首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The electron backscattering diffraction technique (EBSD) was used to analyze bulging recrystallization microstructures from naturally and experimentally deformed quartz aggregates, both of which are characterized by porphyroclasts with finely serrated grain boundaries and grain boundary bulges set in a matrix of very fine recrystallized grains. For the Tonale mylonites we investigated, a temperature range of 300–380 °C, 0.25 GPa confining pressure, a flow stress range of ~ 0.1–0.2 GPa, and a strain rate of ~ 10− 13 s− 1 were estimated. Experimental samples of Black Hills quartzite were analyzed, which had been deformed in axial compression at 700 °C, 1.2–1.5 GPa confining pressure, a flow stress of ~ 0.3–0.4 GPa, a strain rate of ~ 10− 6 s− 1, and to 44% to 73% axial shortening. Using orientation imaging we investigated the dynamic recrystallization microstructures and discuss which processes may contribute to their development. Our results suggest that several deformation processes are important for the dismantling of the porphyroclasts and the formation of recrystallized grains. Grain boundary bulges are not only formed by local grain boundary migration, but they also display a lattice misorientation indicative of subgrain rotation. Dynamic recrystallization affects especially the rims of host porphyroclasts with a hard orientation, i.e. with an orientation unsuitable for easy basal slip. In addition, Dauphiné twins within porphyroclasts are preferred sites for recrystallization. We interpret large misorientation angles in the experimental samples, which increase with increasing strain, as formed by the activity of fluid-assisted grain boundary sliding.  相似文献   

2.
The microstructural development of synthetic rocksalt experimentally deformed at 100–200°C can be dominated either by grain boundary migration recrystallisation or by subgrain rotation recrystallisation, depending on water content. Samples taken from both regimes have been analysed using automated electron backscatter diffraction in order to collect crystallographic orientation and misorientation data. The frequency distribution of boundary misorientations, the boundary hierarchy characteristics and the nature of any crystallographic preferred orientation (CPO) have been used to determine the crystallographic signature of both recrystallisation processes. Dominant subgrain rotation recrystallisation results in many low to medium angle (4–20°) boundaries, a strong CPO and a continuous boundary hierarchy. Dominant grain boundary migration recrystallisation results in few low or medium angle boundaries, and a discrete boundary hierarchy. The causes of these differences and the potential application of crystallographic signatures to the study of naturally deformed rocks are discussed.  相似文献   

3.
Grain boundary migration between strained, substructured grains and newly appearing, strain free grains has been observed during static in-situ annealing of pre-deformed rocksalt in the SEM. With increasing temperature (T) the migration velocity increases and the character of grain boundary migration changes. As temperature increases there is an increase in the length of individual migrating boundary segments that move at similar rates. In addition, the frequency of migrating boundaries that form traces of a {100} boundary plane of at least one of the crystals involved increases, and moving grain boundaries between new and old grains change from highly irregular to smooth, straight boundaries. At the same time there is a decrease in the influence of the substructure of pre-existing strained grains on the grain boundary movement. Resultant microstructures reflect these changes. At  325–350 °C, the deformed-then-annealed microstructure is characterized by very irregular grain boundaries, a high abundance of 5–50 m scale remnants of old, substructured grains within new grains, giving a poikilitic microstructure. At  350–400 °C, grain boundaries often exhibit elongate embayments into the strained grains and most remnants of old, strained grains are located at former grain boundaries. At > 400 °C, grain boundaries between new and old, strained grains are straight to smoothly curved.The grain boundary velocity observations are explained by the effect of temperature on mobility coupled with local driving force variations. Additionally, at low annealing temperature, impurity (solute) drag and driving-force variations are influential, while at high temperature the anisotropy in grain boundary energy with crystallographic orientation becomes more important. Transferring the knowledge from our experiments to geological samples enables us to recognize and interpret similar microstructures in rocks, thereby making it is possible to relate microstructural characteristics to the pre-annealing and post-deformational annealing history.  相似文献   

4.
Deformation experiments have been carried out to investigate the effect of dynamic recrystallisation on crystallographic preferred orientation (CPO) development. Cylindrical samples of natural single crystals of quartz were axially deformed together with 1 vol.% of added water and 20 mg of Mn2O3 powder in a Griggs solid medium deformation apparatus in different crystallographic orientations with compression direction: (i) parallel to <c>, (ii) at 45° to <c> and 45° to <a> and (iii) parallel to <a>. The experiments were performed at a temperature of 800 °C, a confining pressure of 1.2 GPa, a strain rate of  10− 6 s− 1, to bulk finite strains of  14–36%. The deformed samples were analysed in detail using optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Two different microstructural domains were distinguished in the deformed samples: (i) domains with undulatory extinction and deformation lamellae, and (ii) domains with new recrystallised grains. Within the domains of undulatory extinction, crystal-plastic deformation caused gradual rotations of the crystal lattice up to  30° away from the host orientation. New recrystallised grains show a strong CPO with c-axis maxima at  45° to the compression direction. This is the case in all experiments, irrespective of the initial crystallographic orientation. The results show that c-axes are not continuously rotated towards the new maxima. The new grains thus developed through a mechanism different from subgrain rotation recrystallisation. New grains have a subeuhedral shape and numerous microcavities, voids, fluid channels and fluid inclusions at their grain boundaries. No host control is recorded in misorientation axes across their large angle grain boundaries. New grains might have been created by nucleation from solution in the μm-scale voids and microfractures. The CPO most likely developed due to preferred growth of the freshly precipitated grains with orientations suitable for intracrystalline deformation at the imposed experimental conditions.  相似文献   

5.
Non-steady state deformation and annealing experiments on vein quartz are designed to simulate earthquake-driven episodic deformation in the middle crust. Three types of experiments were carried out using a modified Griggs-type solid medium deformation apparatus. All three start with high stress deformation at a temperature of 400 °C and a constant strain rate of 10− 4 s− 1 (type A), some are followed by annealing in the stability field of α-quartz for 14–15 h at zero nominal differential stress and temperatures of 800–1000 °C (type A + B), or by annealing for 15 h at 900 °C and at a residual stress (type A + C).The quartz samples reveal a very high strength > 2 GPa at a few percent of permanent strain. The microstructures after short-term high stress deformation (type A) record localized brittle and plastic deformation. Statisc annealing (type A + B) results in recrystallisation restricted to the highly damaged zones. The new grains aligned in strings and without crystallographic preferred orientation, indicate nucleation and growth. Annealing at non-hydrostatic conditions (type A + C) results in shear zones that also develop from deformation bands or cracks that formed during the preceding high stress deformation. In this case, however, the recrystallised zone is several grain diameters wide, the grains are elongate, and a marked crystallographic preferred orientation indicates flow by dislocation creep with dynamic recrystallisation. Quartz microstructures identical to those produced in type A + B experiments are observed in cores recovered from Long Valley Exploratory Well in the Quaternary Long Valley Caldera, California, with considerable seismic activity.The experiments demonstrate the behaviour of quartz at coseismic loading (type A) and subsequent static annealing (type A + B) or creep at decaying stress (type A + C) in the middle crust. The experimentally produced microfabrics allow to identify similar processes and conditions in exhumed rocks.  相似文献   

6.
According to previous observations [Geophys. Res. Lett. 27 (2000) 3957], the generation of large (M≥7.0) earthquakes in the western part of the north Anatolian fault system (Marmara Sea) is followed by strong earthquakes along the Northern Boundary of the Aegean microplate (NAB: northwestermost Anatolia–northern Aegean–central Greece–Ionian islands). Therefore, it can be hypothesized that a seismic excitation along this boundary should be expected after the occurrence of the Izmit 1999 earthquake (M=7.6). We have applied the method of accelerating seismic crustal deformation, which is based on concepts of critical point dynamics in an attempt to locate more precisely those regions along the NAB where seismic excitation is more likely to occur. For this reason, a detailed parametric grid search of the broader NAB area was performed for the identification of accelerating energy release behavior.Three such elliptical critical regions have been identified with centers along this boundary. The first region, (A), is centered in the eastern part of this boundary (40.2°N, 27.2°E: southwest of Marmara), the second region, (B), has a center in the middle part of the boundary (38.8°N, 23.4°E: East Central Greece) and the third region, (C), in the westernmost part of the boundary (38.2°N, 20.9°E: Ionian Islands). The study of the time variation of the cumulative Benioff strain in two of the three identified regions (A and B) revealed that intense accelerating seismicity is observed especially after the occurrence of the 1999 Izmit mainshock. Therefore, it can be suggested that the seismic excitation, at least in these two regions, has been triggered by the Izmit mainshock.Estimations of the magnitudes and origin times of the expected mainshocks in these three critical regions have also been performed, assuming that the accelerating seismicity in these regions will lead to a critical point, that is, to the generation of mainshocks.  相似文献   

7.
The orientation of the optical indicating surface of vitrinite in reflected light has been determined following deformation at 350 and 500°C, confining pressures of 500 and 800 MPa and a strain rate of 10−5 s−1. High temperature and large strain have facilitated reorientation of the indicating surface, increase in anisotropy (bireflectance) and an increase in maximum vitrinite reflectance. In a specimen deformed at 500°C and 23% axial strain the maximum vitrinite reflectance has been reoriented more than 70° from close to parallel to σ1 in the undeformed state to perpendicular to σ1 following deformation. Orientation of the optical indicating surface of some of the deformed specimens suggests the orientation of the maximum reflectance is a composite product of the original orientation of the indicating surface and an orientation produced during deformation.  相似文献   

8.
The parameter b of the frequency-magnitude relation has been accurately calculated for each of the 21 seismic zones into which the Aegean and surrounding area (34°N–43°N, 18°E–30°E) has been divided on the basis of several seismotectonic criteria. These 21 seismic zones have been geographically separated into three (A, B, C) groups (regions), according to the values of the parameter b. The outer region (A) is characterized by a relatively high value (= 1.03) the middle region (B) by an intermediate value (= 0.84) and the innermost region (C) by a low value (= 0.60). The boundaries of these three groups of zones almost coincide with the boundaries of well-known geological zones. This observation is interpreted in terms of mechanical heterogeneity of the material, and of structural and stress conditions in the area.  相似文献   

9.
The microstructures and fabrics of naturally deformed orthopyroxenites from the Giles Complex, central Australia are described in some detail. Coarse grained enstatite is deformed and recrystallised where it is incorporated in planar gneissic (mylonite) zones which show a gradation in strain from their margins inwards. Deformation takes place by slip on (100) [001] to produce regular lattice bending and kinking, and recrystallisation takes place preferentially along grain boundaries and kink band boundaries (KBB's). The microstructures and preferred orientation of recrystallised grains along KBB's are interpreted in terms of possible nucleation mechanisms, and both bulge nucleation (Bailey and Hirsch, 1962) and subgrain coalescence (Hu, 1963) are likely contributors. Electron microprobe analyses have indicated a small compositional difference between new (recrystallised) and host (deformed) grains, which is related to the nucleation mechanism. The total preferred orientation patterns for host and new grains are discussed with special reference to previous measurements and interpretations.  相似文献   

10.
A multilayered salt/mica specimen with embedded strain markers was shortened to produce a fold and the distribution of strain was subsequently mapped out over the profile plane. On a fine scale the initial foliation, which is parallel to the undeformed layers, is folded by tight kinks to produce two new foliations; one is defined by the preferred orientation of kink boundaries and the other by the preferred orientation of (001) of mica. In the hinge region of the fold the first of these new foliations is parallel to the local λ1λ2-principal plane of strain whereas the preferred orientation of mica is bimodal and is symmetrical about the λ1λ2-plane. Elsewhere the two new foliations are not parallel to the principal plane of strain and angular divergencies of up to 30–35° are measured. If a March model with initial random mica orientation is assumed for the development of mica preferred orientation then the correct value of strain is predicted but the orientation of the principal plane of strain can be grossly in error. A theoretical analysis of the angular relationships to be expected between kink boundaries and the λ1λ2-plane of strain confirms that for the type of geometries experimentally developed, large divergences of up to 35° should be common. In rocks where the foliation has developed by processes similar to those recorded here, large angular divergencies between the foliation and the λ1λ2-principal plane of strain should be expected as the rule.  相似文献   

11.
The microstructures of two contrasting garnet grains are mapped using automated electron backscatter diffraction. In both cases there is a very strong crystallographic preferred orientation, with measurements clustered round a single dominant orientation. Each garnet grain is divided into domains with similar orientations, limited by boundaries with misorientations of 2° or more. In both samples most of misorientation angles measured across orientation domain boundaries are significantly lower than those measured between random pairs of orientation domains. One sample is a deformed garnet that shows considerable distortion within the domains. Lines of orientation measurements within domains and across domain boundaries show small circle dispersions around rational crystallographic axes. The domain boundaries are likely to be subgrain boundaries formed by dislocation creep and recovery. The second sample is a porphyroblast in which the domains have no internal distortion and the orientation domain boundaries have random misorientation axes. These boundaries probably formed by coalescence of originally separate garnets. We suggest that misorientations across these boundaries were reduced by physical relative rotations driven by boundary energy. The data illustrate the potential of orientation maps and misorientation analysis in microstructural studies of any crystalline material.  相似文献   

12.
Determination of the controlling nucleation and recrystallisation mechanisms from a samples microstructure are essential for understanding how the microstructure formed and evolved through time. The aim of our research was to apply a quantified analytical approach to the identification of the controlling nucleation, recrystallisation and microstructural modification mechanisms. We used electron backscatter diffraction to quantify the microstructures of naturally deformed quartz-rich rocks which were deformed at various temperature and pressure conditions. Our results show that ratios of the recrystallised grain size to the subgrain size with values less than 1 (0.5–0.7 in the data presented here) suggest bulge nucleation, whereas ratios of ∼1 suggest subgrain rotation nucleation. Other supporting evidence for subgrain rotation nucleation is an increase in misorientation from the centre of an original protolith ‘parent’ grain to the edge. All samples show evidence for modification of the microstructure due to grain boundary sliding including increased misorientation angles between grains and movement of recrystallised grains between parent grains. By systematically analysing sample microstructures it is possible to separate out evidence to determine the controlling nucleation and recrystallisation mechanisms, as well as being able to identify microstructure modification mechanisms. Using microstructural quantification via EBSD allows a systematic methodology to analyse samples from any location from an objective viewpoint.  相似文献   

13.
The crystallography and geometry of high-angle grain boundaries from dynamically recrystallized quartz have been studied. On the basis of combined electron backscatter diffraction and universal stage measurements, the complete crystallographic orientation of the grain boundaries could be calculated. The u-stage rotation of the grain boundaries to a vertical position reveals that they are never curved but always consist of straight segments. Our results show that these segments preferentially occupy rhombohedral, trapezohedral and bipyramidal orientations, i.e., orientations in a  25–50° girdle to the c-axis. A specific, albeit low, number of segments with special crystallographic orientation, with respect to a neighbouring quartz grain, often shows another special orientation with respect to the other neighbouring grain. Preferred combinations of grain boundary orientations related to both neighbouring grains are (i) low-index rhombohedral and high index trapezohedral, (ii) low-index bipyramidal and low-index trapezohedral or high-index rhombohedral, and (iii) low-index trapezohedral and low or high index trapezohedral. In certain cases, such as at triple junctions, the boundaries occupy specific trapezohedral orientations with a constant angle to the c-axis. This argues for energy isotropy of trapezohedral planes with the same angle to the quartz c-axis. In general, good match coincidence site lattice (CSL) orientations are not preferentially occupied so that most of the studied grain boundaries represent general boundaries. The formation of straight segments in special crystallographic orientations indicates the crystallographic control and implies an energy reduction of certain general boundaries.  相似文献   

14.
A section 300 m thick across the Permian—Triassic boundary has been sampled in the Southern Coalfield of the Sydney Basin, New South Wales. 55 samples, mainly grey to drab sandstones, were collected from 9 diamond drill holes which penetrated the entire Narrabeen Group and the upper part of the conformably underlying Illawarra Coal Measures, as well as a sill emplaced into the coal measures. The samples included fully oriented cores. Additional reconnaissance samples from two further drill holes were also studied.Partial alternating field demagnetization and petrography indicate the magnetic remanence to be a stable DRM. Partial thermal demagnetization above 300°C or 400°C caused large increases in magnetic susceptibility. Partial chemical demagnetization did not cause significant changes in remanence directions.For the Coal Cliff Sandstone (basal Narrabeen Group, Triassic) the palaeomagnetic pole position (Normal) was calculated to be at 59°N 322°E (dp = 27°, dm = 29°), which agrees with previously published data. For the uppermost coal measures (Permian) the pole position was calculated as 58°N 340°E (dp = 09°, dm = 10°). Data for samples from the lower to middle coal measures yield a pole position which is between the new Permian—Triassic pole position and that for the underlying Middle Permian igneous rocks. The top of the Reversed “Kiaman Magnetic Interval” (Permian) may be near the Tongarra coal and Appin Formation boundary — (early) Late Permian.  相似文献   

15.
Calcite in former aragonite–dolomite-bearing calc-schists from the ultrahigh-pressure metamorphic (UHPM) oceanic complex at Lago di Cignana, Valtournanche, Italy, preserved different kinds of zoning patterns at calcite grain and phase boundaries. These patterns are interpreted in terms of lattice diffusion and interfacial mass transport linked with a heterogeneous distribution of fluid and its response to a changing state of stress. The succession of events that occurred during exhumation is as follows: As the rocks entered the calcite stability field at T=530–550 °C, P ca. 1.2 GPa, aragonite occurring in the matrix and as inclusions in poikilitic garnet was completely transformed to calcite. Combined evidence from microstructures and digital element distribution maps (Mn-, Mg-, Fe- and Ca–Kα radiation intensity patterns) indicates that transformation rates have been much higher than rates of compositional equilibration of calcite (involving resorption of dolomite and grain boundary transport of Mg, Fe and Ca). This rendered the phase transformation an isochemical process. During subsequent cooling to T ca. 490 °C (where lattice diffusion effectively closed), grains of matrix calcite have developed diffusion-zoned rims, a few hundred micrometres thick, with Mg and Fe increasing and Ca decreasing towards the phase boundary. Composition profiles across concentrically zoned, large grains in geometrically simple surroundings can be successfully modelled with an error function describing diffusion into a semi-infinite medium from a source of constant composition. The diffusion rims in matrix calcite are continuous with quartz, phengite, paragonite and dolomite in the matrix. This points to an effective mass transport on phase boundaries over a distance of several hundred micrometres, if matrix dolomite has supplied the Mg and Fe needed for incorporation in calcite. In contrast, diffusion rims are lacking at calcite–calcite and most calcite–garnet boundaries, implying that only very minor mass transport has occurred on these interfaces over the same Tt interval. From available grain boundary diffusion data and experimentally determined fluid–solid grain boundary structures, inferred large differences in transport rates can be best explained by the discontinuous distribution of aqueous fluid along grain/phase boundaries. Observed patterns of diffusion zoning indicate that fluid was distributed not only along grain-edge channels, but spread out along most calcite–white mica and calcite–quartz two-grain junctions. On the other hand, the inferred non-wetting of calcite grain boundaries in carbonate-rich domains is compatible with fluid–calcite–calcite dihedral angles >60° determined by Holness and Graham (1995) for a wide range of fluid compositions under the PT conditions of interest. Whereas differential stress has been very low at the stage of diffusion zoning (T > 490 °C), it increased as the rocks were cooling below 440 °C (at 0.3–0.5 GPa). Dislocation creep and the concomitant increase of strain energy in matrix calcite induced migration recrystallisation of high-angle grain boundaries. For that stage, the compositional microstructure of recrystallised calcite grain boundary domains indicates significant mass transport along calcite two-grain junctions, which at the established low temperatures is likely to have been accomplished by ionic diffusion within a hydrous grain boundary fluid film (“dynamic wetting” of migrating grain boundaries). Received: 10 January 2000 / Accepted: 10 April 2000  相似文献   

16.
Microfabrics were analysed in calcite mylonites from the rim of the Pelvoux massif (Western Alps, France). WNW-directed emplacement of the internal Penninic units onto the Dauphinois domain produced intense deformation of an Eocene-age nummulitic limestone under lower anchizone metamorphic conditions (slightly below 300 °C). Two types of microfabrics developed primarily by dislocation creep accompanied by dynamic recrystallisation in the absence of twinning. Coaxial kinematics are inferred for samples exhibiting grain shape fabrics and textures with orthorhombic symmetry. Their texture (crystallographic preferred orientation, CPO) is characterised by two c-axis maxima, symmetrically oriented at 15° from the normal to the macroscopic foliation. Non-coaxial deformation is evident in samples with monoclinic shape fabrics and textures characterised by a single oblique c-axis maximum tilted with the sense of shear by about 15°. From the analysis of suitably oriented slip systems for the main texture components under given kinematics it is inferred that the orthorhombic textures, which developed in coaxial kinematics, favour activity of <10–11> and <02–21> slip along the f and r planes, respectively, with minor contributions of basal-<a> slip. In contrast, the monoclinic textures, which developed during simple shear, are most suited for duplex <a> slip along the basal plane. The transition between the dominating slip systems for the orthorhombic and monoclinic microfabrics is interpreted to be due to the effects of dynamic recrystallisation upon texture development. Since oblique c-axis maxima documented in the literature are most often rotated not with but against the shear sense, calcite textures alone should not be used as unequivocal shear sense indicators, but need to be complemented by microstructural criteria such as shape preferred orientations, grain size estimates and amount of twinning.  相似文献   

17.
Quartzofeldspathic ultramylonites from the Alpine Fault Zone, one of the world's major, active plate boundary-scale fault zones have quartz crystallographic preferred orientations (CPO) and abundant low-angle (<10° misorientation) boundaries, typical microstructures for dislocation creep-dominated deformation. Geometrically necessary dislocation density estimates indicate mean dislocation densities of ∼109 cm−2. A significant proportion (∼30%) of grain boundaries (>10° misorientation) are decorated by faceted pores, commonly with uniformly-oriented pyramidal shapes. Only grain boundaries with >10° misorientation angles in polymineralic aggregates are decorated by pores. Mean grain boundary pore densities are ∼5 × 108 cm−2. Grain boundary pores are dissolution pits generated during syn-deformational transient grain boundary permeability, nucleating on dislocation traces at dilatant grain boundary interfaces. They have not been removed by subsequent grain boundary closure or annealing. Pore decoration could have led to grain boundary pinning, triggering a switch in the dominant deformation mechanism to grain boundary sliding, which is supported by evidence of CPO destruction in matrix quartz. Pore-decorated grain boundaries have significantly reduced surface area available for adhesion and cohesion, which would reduce the tensile and shear strength of grain boundaries, and hence, the bulk rock. Grain boundary decoration also significantly decreased the mean distance between pores, potentially facilitating dynamic permeability. Consequently, these microstructures provide a new explanation for strain weakening and evidence of fluid flow along grain boundaries in mylonites at mid-crustal conditions.  相似文献   

18.
A prominent feature of a granulite-facies shear zone from the Hidaka Main Zone (Japan) is the folding of orthopyroxene (opx) porphyroclasts. Dislocation density estimated by transmission electron microscope (TEM) and chemical etching in homogeneously folded domains is too low to account for the amplitude of crystallographic bending, leading us to propose a model similar to “flexural slip” folding, where folded layers are micrometer-wide opx layers between thin planar clinopyroxene (cpx) exsolutions. Extension (compression) in the extrados (intrados) of the folded layer is accommodated by dislocations at the cpx–opx interfaces. Alternatively to distributed deformation, crystal bending also localizes in grain boundaries (GBs), mostly oriented close to the (001) plane and with various misorientation angles but misorientation axes consistently close to the b-axis. For misorientation up to a few degrees, GBs were imaged as tilt walls composed of regularly spaced (100)[001] dislocations. For misorientation angles of 7°, individual dislocations are no longer visible, but high-resolution TEM (HRTEM) observation showed the partial continuity of opx tetrahedral chains through the boundary. For 21° misorientation, the two adjacent crystals are completely separated by an incoherent boundary. In spite of these atomic-scale variations, all GBs share orientation and rotation axis, suggesting a continuous process of misorientation by symmetric incorporation of (100)[001] dislocations. In addition to the dominant GBs perpendicular to the (100) plane, boundaries at low angle with (100) planes are also present, incorporating dislocations with a component of Burgers vector along the a-axis. The two kinds of boundaries combine to delimit subgrains, which progressively rotate with respect to host grains around the b-axis, eventually leading to recrystallization of large porphyroclasts.  相似文献   

19.
Several macroscopic physical and chemical properties, such as rheology, elasticity, or transport properties are governed by grain boundary processes. An improved understanding of the structure and evolution of grain boundaries has thus become a key challenge in geosciences and material sciences. Here, we report the structure of near Σ5 (210)/[100] grain boundaries in Y3Al5O12 (YAG), which were synthesised by the wafer direct bonding method. The produced grain boundaries were annealed at different temperatures, ranging from 673 to 1,873 K. The grain boundaries annealed at different temperatures are not distinguishable based on their flatness and apparent cohesiveness in high resolution TEM (HRTEM) micrographs, but show a considerable step in their mechanical stability at around 1,273 K, a temperature that corresponds to roughly half the melting temperature of YAG. This study further focuses on the effect of a slight misorientation of the two crystals on the grain boundary structure and we discuss if the boundary can reach a state of minimum energy configuration during annealing. Along the grain boundaries, we observed a long-range strain contrast with a periodicity of 40 nm, which has not been reported for high-angle grain boundaries so far. We conclude that this contrast is caused by faceting along the grain boundary plane, which is needed to achieve minimum energy configuration of the grain boundary plane.  相似文献   

20.
Artificially prepared specimens of bischofite (MgCl2-6H2O) have been experimentally deformed at temperatures between 20 and 100°C, strain rates between 10−4 and 10−88 s−1, and confining pressures between 0.1 and 28 MPa. Development of microstructure with strain was studied by in-situ deformation experiments, and results of these were correlated with observations made on thin sections of deformed samples.In a first series of experiments the effect of grain size, impurity content and water content on the flow behaviour was investigated. Addition of about 0.1 wt.% water to dry samples was found to decrease the flow stress by a factor of 5. This effect was found to be associated with the formation of a thin fluid film on grain boundaries, strongly enhancing dynamic recrystallization due to the movement of high-angle grain boundaries, and possibly also to enhanced intracrystalline plasticity due to excess water present in the lattice. In a second series of experiments the strain-rate sensitivity of the flow stress of selected samples was investigated. Two regimes could be distinguished: one with a stress exponent n = 4.5 in the power law creep equation for values of the differential stress above 2.0 MPa, and one with n = 1.5 for stresses below this value.The main deformation mechanisms were intracrystalline slip, twinning, and grain-boundary sliding. Recrystallization occurred by subgrain rotation and high-angle grain-boundary migration. The rates of grain-boundary migration fell into two different regimes, one regime being distinguished by extremely fast migration rates. The applicability of the experimentally found flow law to the behaviour of bischofite rocks in nature is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号