comparative experiment, the performance of LPP is compared with PCA. The stellar spectral classification process is composed of the following steps. Firstly, PCA and LPP are respectively applied to reduce the dimension of spectra data. Then, Support Vector Machine (SVM) is used to classify the 4 subclasses of K-type and 3 subclasses of F-type spectra from Sloan Digital Sky Survey (SDSS). Lastly, the performance of LPP+SVM is compared with that of PCA+SVM in stellar spectral classification, and we found that LPP does better than PCA.  相似文献   

6.
机器学习在当今诸多领域已经取得了巨大的成功,但是机器学习的预测效果往往依赖于具体问题.集成学习通过综合多个基分类器来预测结果,因此,其适应各种场景的能力较强,分类准确率较高.基于斯隆数字巡天(Sloan Digital Sky Survey,SDSS)计划恒星/星系中最暗源星等集分类正确率低的问题,提出一种基于Stacking集成学习的恒星/星系分类算法.从SDSS-DR7(SDSS Data Release 7)中获取完整的测光数据集,并根据星等值划分为亮源星等集、暗源星等集和最暗源星等集.仅针对分类较为复杂且困难的最暗源星等集展开分类研究.首先,对最暗源星等集使用10折嵌套交叉验证,然后使用支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)、XGBoost(eXtreme Gradient Boosting)等算法建立基分类器模型;使用梯度提升树(Gradient Boosting Decision Tree,GBDT)作为元分类器模型.最后,使用基于星系的分类正确率等指标,与功能树(Function Tree,FT)、SVM、RF、GBDT、XGBoost、堆叠降噪自编码(Stacked Denoising AutoEncoders,SDAE)、深度置信网络(Deep Belief Network,DBN)、深度感知决策树(Deep Perception Decision Tree,DPDT)等模型进行分类结果对比分析.实验结果表明,Stacking集成学习模型在最暗源星等集分类中要比FT算法的星系分类正确率提高了将近10%.同其他传统的机器学习算法、较强的提升算法、深度学习算法相比,Stacking集成学习模型也有较大的提升.  相似文献   

7.
Machine learning has achieved great success in many areas today, but the forecast effect of machine learning often depends on the specific problem. An ensemble learning forecasts results by combining multiple base classifiers. Therefore, its ability to adapt to various scenarios is strong, and the classification accuracy is high. In response to the low classification accuracy of the darkest source magnitude set of stars/galaxies in the Sloan Digital Sky Survey (SDSS), a star/galaxy classification algorithm based on the stacking ensemble learning is proposed in this paper. The complete photometric data set is obtained from the SDSS Data Release (DR) 7, and divided into the bright source magnitude set, dark source magnitude set, and darkest source magnitude set according to the stellar magnitude. Firstly, the 10-fold nested cross-validation method is used for the darkest source magnitude set, then the Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms are used to establish the base-classifier model; the Gradient Boosting Decision Tree (GBDT) is used as the meta-classifier model. Finally, based on the classification accuracy of galaxies and other indicators, the classification results are analyzed and compared with the results obtained by the Function Tree (FT), SVM, RF, GBDT, Stacked Denoising Autoencoders (SDAE), Deep Belief Nets (DBN), and Deep Perception Decision Tree (DPDT) models. The experimental results show that the stacking ensemble learning model has improved the classification accuracy of galaxies in the darkest source magnitude set by nearly 10% compared to the function tree algorithm. Compared with other traditional machine learning algorithm, stronger lifting algorithm, and deep learning algorithm, the stacking ensemble learning model also has different degrees of improvement.  相似文献   

8.
Automatic Detection and Classification of Coronal Mass Ejections   总被引:1,自引:0,他引:1  
We present an automatic algorithm to detect, characterize, and classify coronal mass ejections (CMEs) in Large Angle Spectrometric Coronagraph (LASCO) C2 and C3 images. The algorithm includes three steps: (1) production running difference images of LASCO C2 and C3; (2) characterization of properties of CMEs such as intensity, height, angular width of span, and speed, and (3) classification of strong, median, and weak CMEs on the basis of CME characterization. In this work, image enhancement, segmentation, and morphological methods are used to detect and characterize CME regions. In addition, Support Vector Machine (SVM) classifiers are incorporated with the CME properties to distinguish strong CMEs from other weak CMEs. The real-time CME detection and classification results are recorded in a database to be available to the public. Comparing the two available CME catalogs, SOHO/LASCO and CACTus CME catalogs, we have achieved accurate and fast detection of strong CMEs and most of weak CMEs.  相似文献   

9.
In Cassini ISS(Imaging Science Subsystem) images, contour detection is often performed on disk-resolved objects to accurately locate their center. Thus, contour detection is a key problem. Traditional edge detection methods, such as Canny and Roberts, often extract the contour with too much interior details and noise. Although the deep convolutional neural network has been applied successfully in many image tasks, such as classification and object detection, it needs more time and computer resources. In this paper,a contour detection algorithm based on H-ELM(Hierarchical Extreme Learning Machine) and Dense CRF(Dense Conditional Random Field) is proposed for Cassini ISS images. The experimental results show that this algorithm's performance is better than both traditional machine learning methods, such as Support Vector Machine, Extreme Learning Machine and even deep Convolutional Neural Network. The extracted contour is closer to the actual contour. Moreover, it can be trained and tested quickly on the general configuration of PC, and thus can be applied to contour detection for Cassini ISS images.  相似文献   

10.
R. Qahwaji  T. Colak 《Solar physics》2007,241(1):195-211
In this paper, a machine-learning-based system that could provide automated short-term solar flare prediction is presented. This system accepts two sets of inputs: McIntosh classification of sunspot groups and solar cycle data. In order to establish a correlation between solar flares and sunspot groups, the system explores the publicly available solar catalogues from the National Geophysical Data Center to associate sunspots with their corresponding flares based on their timing and NOAA numbers. The McIntosh classification for every relevant sunspot is extracted and converted to a numerical format that is suitable for machine learning algorithms. Using this system we aim to predict whether a certain sunspot class at a certain time is likely to produce a significant flare within six hours time and if so whether this flare is going to be an X or M flare. Machine learning algorithms such as Cascade-Correlation Neural Networks (CCNNs), Support Vector Machines (SVMs) and Radial Basis Function Networks (RBFN) are optimised and then compared to determine the learning algorithm that would provide the best prediction performance. It is concluded that SVMs provide the best performance for predicting whether a McIntosh classified sunspot group is going to flare or not but CCNNs are more capable of predicting the class of the flare to erupt. A hybrid system that combines a SVM and a CCNN is suggested for future use.  相似文献   

11.
A new algorithm for automatic detection of prominences on the solar limb in 304 Å EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as the starting point to reconstruct the whole prominence by morphological image-processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community.  相似文献   

12.
Machine-learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO CME catalogue are processed to associate X and M-class flares with CMEs based on timing information. Automated systems are created to process and associate years of flare and CME data, which are later arranged in numerical-training vectors and fed to machine-learning algorithms to extract the embedded knowledge and provide learning rules that can be used for the automated prediction of CMEs. Properties representing the intensity, flare duration, and duration of decline and duration of growth are extracted from all the associated (A) and not-associated (NA) flares and converted to a numerical format that is suitable for machine-learning use. The machine-learning algorithms Cascade Correlation Neural Networks (CCNN) and Support Vector Machines (SVM) are used and compared in our work. The machine-learning systems predict, from the input of a flare’s properties, if the flare is likely to initiate a CME. Intensive experiments using Jack-knife techniques are carried out and the relationships between flare properties and CMEs are investigated using the results. The predictive performance of SVM and CCNN is analysed and recommendations for enhancing the performance are provided.  相似文献   

13.
We are totally immersed in the Big Data era and reliable algorithms and methods for data classification are instrumental for astronomical research. Random Forest and Support Vector Machines algorithms have become popular over the last few years and they are widely used for different stellar classification problems. In this article, we explore an alternative supervised classification method scarcely exploited in astronomy, Logistic Regression, that has been applied successfully in other scientific areas, particularly biostatistics. We have applied this method in order to derive membership probabilities for potential T Tauri star candidates from ultraviolet-infrared colour-colour diagrams.  相似文献   

14.
太阳磁场的极性反转线(Polarity Inversion Line, PIL)是研究太阳活动、分析太阳磁场结构演变和预测太阳耀斑最重要的日面特征之一.磁场极性反转的位置是太阳耀斑和暗条可能出现的位置."先进天基太阳天文台(ASO-S)"是中国首颗空间太阳专用观测卫星,其搭载的"全日面矢量磁像仪(Full-Disk Vector Magnetograph, FMG)"主要任务是探测高空间、高时间分辨率的全日面矢量磁场.为了提高观测数据使用效率、快速监测太阳活动水平、提高太阳耀斑与日冕物质抛射的预报水平以及更好地服务于FMG数据处理与分析系统,采用了图像自动识别与处理技术,更加精确有效地检测极性反转线.从支持向量机(Support Vector Machine, SVM)的模型出发,将极性反转线位置的探测问题转化为一个模式识别中的二分类问题,提出了一种基于支持向量机的极性反转线检测算法,自动探测与识别太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁成像仪(Helioseismic and Magnetic Imager, HMI)磁图的极性反转线位置.与现有算法的对比结果表明,此算法可以精确直观地检测太阳活动区的极性反转线.  相似文献   

15.
In this paper we propose a particle classification system for the imaging calorimeter of the PAMELA satellite-borne experiment. The system consist of three main processing phases. First, a segmentation of the whole signal detected by the calorimeter is performed to select a Region of Interest (RoI); this step allows to retain bounded and space invariant portions of data for the following analysis. In the next step, the RoIs are characterized by means of nine discriminating variables, which measure event properties useful for the classification. The third phase (the classification step) relies on two different supervised algorithms, Artificial Neural Networks and Support Vector Machines. The system was tested with a large simulated data set, composed by 40 GeV/c momentum electrons and protons. Moreover, in order to study the classification power of the calorimeter for experimental data, we have also used biased simulated data. A proton contamination in the range 10−4–10−5 at an electron efficiency greater than 95% was obtained. The results are adequate for the PAMELA imaging calorimeter and show that the approach to the classification based on soft computing techniques is complementary to the traditional analysis performed using optimized cascade cuts on different variables.  相似文献   

16.
The Solar Vector Magnetograph (SVM) at Udaipur Solar Observatory saw its first light in April 2005. The retrieval of vector fields from the imaging spectro-polarimetric observational data requires a substantial amount of computer post-processing. The GUI-based data reduction and analysis software have been developed to make the data processing pipeline user-friendly and less time-consuming. In this paper we describe these software packages.  相似文献   

17.
A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.  相似文献   

18.
We consider the problem of predicting the mid-term daily 10.7 cm solar radio flux(F10.7),a widely-used solar activity index.A novel approach is proposed for this task,in which BoxCox transformation with a proper parameter is first applied to make the data satisfy the property of homoscedasticity that is a basic assumption of regression models,and then a multi-output linear regression model is used to predict future F10.7 values.The experiment shows that the BoxCox transformation significantly improves the predictive performance and our new approach works substantially better than the prediction from the US Airforce and other alternative methods like Auto-regressive Model,Multi-layer Perceptron,and Support Vector Regression.  相似文献   

19.
There is an increasing number of large, digital, synoptic sky surveys, in which repeated observations are obtained over large areas of the sky in multiple epochs. Likewise, there is a growth in the number of (often automated or robotic) follow‐up facilities with varied capabilities in terms of instruments, depth, cadence, wavelengths, etc., most of which are geared toward some specific astrophysical phenomenon. As the number of detected transient events grows, an automated, probabilistic classification of the detected variables and transients becomes increasingly important, so that an optimal use can be made of follow‐up facilities, without unnecessary duplication of effort. We describe a methodology now under development for a prototype event classification system; it involves Bayesian and Machine Learning classifiers, automated incorporation of feedback from follow‐up observations, and discriminated or directed follow‐up requests. This type of methodology may be essential for the massive synoptic sky surveys in the future. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Automatic Solar Flare Tracking Using Image-Processing Techniques   总被引:1,自引:0,他引:1  
Measurement of the evolution properties of solar flares through their complete cyclic development is crucial in the studies of Solar Physics. From the analysis of solar H images, we used Support Vector Machines (SVMs) to automatically detect flares and applied image segmentation techniques to compute their properties. We also present a solution for automatically tracking the apparent separation motion of two-ribbon flares and measuring their moving direction and speed in the magnetic fields. From these measurements, with certain assumptions, we inferred the reconnection of the electric field as a measure of the rate of the magnetic reconnection in the corona. The automatic procedure is a valuable tool for real-time monitoring of flare evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号