首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
The development of microstructures and textures (i.e. crystallographic preferred orientations) during recrystallisation of naturally deformed quartz polycrystals has been studied via electron diffraction techniques in the scanning electron microscope. In the investigated sample series of quartz-rich rocks originating from different deformation regimes, the microstructural and textural changes in quartz have been significantly influenced by dynamic recrystallisation. Based on microstructural observations paired with orientation and misorientation analyses down to the scale of grains and subgrains, criteria could be established which characterise the dominant recrystallisation process and its influence on texture development. It is shown that the texture development during dynamic recrystallisation is controlled by a differential activation of slip systems in grains of ‘soft’ and ‘hard’ orientations. The analyses provide further evidence that specific grain orientations are preferred during crystal plastic deformation, recrystallisation and grain growth. The influence of twinning after the Dauphiné law was also investigated. Observations of a progressive reduction in the population of Dauphiné-twin boundaries during recrystallisation and a penetrative deformation in both hosts and twins indicate a generation prior to deformation and recrystallisation. A mechanical origin for twinning and possible influence on texture development was therefore discarded.  相似文献   

2.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

3.
Crystallographic orientation data from pure albite domains in a low-grade sheared metagabbro from the Combin Zone of the western Italian Alps were measured by electron backscatter diffraction. Crystallographic preferred orientations (CPOs) in four high-strain domains are non-random and have a triclinic symmetry. The clusters of [100], [010] and [001] show an angular relationship that corresponds to that of the albite crystal lattice. However, the orientations of axis clusters to the kinematic axes vary from domain to domain. CPOs from a low-strain domain also show clustered axes with triclinic symmetry, but with more intense clustering than those in the high-strain domains. Grain misorientation distributions are presented both for the low-strain domain and one of the high-strain domains. In the high-strain domain, the distribution of misorientation angles between neighbouring grains displays a peak at about 70°. The equivalent distribution in the low-strain domain has a peak at 30°. For both domains, the misorientation axis distributions, between neighbouring and non-neighbouring grains, are random, except for some of axes with 160–180° misorientation that exhibit a slight concentration around [010]. The diversity of CPOs among the domains suggests that these CPOs could not be produced by dislocation creep. They are likely to have been inherited from plagioclase parents, as a result of host control on the nucleation of the new albite grains. These CPOs do not contain any direct information about the deformation kinematics. We interpret that deformation of these domains occurred by granular flow. Crystallographic axis dispersion due to grain boundary sliding (GBS) caused weakening of CPOs, modification of misorientation angle distributions and randomisation of misorientation axis distributions. The fact that a CPO can survive GBS even after a high strain indicates that CPO is not always a sensitive indicator of deformation mechanisms. Misorientation distribution may provide a complementary, and possibly a more sensitive indicator of deformation mechanisms.  相似文献   

4.
We use quantitative microstructural analysis including misorientation analysis based on electron backscatter diffraction (EBSD) data to investigate deformation mechanisms of naturally deformed plagioclase in an amphibolite gabbro mylonite. The sample is from lower oceanic crust exposed near the Southwest Indian Ridge, and it has a high ratio of recrystallized matrix grains to porphyroclasts. Microstructures preserved in porphyroclasts suggest that early deformation was achieved principally by dislocation creep with subgrain rotation recrystallization; recrystallized grain (average diameter ∼8 μm) microstructures indicate that subsequent grain boundary sliding (GBS) was active in the continued deformation of the recrystallized matrix. The recrystallized matrix shows four-grain junctions, randomized misorientation axes, and a shift towards higher angles for neighbor-pair misorientations, all indicative of GBS. The matrix grains also exhibit a shape preferred orientation, a weak lattice preferred orientation consistent with slip on multiple slip systems, and intragrain microstructures indicative of dislocation movement. The combination of these microstructures suggest deformation by dislocation-accommodated GBS (DisGBS). Strain localization within the recrystallized matrix was promoted by a transition from grain size insensitive dislocation creep to grain size sensitive GBS, and sustained by the maintenance of a small grain size during superplasticity.  相似文献   

5.
Determination of the controlling nucleation and recrystallisation mechanisms from a samples microstructure are essential for understanding how the microstructure formed and evolved through time. The aim of our research was to apply a quantified analytical approach to the identification of the controlling nucleation, recrystallisation and microstructural modification mechanisms. We used electron backscatter diffraction to quantify the microstructures of naturally deformed quartz-rich rocks which were deformed at various temperature and pressure conditions. Our results show that ratios of the recrystallised grain size to the subgrain size with values less than 1 (0.5–0.7 in the data presented here) suggest bulge nucleation, whereas ratios of ∼1 suggest subgrain rotation nucleation. Other supporting evidence for subgrain rotation nucleation is an increase in misorientation from the centre of an original protolith ‘parent’ grain to the edge. All samples show evidence for modification of the microstructure due to grain boundary sliding including increased misorientation angles between grains and movement of recrystallised grains between parent grains. By systematically analysing sample microstructures it is possible to separate out evidence to determine the controlling nucleation and recrystallisation mechanisms, as well as being able to identify microstructure modification mechanisms. Using microstructural quantification via EBSD allows a systematic methodology to analyse samples from any location from an objective viewpoint.  相似文献   

6.
The effect of Dauphiné twinning on plastic strain in quartz   总被引:1,自引:0,他引:1  
We present an electron backscatter diffraction analysis of five quartz porphyroclasts in a greenschist facies (T = 300–400°C) granitoid protomylonite from the Arolla unit of the NW Alps. Mechanical Dauphiné twinning developed pervasively during the incipient stage of deformation within two porphyroclasts oriented with a negative rhomb plane {z} almost orthogonal to the compression direction (z-twin orientation). Twinning was driven by the anisotropy in the elastic compliance of quartz and resulted in the alignment of the poles of the planes of the more compliant positive rhomb {r} nearly parallel to the compression direction (r-twin orientation). In contrast, we report the lack of twinning in two porphyroclasts already oriented with one of the {r} planes orthogonal to the compression direction. One twinned porphyroclast has been investigated with more detail. It shows the localization of much of the plastic strain into discrete r-twins as a consequence of the higher amount of elastic strain energy stored by r-twins in comparison to z-twins. The presence of Dauphiné twins induced a switch in the dominant active slip systems during plastic deformation, from basal <a> (regions without twinning) to {π} and {π′} <a> (pervasively twinned regions). Dynamic recrystallization is localized along an r-twin and occurred dominantly by progressive subgrain rotation, with a local component of bulging recrystallization. Part of the recrystallized grains underwent rigid-body rotation, approximately about the bulk vorticity axis, which accounts for the development of large misorientation angles. The recrystallized grain size piezometer for quartz yields differential stress of 100 MPa. The comparison of this palaeostress estimate with literature data suggests that mechanical Dauphiné twinning could have a potential use as palaeopiezometer in quartz-bearing rocks.  相似文献   

7.
The microstructural development of synthetic rocksalt experimentally deformed at 100–200°C can be dominated either by grain boundary migration recrystallisation or by subgrain rotation recrystallisation, depending on water content. Samples taken from both regimes have been analysed using automated electron backscatter diffraction in order to collect crystallographic orientation and misorientation data. The frequency distribution of boundary misorientations, the boundary hierarchy characteristics and the nature of any crystallographic preferred orientation (CPO) have been used to determine the crystallographic signature of both recrystallisation processes. Dominant subgrain rotation recrystallisation results in many low to medium angle (4–20°) boundaries, a strong CPO and a continuous boundary hierarchy. Dominant grain boundary migration recrystallisation results in few low or medium angle boundaries, and a discrete boundary hierarchy. The causes of these differences and the potential application of crystallographic signatures to the study of naturally deformed rocks are discussed.  相似文献   

8.
Within a mica schist from the coesite-bearing Brossasco-Isasca Unit (Western Alps), microstructural analysis shows that Alpine garnet grains are aligned with the crenulated foliation. Garnet crystallographic orientation was analysed with electron backscatter diffraction (EBSD): the obtained crystallographic dispersion patterns and distribution patterns of misorientation axes suggest a strong parallelism of {110} garnet planes with a 56°W-dipping foliation. The data are interpreted as evidence for an epitaxial growth of garnet upon (001) biotite planes, sometime during and/or after dispersion of the biotite/garnet crystals from their initially foliation-parallel orientation by rotation about the Alpine crenulation axis. This interpretation is based on the comparison of the measured EBSD data with: (i) theoretical dispersion trajectories of garnet crystallographic data, (ii) numerically modelled pole figures, and (iii) numerically modelled misorientation axis distribution patterns. Our data suggest that epitaxial growth of garnet upon biotite is allowed by distortion of the pseudohexagonal basal oxygen ring structure on (001) biotite surfaces, and that distortion is driven by introduction of missing ions. Our data further suggest that the spatial distribution of precursor phases influences the distribution patterns of garnet within mica schists.  相似文献   

9.
赵珊茸  宋岳庭  徐畅 《地球科学》2020,45(5):1481-1489
矿物晶体连生是岩浆岩中晶体生长及岩石结构形成过程中的一个重要现象,可以提供岩浆演化过程信息.用电子背散射衍射技术(EBSD)分析了天堂寨花岗岩和梅川花岗闪长岩中石英晶体的结晶学取向关系.这2种岩石中石英的道芬双晶和交生(两晶体以某个相同的面重合连生)出现概率非常高.除了道芬双晶和交生外,还发现了一种特殊的石英晶体对称性连生现象.在这种特殊的对称性连生体中,考虑石英的劳埃群3 2/m(而不是石英的点群32),两晶体形成的道芬双晶的双晶面(0001)或(1010)与第3个晶体的对称面(1120)重合.这样的重合使得这3个晶体的连生体保留了道芬双晶的某些对称性.这种双晶面与第3个晶体的对称面重合的现象在我们以前报道的NH4Cl晶体聚集体和透辉石枝晶聚集体中也出现过.这种现象说明晶体的连生受控于对称性,即:晶体连生会选择对称性高的形式.由于劳埃群是与晶体空间格子的对称性相关而并不是与晶体结构的对称性相关的,所以,空间格子的对称性可能是控制晶体对称性连生的主要因素.   相似文献   

10.
In polycrystalline aggregates of olivine with mean grain sizes above 35 μm plus a low basaltic melt fraction, both wetted and melt-free grain boundaries are observed after equilibration times at high pressures and temperatures of between 15 and 25 days. In order to assess a possible dependence of the wetting behaviour on the relative orientation of neighbouring grains, a SEM based technique, electron backscatter diffraction (EBSD), is used to determine grain orientations. From the grain orientations relative orientations of neighbouring grains are calculated, which are expressed as misorientation axis/angle pairs. The distribution of misorientation angles and axes of melt-free grain boundaries differ significantly from a purely random distribution, whereas those of wetted grain boundaries are statistically indistinguishable from the random distribution. The relative orientation of two neighbouring grains therefore influences the character of their common grain boundary. However, no clustering towards special (coincident site lattice) misorientation axes is observed, with the inference that the energy differences between special and general misorientations are too small to lead to the development of preferred misorientations during grain growth. Received: 8 December 1997 / Revised, accepted: 6 April 1998  相似文献   

11.
The estimation of physical properties for non-porous rocks has frequently been limited to considering the modal composition and orientation of the constituent grains. Studies of porous rocks indicate that the heterogeneity of microstructure can strongly influence the physical properties. Recently the increase in digital microstructural information has motivated the development of a local cluster model, which is sufficiently simple to be computationally fast and robust. The objective of this model is to be able to capture the microstructural sensitivity of physical properties. The stress distribution around an inclusion suggests that a first order elastic model needs only consider adjacent neighbours of a given point in the microstructure, this greatly simplifies the model.A preliminary set of model calculations were made on two rock types; a simulated water saturated porous sandstone composed of randomly oriented quartz grains and a polyphase non-porous gabbro with a strong crystal preferred orientation. The simulated isotropic sandstone provided a test case as analytical expressions for Voigt, Reuss and Hashin-Shtrikman bounds are known. The local cluster bounds for three microstructural models (random, layered and corner sharing) are within the Voigt, Reuss and Hashin-Shtrikman bounds. Further the local cluster bounds for the layered and corner sharing microstructural models are respectively 76% and 90% tighter than the Voigt-Reuss bounds, and 67% and 86% tighter than the Hashin-Shtrikman bounds. The local cluster lower bound was numerically unstable for a random microstructure due to the small values associated with the compliance of the pore fluid. The cluster model for the gabbro with experimentally measured grain orientation and spatial arrangement produced bounds that are 80% tighter than the Voigt-Reuss bounds, suggesting that microstructure in non-porous materials may be as important as in porous materials.  相似文献   

12.
13.
The microstructures of two contrasting garnet grains are mapped using automated electron backscatter diffraction. In both cases there is a very strong crystallographic preferred orientation, with measurements clustered round a single dominant orientation. Each garnet grain is divided into domains with similar orientations, limited by boundaries with misorientations of 2° or more. In both samples most of misorientation angles measured across orientation domain boundaries are significantly lower than those measured between random pairs of orientation domains. One sample is a deformed garnet that shows considerable distortion within the domains. Lines of orientation measurements within domains and across domain boundaries show small circle dispersions around rational crystallographic axes. The domain boundaries are likely to be subgrain boundaries formed by dislocation creep and recovery. The second sample is a porphyroblast in which the domains have no internal distortion and the orientation domain boundaries have random misorientation axes. These boundaries probably formed by coalescence of originally separate garnets. We suggest that misorientations across these boundaries were reduced by physical relative rotations driven by boundary energy. The data illustrate the potential of orientation maps and misorientation analysis in microstructural studies of any crystalline material.  相似文献   

14.
M.-A. Kaczmarek  S.M. Reddy  N.E. Timms 《Lithos》2011,127(3-4):414-426
Magmatic zircons within two sheared gabbroic dykes from the peridotitic massif of Lanzo (Western-Alps, Italy) revealed evolution of deformation from crystal plasticity to rigid body rotation during shear zone evolution. This is the first time that multiple zircon grains have been analysed in a kinematic context in a shear zone. Zircon grains recorded crystal plastic deformation activating the commonly inferred <100>{001} and <001>{100} glide-systems to the newly identified <001>{110} glide-system. The exact selection of glide-system could be dependant of deformation conditions such as pressure, temperature, and strain rate. Moreover, the activation of one or several glide-systems within a single grain could be favoured by the primary orientation of the grains combined with a high strain rate. In these sheared gabbros, the deformation mechanisms evolve from plastic deformation at low strain rate conditions to increase strain, strain softening and localisation of deformation. The progressive shear zone development and the softening of the matrix relative to the zircon has lead to a switch from crystal-plasticity to rigid body rotation of zircon. The zircon grains rigid body rotation involved that their long axes became parallel to the lineation of the shear zone, causing reorientation and dispersion of the misorientation axes away from kinematic Y.  相似文献   

15.
Commonly, basal glide is the predominant deformation mechanism of quartz in tectonites. Therefore, local deformation is probably mostly progressive simple shear rotating the sheared domains as well as deforming them. If a tectonite body is constrained to be deformed irrotationally and approximately homogeneously throughout, it is necessarily traversed by closely spaced material surfaces that are approximately plane and orthogonal originally, and stay so through time. These surfaces act as internal boundaries and enforce cancellation of the rigid-body rotations of, in the general case, four distinct families of domains, with slip planes and directions mutually mirror-symmetric. The overall symmetry of the fabric is orthorhombic, with the mirror planes coinciding with the principal planes of strain. Certain grains with basal planes in favorable orientation for one of the four ideal simple shears could initiate the deformation, and because of the need for compatibility, entrain neighboring grains into a similar strain, making the surroundings of an initiating grain a shear zone. Compatibility also requires thec-axes of grains in a domain to be rotated progressively toward the direction of maximum shortening. If the original orientation of crystallographic axes was random, domains of one family thus acquire a fabric with a single maximum, and the four resulting fabrics with single maxima combine to form crossed-girdle patterns. Depending on the orientation of the average shear planes and slip directions in the four families, the crossed girdles can be of different types; most fabric types that have been observed in quartz tectonites can be obtained by superposition. Crossed-girdle fabrics with low symmetry result from non-coaxial strain histories.  相似文献   

16.
Microstructure-based finite element simulations were used to study the influence of grain shape fabric and crystal texture on thermoelastic responses related to marble degradation phenomena. Calcite was used as an illustrative example for studying extremes of shape preferred orientation (SPO) in shape fabric and lattice preferred orientation (LPO) in crystal texture. Three SPOs were analyzed: equiaxed grains, elongated grains, and a mixture of equiaxed and elongated grains. Three LPOs were considered: a random orientation distribution function and two degrees of strong directional crystal texture. Finally, the correlation between the direction of the LPO with respect to that of the SPO was examined. Results show that certain combinations of SPO, LPO, and their directional relationship have significant influence on the thermomechanical behavior of marble. For instance, while there is no major dependence of the elastic strain energy density and the maximum principal stress on SPO for randomly textured microstructures, there is a strong synergy between LPO and its directional relationship with respect to the SPO direction. Microcracking precursors, elastic strain energy density, and maximum principal stress, decrease when the crystalline c-axes have fiber texture perpendicular to the SPO direction, but increase significantly when the c-axes have fiber texture parallel to the SPO direction. Moreover, the microstructural variability increases dramatically for these latter configurations. In general, the influence of LPO was as expected, namely, the strain energy density and the maximum principal stress decreased with more crystal texture, apart from for the exception noted above. Spatial variations of these precursors indicated regions in the microstructure with a propensity for microcracking. Unexpectedly, important variables were the microstructural standard deviations of the spatial distributions of the microcracking indicators. These microstructural standard deviations were as large as or larger than the variables themselves. The elastic misfit-strain contributions to the coefficients of thermal expansion were also calculated, but their dependence was as expected.  相似文献   

17.
Comments on the interpretation of deformation textures in rocks   总被引:4,自引:0,他引:4  
In rocks that undergo ductile deformation, preferred orientation develops as a result of intracrystalline slip and mechanical twinning. The orientation distribution is a consequence of the microscopic mechanisms and of the strain path. It can be used to get some insight into the deformation history; however it is never unique. The interpretation relies largely on polycrystal plasticity theory. The concepts of stress equilibrium and strain compatibility, which are two extreme assumptions made to model deformation, are discussed. New approaches such as the viscoplastic self-consistent theory are a compromise and may be applicable to mineral systems which display a high degree of plastic anisotropy. Important extensions allow for heterogeneous deformation in the polycrystal from grain to grain and even within grains in correspondence with microstructural observations. All these theories defy the popular notion which is becoming entrenched in the geological literature, that the microscopic slip plane normal aligns with the axis of maximum principal compressive stress, and that in simple shear the crystallographic slip plane rotates into the macroscopic shear plane and the slip direction into the macroscopic shear direction, an orientation referred to by geologists as ‘easy glide’. It is emphasized that future work on texture development of rocks should be based on rigorous physics rather than ingenious intuition, in accordance with an old recommendation of Walter Schmidt.  相似文献   

18.
Intragranular microshear zones within a greenschist facies calcite marble were studied to try to constrain better the processes of dynamic recrystallization as well as the deformation processes that occur within newly recrystallized grains. Intragranular recrystallized grains within large, twinned calcite porphyroclasts can be related to the host from which they have recrystallized and are the focus of an electron backscatter diffraction study. Lattice distortions, low angle boundaries and some high angle boundaries (>15°) in the microshears within a porphyroclast have the same misorientation axes suggesting that deformation occurred by climb-accommodated dislocation creep involving subgrain rotation recrystallization. Changes in the ratio of host and twin domain, as the deformation zone is entered, show that twin boundary migration also occurred. Recrystallized grains have similar sizes (10–60 μm) to subgrains, suggesting that they formed by subgrain rotation. However, within the intragranular microshear zones the misorientations between recrystallized grains and porphyroclasts are considerably larger than 15° and misorientation axes are randomly oriented. Moreover recrystallized grain orientations average around the porphyroclast orientation. We suggest that the recrystallized grains, once formed, are able to deform partly by diffusion accommodated grain boundary sliding, which is consistent with predictions made from lab flow laws.  相似文献   

19.
The orientation distribution of mechanically twinned jadeite crystals in a metagranite from the Sesia Zone, Western Alps, is evaluated to derive the orientation of the principal stress directions for a prominent stage of ductile deformation at ca. 300 to 350 °C that has been interpreted to reflect synseismic loading and postseismic creep by Küster and Stöckhert (1999). It is tested whether the orientation distribution can be used to obtain information on the magnitude of differential stress if the critical shear stress for twinning is known. Assuming that the critical shear stress of 140 MPa determined by Kollé and Blacic (1982) for mechanical twinning of clinopyroxene in the (100) [001] system holds true for jadeite, and assuming a homogeneous stress field as a first approximation, differential stresses of the order of 1-2 GPa are inferred for metagranites with ca. 15% jadeite, and of 0.5 GPa for jadeitite with 80% of jadeite. Notwithstanding the uncertainty for the critical resolved shear stress for jadeite, these unexpectedly high values are suspected to be due to a combination of the following effects: (1) an inhomogeneous stress field in the polyphase material with curved stress trajectories, (2) stress concentration in jadeite due to load transfer from the quartz matrix, and (3) minor reorientation of the jadeite crystals in the flowing quartz matrix. Hence, absolute values of differential stress cannot be derived from the orientation distribution of twinned jadeite in polyphase rocks. Notwithstanding the failure in deriving reliable absolute values, a short period with exceptionally high stress must have occurred, and is fully consistent with the microstructural record of other minerals. It is proposed that the mechanical twinning of jadeite was caused by a short-lived stress peak and flow at laboratory strain rates related to quasi-instantaneous loading of the uppermost level of the ductile lower crust during brittle failure of the brittle upper crust in a major seismic event.  相似文献   

20.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号