首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the influence of Ca-Tschermaks (Calcium Tschermaks or CaTs) content of clinopyroxene on the partitioning of trace elements between this phase and silicate melt at fixed temperature and pressure. Ion probe analyses of experiments carried out in the system Na2O–CaO–MgO–Al2O3–SiO2, at 0.1 MPa and 1218°C, produced crystal-melt partition coefficients (D) of 36 trace elements (Li, Cl, Sc, Ti, V, Cr, Fe, Co, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta and W), for clinopyroxene compositions between 10 and 32 mol% CaTs. Partition coefficients for 2+ to 5+ cations show, for each charge, a near parabolic dependence of log D on ionic radius of the substituting cation, for partitioning into both the M1 and M2 sites of clinopyroxene. Fitting the results to the elastic strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372, 452–454] we obtain results for the strain-free partition coefficients of theoretical cations (D0), with site radius r0, and for the site's Young's Modulus (E).

In agreement with earlier data our results show that increasing ivAl concentration in cpx is matched by increasing D, EM1, EM2 and D0 for tri-, tetra- and pentavalent cations. The degree of fractionation between chemically similar elements (i.e. Ta/Nb, Zr/Hf) also increases. In contrast, D values for mono-, di- and hexavalent cations decrease with increasing ivAl in the cpx. The large suite of trace elements used has allowed us to study the effects of cation charge on D0, r0 and E. We have found that D0 and r0 decrease with increasing cation charge, e.g. r0=0.66 Å for 4+ cations and 0.59 Å for 5+ cations substituting into M1. Values of EM1 and EM2 increase with cation charge as well as with increasing ivAl content. The increase in EM2 is linear and close to the trend set by Hazen and Finger [Hazen, R.M., Finger, L.W., 1979. Bulk modulus-volume relationship for cation–anion polyhedra. J. Geophys. Res. 84 (10) 6723–6728] for oxides. EM1 values are much higher and do not fit the trend predicted by the Hazen and Finger relationship.  相似文献   


2.
Garnet–melt trace element partitioning experiments were performed in the system FeO–CaO–MgO–Al2O3–SiO2 (FCMAS) at 3 GPa and 1540°C, aimed specifically at studying the effect of garnet Fe2+ content on partition coefficients (DGrt/Melt). DGrt/Melt, measured by SIMS, for trivalent elements entering the garnet X-site show a small but significant dependence on garnet almandine content. This dependence is rationalised using the lattice strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454], which describes partitioning of an element i with radius ri and valency Z in terms of three parameters: the effective radius of the site r0(Z), the strain-free partition coefficient D0(Z) for a cation with radius r0(Z), and the apparent compressibility of the garnet X-site given by its Young's modulus EX(Z). Combination of these results with data in Fe-free systems [Van Westrenen, W., Blundy, J.D., Wood, B.J., 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Mineral. 84, 838–847] and crystal structure data for spessartine, andradite, and uvarovite, leads to the following equations for r0(3+) and EX(3+) as a function of garnet composition (X) and pressure (P):
r0(3+) [Å]=0.930XPy+0.993XGr+0.916XAlm+0.946XSpes+1.05(XAnd+XUv)−0.005(P [GPa]−3.0)(±0.005 Å)
EX(3+) [GPa]=3.5×1012(1.38+r0(3+) [Å])−26.7(±30 GPa)
Accuracy of these equations is shown by application to the existing garnet–melt partitioning database, covering a wide range of P and T conditions (1.8 GPa<P<5.0 GPa; 975°C<T<1640°C). DGrt/Melt for all 3+ elements entering the X-site (REE, Sc and Y) are predicted to within 10–40% at given P, T, and X, when DGrt/Melt for just one of these elements is known. In the absence of such knowledge, relative element fractionation (e.g. DSmGrt/Melt/DNdGrt/Melt) can be predicted. As an example, we predict that during partial melting of garnet peridotite, group A eclogite, and garnet pyroxenite, r0(3+) for garnets ranges from 0.939±0.005 to 0.953±0.009 Å. These values are consistently smaller than the ionic radius of the heaviest REE, Lu. The above equations quantify the crystal-chemical controls on garnet–melt partitioning for the REE, Y and Sc. As such, they represent a major advance en route to predicting DGrt/Melt for these elements as a function of P, T and X.  相似文献   

3.
Partitioning coefficients between olivine and silicate melts   总被引:3,自引:0,他引:3  
J.H. Bdard 《Lithos》2005,83(3-4):394-419
Variation of Nernst partition coefficients (D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO2, H2O, MgO and MgO/MgO + FeOtotal. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE–Sc–Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta–Hf–Zr–Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.  相似文献   

4.
Fluid-saturated experiments were conducted to investigate the partitioning of boron among haplogranitic melt, aqueous vapor and brine at 800 °C and 100 MPa. Experiments were carried out in cold-seal pressure vessels for 1 to 21 days, and utilized powdered synthetic subaluminous haplogranite glass doped with 1000 ppm B (crystalline H3BO3) and variable amounts of NaCl and H2O at a fluid/haplogranite mass RATIO=1:1. Run-product glasses were analyzed for boron concentration by secondary ion mass spectrometry (SIMS) and for major elements and chlorine by electron microprobe. The composition of the coexisting fluid was calculated by mass balance. Boron partition coefficients between aqueous vapor and hydrous granitic melt range from 3.1 to 6.3, and demonstrate a clear preference of boron for the vapor over the hydrous melt. Partition coefficients between brine and hydrous granitic melt vary from 0.45 to 1.1, suggesting that boron has no preference for the brine or the melt. The bulk fluid–melt partition coefficients for low-salinity and high-salinity experiments are DB(vapor/melt)=4.6±1.3 and DB(brine/melt)=0.91±0.49, respectively. The corresponding vapor–brine partition coefficient is 5.0±3.1, demonstrating that boron partitions preferentially into the vapor over the brine at the conditions of this study. The preferential incorporation of boron in the aqueous vapor is controlled by borate speciation and solution mechanism. The dominant borate species in aqueous fluids, H3BO3o, is highly soluble in aqueous vapor (XB2O3=0.187); however, B2O3 is immiscible in NaCl liquid. Consequently, concentrations of boron in aqueous vapor are significantly higher than in the coexisting brine. Furthermore, Na–B complexing in the melt at high chlorine fluid contents stabilizes boron in the melt thereby contributing to the non-preferential partitioning of boron between brine and melt. The commonly observed association of tourmalinization (boron metasomatism), brecciation and ore deposition in nature is consistent with the preferential partitioning of boron into aqueous vapor of magmatic-hydrothermal systems predicted by this study.  相似文献   

5.
A mantle value of 17.5 for Nb/Ta appears well established; less well established are crustal values of 11–12, although it appears that Nb/Ta for crustal-derived melts is less than mantle Nb/Ta, demonstrating fractionation of these two elements during crustal evolution, and suggesting that Nb/Ta variation may be indicative of a particular chemical process within the crust-mantle system.

Experimental studies on silicate and carbonatitic liquids at high pressure indicate that, although silicate minerals such as garnet, amphibole and clinopyroxene do fractionate Nb and Ta, the partition coefficients (D's) for both elements are very low. Thus involvement of these minerals may explain relatively small changes in Nb/Ta, but appears inadequate to explain the crust-mantle variation. However, high-quality data for Nb, Ta may be used to provide information on mantle melting or metasomatic processes (e.g., amphibole in the source region decreases Nb/Ta in derived melts, while carbonatitic metasomatism will increase Nb/Ta in affected mantle). Titanate minerals have high D's for Nb and Ta, and do fractionate these elements (e.g., DNb/DTa rutile/liquid of 0.5–0.8), and their involvement in crystal fractionation would increase Nb/Ta in derivative liquids. In contrast, DNb/DTa for rutile/fluid is 1.25, so that rocks affected by fluid equilibrated with residual rutile will show a decrease in Nb/Ta

Some Archaean gneisses appear to have high Nb/Ta, and may be a complementary component to that part of the crust which has a relatively low Nb/Ta, such as crustal-derived magmas (e.g., A- ad I-type granites and silicic volcanics). Within the crustal system pegmatites are known to have extremely high and variable Nb, Ta contents, often with low Nb/Ta. A fluid is generally considered to be involved in the generation of these rocks. Thus it is possible that fluid/melt partitioning may be the key to fractionating Nb and Ta, with preference for Ta in the fluid, and enrichment of Ta relative to Nb into the mid-upper crustal system, as the crust evolved, through upward movement of fluid.  相似文献   


6.
Jian-Jun Yang   《Lithos》2003,70(3-4):359-379
A garnet–pyroxene rock containing abundant Ti-clinohumite (ca. 40 vol.%) occurs along with eclogites as small blocks in quartzo-feldsparthic gneiss in the southern end of the Chinese Su-Lu ultrahigh-pressure (UHP) metamorphic terrane. It consists of three aggregates: (1) Ti-clinohumite-dominated aggregate with interstitial garnet and pyroxene, (2) garnet+pyroxene aggregate with Ti-clinohumite inclusions, and (3) Ti-clinohumite-free aggregate dominated by garnet. Apatite, phlogopite, zircon, hematite, pentlandite, and an unknown Ni-Fe-volatile-Si (NFVS) mineral, which is replaced by Ni-greenalite, occur as accessories. Serpentine is the major secondary mineral. Garnet (Prp63.9–64.6Alm25.8–26.9Grs1.4–7.9Uva0.5–7.6Sps1.0) in all three aggregates is pyrope-rich with very low grossular component, with that in the aggregate (2) most enriched in Cr (Cr2O3=2.55 wt.%). Orthopyroxene is depleted in Al (Al2O3=0.16 wt.% in the cores) and Ca (CaO=0.06–0.09 wt.% in the cores), with XMg (Mg/(Mg+Fe)) values at ca. 0.900. Clinopyroxene is chromian diopside with Fe3+≥Fe2+. Matrix clinopyroxene has a lower XMg (0.862) than that (0.887) included in Ti-clinohumite. The rock contains modest amount of heavy rare earth elements (HREE) (10 to 12×C1 chondrite), with significant enrichment in Cr, Co, Ni, V, Sr, and light rare earth elements (LREE) (22 to 33×C1 chondrite). The clinopyroxene is very enriched in Cr (Cr2O3 is up to 2.09 wt.% in the cores) and Sr (ca. 350 ppm) and LREE (CeN/YbN=157.7). Ti-clinohumite is enriched in Ni (1981 ppm), Co (123 ppm), and Nb (85 ppm).

While it is possible to enrich ultramafites in incompatible elements in a subducted slab, the high Al, Fe, Ti, and low Si, Ca, and Na contents in the Ti-clinohumite rock are difficult to account for by crustal metasomatism of an ultramafite. On the other hand, the similarity in major and trace element compositions and their systematic variations between the Ti-clinohumite-garnet-pyroxene rock of this study and those of Mg-metasomatised Fe–Ti gabbros reported in the literature suggest that crustal metasomatism occurred in a gabbroic protolith, which resulted in addition of Cr, Co, Ni, and Mg and removal of Si, Ca, Na, Al, and Fe. This implies that the rock was in contact with an ultramafite at low pressure. During subsequent subduction, the metagabbro was thrust into the country gneiss, where gneiss-derived hydrous fluids caused enrichment of Sr and LREE in recrystallised clinopyroxene. P–T estimates for the high-pressure assemblage are ca. 4.2 GPa and ca. 760 °C, compatible with those for the eclogites and gneisses in this terrane. It is possible that the Ti-clinohumite-garnet-pyroxene rock and associated eclogites represent remnants of former oceanic crust that was subducted to a great depth.  相似文献   


7.
A detailed petrographic, major and trace element and isotope (Re–Os) study is presented on 18 xenoliths from Northern Lesotho kimberlites. The samples represent typical coarse, low-temperature garnet and spinel peridotites and span a PT range from 60 to 150 km depth. With the exception of one sample (that belongs to the ilmenite–rutile–phlogopite–sulphide suite (IRPS) suite first described by [B. Harte, P.A. Winterburn, J.J. Gurney, Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: Menzies, M. (Ed.), Mantle metsasomatism. Academic Press, London 1987, 145–220.]), all samples considered here have high Mg# and show strong depletion in CaO and Al2O3. They have bulk rock Re depletion ages (TRD) >2.5 Ga and are therefore interpreted as residua from large volume melting in the Archaean. A characteristic of Kaapvaal xenoliths, however, is their high SiO2 concentrations, and hence, modal orthopyroxene contents that are inconsistent with a simple residual origin of these samples. Moreover, trace element signatures show strong overall incompatible element enrichment and REE disequilibrium between garnet and clinopyroxene. Textural and subtle major element disequilibria were also observed. We therefore conclude that garnet and clinopyroxene are not co-genetic and suggest that (most) clinopyroxene in the Archaean Kaapvaal peridotite xenoliths is of metasomatic origin and crystallized relatively recently, possibly from a melt precursory to the kimberlite.

Possible explanations for the origin of garnet are exsolution from a high-temperature, Al- and Ca-rich orthopyroxene (indicating primary melt extraction at shallow levels) or a majorite phase (primary melting at >6 GPa). Mass balance calculations, however, show that not all garnet observed in the samples today is of a simple exsolution origin. The extreme LREE enrichment (sigmoidal REE pattern in all garnet cores) is also inconsistent with exsolution from a residual orthopyroxene. Therefore, extensive metasomatism and probably re-crystallization of the lithosphere after melt-depletion and garnet exsolution is required to obtain the present textural and compositional features of the xenoliths. The metasomatic agent that modified or perhaps even precipitated garnet was a highly fractionated melt or fluid that might have been derived from the asthenosphere or from recycled oceanic crust. Since, to date, partitioning of trace elements between orthopyroxene and garnet/clinopyroxene is poorly constrained, it was impossible to assess if orthopyroxene is in chemical equilibrium with garnet or clinopyroxene. Therefore, further trace element and isotopic studies are required to constrain the timing of garnet introduction/modification and its possible link with the SiO2 enrichment of the Kaapvaal lithosphere.  相似文献   


8.
V. Mathavan  G. W. A. R. Fernando   《Lithos》2001,59(4):217-232
Grossular–wollastonite–scapolite calc–silicate granulites from Maligawila in the Buttala klippe, which form part of the overthrusted rocks of the Highland Complex of Sri Lanka, preserve a number of spectacular coronas and replacement textures that could be effectively used to infer their P–T–fluid history. These textures include coronas of garnet, garnet–quartz, and garnet–quartz–calcite at the grain boundaries of wollastonite, scapolite, and calcite as well as calcite–plagioclase and calcite–quartz symplectites or finer grains after scapolite and wollastonite respectively. Other textures include a double rind of coronal scapolite and coronal garnet between matrix garnet and calcite. The reactions that produced these coronas and replacement textures, except those involving clinopyroxene, are modelled in the CaO–Al2O3–SiO2–CO2 system using the reduced activities. Calculated examples of TXCO2 and PXCO2 projections indicate that the peak metamorphic temperature of about 900–875 °C at a pressure of 9 kbar and the peak metamorphic fluid composition is constrained to be low in XCO2 (0.1<XCO2<0.30). Interpretation of the textural features on the basis of the partial grids revealed that the calc–silicate granulites underwent high-temperature isobaric cooling, from about 900–875 °C to a temperature below 675 °C, following the peak metamorphism. The late-stage cooling was accompanied by an influx of hydrous fluids. The calc–silicate granulites provide evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex, earlier considered by some workers to be confined exclusively to the meta-igneous rocks. The coronal scapolite may have formed under open-system metasomatism.  相似文献   

9.
Peridotite xenoliths from the Bereya alkali picrite tuff in the Vitim volcanic province of Transbaikalia consist of garnet lherzolite, garnet–spinel lherzolite and spinel lherzolite varieties. The volcanism is related to the Cenozoic Baikal Rift. All peridotites come from pressures of 20–23 kbar close to the garnet to spinel peridotite transition depth, and the presence of garnet can be attributed to cooling of spinel peridotites, probably during formation of the lithosphere. The peridotites show petrographic and mineral chemical evidence for infiltration by an alkaline silicate melt shortly before their transport to the Earth's surface. The melt infiltration event is indicated petrographically by clinopyroxenes which mimic melt morphologies, and post-dates outer kelyphitic rims on garnets which are attributed to an isochemical heating event within the mantle before transport to the Earth's surface. Single-mineral thermometry gives reasonable temperature estimates of 1050±50°C, whereas two-mineral methods involving clinopyroxene are falsified by secondary components in clinopyroxene introduced during the melt infiltration event. Excimer Laser–ICP-MS analysis has been performed for an extensive palette of both incompatible and compatible trace elements, and manifests the most thorough dataset available for this rock type. Orthopyroxene and garnet show only partial equilibration of trace elements with the infiltrating melt, whereas clinopyroxene and amphibole are close to equilibration with the melt and with each other. The incompatible element composition of the infiltrating melt calculated from the clinopyroxene and amphibole analyses via experimental mineral/melt partition coefficients is similar to the host alkali picrite, and probably represents a low melt fraction from a similar source during rift propagation. The chemistry and chronology of the events recorded in the xenoliths delineates the series of events expected during the influence of an expanding rift region in the upper mantle, namely the progressive erosion of the lithosphere and the episodic upward and outward propagation of melts, resulting in the evolution of the Vitim volcanic field.  相似文献   

10.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


11.
This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H 2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine+orthopyroxene+clinopyroxene+spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H 2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H 2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H 2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H 2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca 2+ content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H 2O on the structure of silicate melts.  相似文献   

12.
Using relevant geothermobarometric methods, PT-data were collected for the reconstruction of the metamorphic evolution of 34 eclogite samples taken from small lenses and boudins within the ultrahigh-pressure (UHP) metamorphic coesite-bearing Brossasco-Isasca Unit (BIU) of the Dora-Maira Massif. The mineral phases used (clinopyroxene, garnet, phengite), or growth zones thereof, were identified as being coexistent for different stages of metamorphism on the basis of careful petrographic studies. Of several published geothermobarometers, the garnet–clinopyroxene thermometer of Powell [Powell, R., 1985. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet–clinopyroxene geothermometer revisited. J. Metamorph. Geol., 3, pp. 231–243.] combined with the garnet–clinopyroxene–phengite barometer after Waters and Martin [Waters, D., Martin, H.N., 1993. The garnet–clinopyroxene–phengite barometer. Terra Abstr., 5, pp. 410–411.] was chosen here, because it provided the most reliable results. Nevertheless, the scatter of PT-data points for the prograde (stage I), peak metamorphic (stage II), and retrograde (stage III) development of the eclogites is still considerable. Among the many possible reasons for this inconsistency discussed, a partial lack of equilibration of some of the eclogites during their metamorphic history should be taken into account. Despite the data scatter, an average PT-path could be estimated, which includes the following coordinates: for stage I: 15 kbar/500°C; 25 kbar/570°C; 32 kbar/650°C; for stage II: 36 kbar/720°C; and for stage III: 24 kbar/680°C and 14 kbar/620°C. This is in fair agreement with PT-paths derived earlier for other rock types of the BIU on the basis of other geothermobarometers.  相似文献   

13.
Cores and cuttings of lamproite sills and host sedimentary country rocks in southeastern Kansas from up to 312 m depth were analyzed for major elements in whole rocks and minerals, certain trace elements in whole rocks (including the REE) and Sr isotopic composition of the whole rocks. The lamproites are ultrapotassic (K2O/Na2O = 2.0–19.9), alkalic [molecular (K2O/Na2O)/Al2O3 = 1.3-2.8], enriched in mantle-incompatible elements (light REE, Ba, Rb, Sr, Th, Hf, Ta) and have nearly homogeneous initial Sr isotopic compositions (0.707764-0.708114).

These lamproites could have formed by variable degrees of partial melting of harzburgite country rock and cross-cutting veins composed of phlogopite, K-Ti richterite, titanite, diopside, K-Ti silicates, or K-Ba-phosphate under high H2O/CO2 ratios and reducing conditions. Variability in melting of veins and wall rock and variable composition of the metasomatized veins could explain the significantly different composition of the Kansas lamproites.

Least squares fractionation models preclude the derivation of the Kansas lamproites by fractional crystallization from magmas similar in composition to higher silica phlogopite-sanidine lamproites some believe to be primary lamproite melts found elsewhere. In all but one case, least squares fractionation models also preclude the derivation of magmas similar in composition to any of the Kansas lamproites from one another. A magma similar in composition to the average composition of the higher SiO2 Ecco Ranch lamproite (237.5–247.5 m depth) could, however, have marginally crystallized about 12% richterite, 12% sanidine, 7% diopside and 6% phlogopite to produce the average composition of the Guess lamproite (305–312 m depth).

Lamproite from the Ecco Ranch core is internally fractionated in K2O, Al2O3, Ba, MgO, Fe2O3, Co and Cr most likely by crystal accumulation-removal of ferromagnesian minerals and sanidine. In contrast, the Guess core (305–312 m depth) has little fractionation throughout most of the sill except in several narrow zones. Lamproite in the Guess core has large enrichments in TiO2, Ba, REE, Th, Ta and Sc and depletions in MgO, Cr, Co and Rb possibly concentrated in these narrow zones during the last dregs of crystallization of this magma.

The Ecco Ranch sill did not show any evidence of loss of volatiles or soluble elements into the country rock. This contrasts to the previously studied, shallow Silver City lamproite which did apparently lose H2O-rich fluid to the country rock. Perhaps a greater confining pressure and lesser amount of H2O-rich fluid prevented it from escaping.  相似文献   


14.
The Uintjiesberg kimberlite diatreme occurs within the Proterozoic Namaqua–Natal Belt, South Africa, approximately 60 km to the southwest of the Kaapvaal craton boundary. It is a group I, calcite kimberlite that has an emplacement age of 100 Ma. Major and trace element data, in combination with petrography, are used to evaluate its petrogenesis and the nature of its source region. Macrocryst phases are predominantly olivine with lesser phlogopite, with very rare garnet and Cr-rich clinopyroxene. Geochemical variation amongst the macrocrystic samples (Mg# 0.85–0.87, SiO2=27.0–29.3%, MgO=26.1–30.5%, CaO=10.9–13.5%) is shown to result from 10% to 40% entrainment and partial assimilation of peridotite xenoliths, whereas that shown by the aphanitic samples (Mg# 0.80–0.83, SiO2=19.1–23.0%, MgO=17.9–23.9%, CaO=16.5–23.7%) is consistent with 7–25% crystal fractionation of olivine and minor phlogopite. Changing trajectories on chemical variation diagrams allow postulation of a primary magma composition with 25% SiO2, 26% MgO, 2.3% Al2O3, 5%H2O, 8.6% CO2 and Mg#=0.85.

Forward melting models, assuming 0.5% melting, indicate derivation of the primary Uintjiesberg kimberlite magma from a source enriched in light rare earth elements (LREE) by 10× chondrite and heavy REE (HREE) by 0.8–2× chondrite, the latter being dependent on the proportion of residual garnet. Significant negative Rb, K, Sr, Hf and Ti anomalies present in the inferred primary magma composition are superimposed on otherwise generally smooth primitive mantle-normalized trace element patterns, and are inferred to be a characteristic of the primary magma composition. The further requirement for a source with chondritic or lower HREE abundances, residual olivine with high Fo content (Fo94) suggests derivation from a mantle previously depleted in mafic melt but subsequently enriched in highly incompatible elements prior to kimberlite genesis. These requirements are interpreted in the context of melting of continental lithospheric mantle previously enriched by metasomatic fluids derived from a sublithospheric (plume?) source.  相似文献   


15.
Three types of fluid inclusions have been identified in olivine porphyroclasts in the spinel harzburgite and lherzolite xenoliths from Tenerife: pure CO2 (Type A); carbonate-rich CO2–SO2 mixtures (Type B); and polyphase inclusions dominated by silicate glass±fluid±sp±silicate±sulfide±carbonate (Type C). Type A inclusions commonly exhibit a “coating” (a few microns thick) consisting of an aggregate of a platy, hydrous Mg–Fe–Si phase, most likely talc, together with very small amounts of halite, dolomite and other phases. Larger crystals (e.g. (Na,K)Cl, dolomite, spinel, sulfide and phlogopite) may be found on either side of the “coating”, towards the wall of the host mineral or towards the inclusion center. These different fluids were formed through the immiscible separations and fluid–wall-rock reactions from a common, volatile-rich, siliceous, alkaline carbonatite melt infiltrating the upper mantle beneath the Tenerife. First, the original siliceous carbonatite melt is separated from a mixed CO2–H2O–NaCl fluid and a silicate/silicocarbonatite melt (preserved in Type A inclusions). The reaction of the carbonaceous silicate melt with the wall-rock minerals gave rise to large poikilitic orthopyroxene and clinopyroxene grains, and smaller neoblasts. During the metasomatic processes, the consumption of the silicate part of the melt produced carbonate-enriched Type B CO2–SO2 fluids which were trapped in exsolved orthopyroxene porphyroclasts. At the later stages, the interstitial silicate/silicocarbonatite fluids were trapped as Type C inclusions. At a temperature above 650 °C, the mixed CO2–H2O–NaCl fluid inside the Type A inclusions were separated into CO2-rich fluid and H2O–NaCl brine. At T<650 °C, the residual silicate melt reacted with the host olivine, forming a reaction rim or “coating” along the inclusion walls consisting of talc (or possibly serpentine) together with minute crystals of NaCl, KCl, carbonates and sulfides, leaving a residual CO2 fluid. The homogenization temperatures of +2 to +25 °C obtained from the Type A CO2 inclusions reflect the densities of the residual CO2 after its reactions with the olivine host, and are unrelated to the initial fluid density or the external pressure at the time of trapping. The latter are restricted by the estimated crystallization temperatures of 1000–1200 °C, and the spinel lherzolite phase assemblage of the xenolith, which is 0.7–1.7 GPa.  相似文献   

16.
We present a new approach to determine the composition of silicate melt inclusions (SMI) using LA-ICPMS. In this study, we take advantage of the occurrence of SMI in co-precipitated mineral phases to quantify their composition without depending on additional sources of information. Quantitative SMI analyses are obtained by assuming that the ratio of selected elements in SMI trapped in different phases are identical. In addition Fe/Mg exchange equilibrium between olivine and melt was successfully used to quantify LA-ICPMS analyses of SMI in olivine. Results show that compositions of SMI from the different host minerals are identical within their uncertainty. Thus (1) the quantification approach is valid; (2) analyses are not affected by the composition of the host phase; (3) the derived melt compositions are representative of the original melt, excluding significant syn- or postentrapment modification such as boundary layer effects or diffusive reequilibration with the host mineral. With this data we established a large dataset of mineral/melt partition coefficients for the investigated mineral phases in hydrous calc-alkaline basaltic-andesitic melts. The clinopyroxene/melt and plagioclase/melt partition coefficients are consistent with the lattice strain model of Blundy and Wood [Blundy, J., Wood B., 1994. Prediction of crystal-melt partition-coefficients from elastic-moduli. Nature372, 452-454].  相似文献   

17.
Reidar G. Trnnes 《Lithos》2000,53(3-4):233-245
Melting experiments were performed on an FeO-rich bulk Earth model composition in the CMFAS system in order to investigate the partitioning of major elements between coexisting minerals and melts. The starting material (34.2% SiO2, 3.86% Al2O3, 35.2% FeO, 25.0% MgO and 1.88% CaO), contained in Re-capsules, was a mixture of crystalline forsterite and fayalite, and a glass containing SiO2, Al2O3, and CaO. Olivine is the first liquidus phase at 10 GPa but is replaced by majoritic garnet (ga) in the 15–26 GPa range. Magnesiowüstite (mw) crystallizes close to the liquidus and is joined by perovskite (pv) at 26 GPa.

The quenched melt compositions are homogeneous throughout the melt region of the charges and are only slightly enriched in Si, Ca and Fe, and depleted in Mg, relative to the starting composition. The Fe/Mg and Ca/Al ratios in all of the minerals increase rapidly below the liquidus to become compatible with the bulk composition at the solidus. At 26 GPa, a relative density sequence of mw>pv>melt>ga is observed. This indicates that majorite floating, combined with the sinking of magnesiowüstite and perovskite can be expected during the solidification of a Hadean magma ocean and in hot mantle plumes early in the Earth's history. The mineral–melt partitioning relations indicate that fractional crystallization or partial melting in the transition zone and the upper part of the lower mantle would increase the Fe/Mg and Ca/Al ratios of the melt, even if magnesiowüstite was predominant in the solid fraction. A significant contribution of accumulated mw to the segregation of the protocore is therefore unlikely. The suggested process of perovskite fractionation to the lower mantle is not capable of increasing the Mg/Si ratio in the residual melt, and the combined fractionation of perovskite and magnesiowüstite produces a melt with elevated ratios of Si/Mg, Ca/Al and Fe/Mg.  相似文献   


18.
Orthopyroxene-rich olivine websterite xenoliths (OWB2) in Palaeogene basanites in East Serbia are mostly composed of tabular low-Al2O3 orthopyroxene (> 70 vol.%, Mg# 85–87) containing tiny Cr spinel inclusions. Orthopyroxene shows a slightly U-shaped primitive mantle-normalized trace element pattern with strong peaks at U and Pb, similar to that of orthopyroxene from normal regional peridotitic mantle. In between the orthopyroxenes are interstitial spaces composed of partially altered olivine (Mg# 85–87), clinopyroxene, Ti-rich spinel, Mg-bearing calcite, K-feldspar, apatite, ilmenite and relicts of a hydrous mineral. Clinopyroxene appears as selvages around orthopyroxene and as coarser euhedral crystals. Trace element patterns of the clinopyroxene selvages resemble those of adjacent orthopyroxene, whereas the coarser ones have flatter and more LREE- and LILE-enriched patterns, similar to that of metasomatic clinopyroxene. The OWB2 xenoliths are interpreted as having formed in two stages. During Stage I orthopyroxene crystallized, along with some spinel, olivine and probably hydrous phase(s). This original OWB2 lithology was a hydrous olivine-bearing orthopyroxenite that crystallised from subduction-related SiO2-saturated, boninite-like magmas. During Stage II the interstitial minerals formed due to infiltration of a low-SiO2, high-CaO and CO2-rich external melt, accompanied by decomposition of original H2O-bearing minerals. The calculated composition of the infiltrating liquid corresponds to a mafic alkaline melt similar to the basanitic host but more enriched in CO2, LREE and LILE. Metasomatism is interpreted in terms of small degree melts related to the Palaeogene mafic alkaline magmatism.  相似文献   

19.
Strontium chemical diffusion has been measured in albite and sanidine under dry, 1 atm, and QFM buffered conditions. Strontium oxide-aluminosilicate powdered sources were used to introduce the diffusant and Rutherford Backscattering Spectroscopy (RBS) used to measure diffusion profiles. For the 1 atm experiments, the following Arrhenius relations were obtained:
Sanidine (Or61), temperature range 725–1075°C, diffusion normal to (001): D=8.4 exp(−450±13 kJ mol−1/RT) m2s−1. Albite (Or1), temperature range 675–1025°C, diffusion normal to (001): D=2.9 × exp(−224±11 kJ mol−1/RT) m2s−1.
The alkali feldspars in this and earlier work display a broad range of activation energies for Sr diffusion, which may be a consequence of the thermodynamic non-ideality of the alkali feldspar system and/or the mixed alkali effect.  相似文献   

20.
Roger H. Mitchell   《Lithos》2004,76(1-4):551-564
Liquidus and sub-liquidus phase relationships are reported for melts formed from an aphanitic kimberlite composition crystallized at 5–12 GPa and 900–1400 °C. The liquidus phase over the pressure range investigated is forsteritic olivine. This is followed with decreasing temperature by olivine plus garnet as the initial sub-liquidus solid phase assemblage. Supra-solidus assemblages consist of olivine+garnet+clinopyroxene+Mg-ilmenite+liquid at 5–7 GPa or olivine+garnet+clinopyroxene+hematite–ilmenite solid solutions (+/−perovskite)+liquid at 8–12 GPa. Phlogopite forms as a near-solidus phase only at 900 °C and 6 GPa. Orthopyroxene does not form at any temperature and pressure. All garnets formed at 6–7 GPa are Ti-rich almandine–grossular–pyrope solid solutions and not Cr-pyrope, whereas garnets formed above 8 GPa are Ti- and Fe3+-rich and have no natural counterparts. Quenched liquids are represented by magnesite at 10–12 GPa and Mg–Ca-carbonates at lower pressures. In addition to forming discrete crystals, Mg-ilmenite and hematite–ilmenite solid solutions occur as lamellar intergrowths that are identical in texture to naturally occurring intergrowths. Mg-ilmenite compositions at 6–7 GPa are similar to those of the natural occurrences, whereas clinopyroxenes are richer in Ca. The effects of graphite versus platinum capsules on the oxygen fugacity of the experimental charges and the composition of the olivine, clinopyroxene, Fe–Ti-oxides and garnets formed are described. These experimental data are interpreted to indicate that kimberlite magmas are unlikely to be formed by very small degrees of partial melting of a simple homogeneous carbonated garnet lherzolite mantle. It is proposed that kimberlite magmas form by extensive partial melting of metasomatized mantle, i.e. mineralogically complex carbonate-bearing veins in a lherzolitic/harzburgitic substrate, and that lamellar ilmenite–clinopyroxene intergrowths represent the products of non-equilibrium growth in kimberlite magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号