首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trawl collections indicate that the fish community of the Belize barrier reef lagoon is dominated numerically and in biomass by grunts (Haemulidae), especiallyHaemulon sciurus andHaemulon flavolineatum. Although the gear selected for small sizes, length frequency analysis indicated seasonality in recruitment of the dominant species of grunts. Apogonids and tetraodontiform fishes were also dominant components of the community. Most fishes collected were juveniles of species that occur as adults on the main reef, or were small species that are resident in the lagoon. Of three habitats sampled, the mangrove creek had the greatest relative abundance and biomass of fishes, followed by the seagrass bed and the sand-rubble zone. There were no significant seasonal differences in fish relative abundance or biomass. Community structure analysis indicated a uniqueness in the mangrove fish community. Diversity (H′) was high, and was due to high species richness and evenness of distribution of individuals among species. The Belize barrier reef lagoon serves as an important nursery habitat for juvenile fishes.  相似文献   

2.
The pelagic fish assemblage within a temperate estuary was examined to determine if there were diel differences in species richness, total abundance, biomass, and species composition. These comparisons were made over both seasonal (January–December 1996) and annual (August–November 1995; August–December 1996) scales with pop net collections in a shallow (<2 m MLW) embayment within Great Bay in southern New Jersey, USA. In the complete year of sampling in 1996, more than 335,000 pelagic fish, representing 13 families (23 species), were collected during diel sampling with 12 species constituting over 99.9% of the total catch including Clupea harengus (84%), Menidia menidia (10%), and Anchoa mitchilli (4%). A detailed examination determined that nighttime species richness, total abundance and biomass may have been enhanced during some seasons by using artificial light. Diel variation in species composition was similar regardless of the use of the artificial light in all seasons but fall. Annual comparisons between 1995 and 1996 during late summer and fall found these results to be consistent. In general, these findings point out the importance of sampling during both day and night to understand the movement and abundance patterns of estuarine pelagic fishes and their ecological significance in temperate estuaries.  相似文献   

3.
Assemblages of ichthyofauna of shallow inshore habitats along Californía’s central coast are described in terms of species composition, abundance, and life-style categories. A total of 22,334 fishes from 65 species and 27 families was collected with otter trawls at six sites in the main channel and tidal creeks of Elkhorn Slough, a tidal embayment and seasonal estuary, and two nearshore ocean stations in Monterey Bay during 44 months between August 1974 and June 1980. Greater than 90% of the catch comprised 10 species. The four dominant species,Cymatogaster aggregata, Leptocottus armatus, Phanerodon furcatus, andEmbiotoca jacksoni, occurred during most or all seasons and were classified as residents or partial residents. Several abundant species were marine immigrants that seasonally use the slough as spawning and nursery grounds; this resulted in higher abundance and species richness during summer. Species collected during winter largely were slough residents. Species compsosition and richness varied with distance from the slough entrance. The ocean assemblage was most different, and its similarity to other stations decreased progressively with distance inland and into the tidal creeks. During our study, 5,074 fishes were collected by beach seine in Bennett Slough, a remote shallow marsh basin adjacent to the entrance of Elkhorn Slough. Species richness was relatively low and three euryhaline species accounted for >80% of the total catch. The species assemblage was most similar to those at the tidal creek and most shallow stations of Elkhorn Slough. Resident species numerically dominated assemblages in Bennett Slough and the most inland areas of Elkhorn Slough. The high relative abundance of marine-related fishes (classified as marine, marine immigrant, and partial resident), entering Elkhorn Slough early in life or as spawning adults indicates the importance of this habitat to nearshore fish assemblages.  相似文献   

4.
Six species of marine fishes, the Atlantic cutlassfish Trichiurus lepturus; planehead filefish, Monacanthus hispidus; guaguanche, Sphyraena guachancho; pigfish, Orthopristic chrysoptera; freckled blenny, Hypsoblenius ionthas; and short bigeye, Pristigenys alta, were observed for the first time in the Hudson River estuary in 1985. Their occurrence was associated with low freshwater runoff and the resulting upstream penetration of the salt front to historic levels. These conditions may have facilitated the dispersal of marine fishes from coastal areas into the lower Hudson River estuary.  相似文献   

5.
Analysis of sediment and aquatic vegetation samples collected along the Onkaparinga estuary, South Australia, revealed the distribution patterns of benthic and epi-benthic micro-organisms, specifically foraminifera and ostracods. The total assemblage provided an assemblage ‘snap shot,’ contemporaneous with the environmental conditions at the time of sampling, as well as seasonally and time-averaged distribution information. Species richness is low in the upper reaches of the estuary and favours species with a wide salinity tolerance. Observed species richness increases seawards. Species richness and abundance within species is greater where there is conspicuous aquatic vegetation. Thus, species richness and distribution appear to be related to the proximity to the sea and the provision of diverse habitable substrate. Foraminiferal species, Ammonia beccarii and Elphidium excavatum, and ostracods belonging to the genera Paracypria, Xestolebris and Leptocythere dominate the total assemblage. These species are characteristic of euryhaline conditions. The mutual maximum occurrences of Reophax barwonensis, Ammobaculites barwonensis and Trochammina inflata signify mid-estuarine conditions. In the lower regions of the estuary, the appearance of shallow marine species of foraminifera such as Elphidium crispum and Quinqueloculina poeyana, and ostracods Bairdoppilata sp., Hemicytherura spp. and Paranesidea spp. signifies interactions with the adjacent inner shelf coastal waters. Throughout the entire length of the estuary, the presence of vegetal substrate created a strong numerical bias towards live occurrences of the ostracods Paracypria sp. and Xestolebris cedunaensis. These species are potentially useful as proxies for paleoenvironmental interpretations of estuarine sediments.  相似文献   

6.
Subtidal accumulations of oyster shell have been largely overlooked as essential habitat for estuarine nekton. In southeastern U.S. estuaries, where oyster reef development is mostly confined to the intertidal zone, eastern oyster (Crassostrea virginica) shell covered bottoms are often the only significant source of hard subtidal structure. We characterized and quantified nekton use of submerged shell rubble bottoms, and compared it to use of intertidal reefs and other subtidal bottoms in the North Inlet estuary, South Carolina. Replicate trays (0.8 m2) filled with shell rubble were deployed in shallow salt marsh creeks, and were retrieved after soak times of 1 to 25 days from May 1998 to March 2000. Thirty six species of fishes, representing 21 families, were identified from the 455 tray collections. Water temperature, salinity, soak time and the presence of a shell substrate all affected the catch of fishes in the trays. Catches during the warmer months were two to five times greater than those during the winter. Fishes were present in 98% of the trays with an overall average of 5.7 fish m?2. The assemblage was numerically dominated by small resident species including naked goby (Gobiosoma bose), oyster toadfish (Opsanus tau), and crested blenny (Hypleurochilus geminatus). Transient species accounted for 23% of all individuals and 62% of the total biomass due to the presence of relatively large sheepshead (Archosargus probatocephalus) and black sea bass (Centropristis striata). Both the transient and resident species displayed distinct periods of recruitment and rapid growth from April to October. Lower abundances of juvenile gobies and blennies during 1998 were attributed to long periods of depressed salinity caused by high rainfall associated with El Niño conditions in spring. Crabs and shrimps, which were often more abundant than the fishes, accounted for comparable biomass in the tray collections. In comparisons of subtidal tray and trawl catches, trays yielded 10 to 1,000 fold higher densities of some demersal fish groups. Comparisons of intertidal and subtidal gear catches indicated that many species remain in the subtidal shell bottom at all stages of the tide. This study suggests that subtidal shell bottom may be essential fish habitat for juvenile seabass, groupers, and snappers and that it may be the primary habitat for a diverse assemblage of ecologically important resident fishes and crustaceans. Given the high levels of nekton use and the areal extent of oyster shell bottoms in eastern U.S. and Gulf estuaries, increased attention to protection and restoration of these areas appears justified.  相似文献   

7.
We compared distribution and abundance by habitat for age-0, young-of-the-year (YOY) winter flounder,Pseudopleuronectes americanus, in three estuaries (Hammonasset River, Navesink River, and Great Bay-Little Egg Harbor) in the northeastern United States to better define essential fish habitat (EFH). Two replicates of five representative habitats were sampled in most estuaries: eelgrass (Zostera marina), unvegetated areas adjacent to eelgrass, macroalgae, (primarilyUlva lactuca), unvegetated areas adjacent to macroalgae, and tidal marsh creeks. Fish were sampled every two weeks, May through October 1995 and 1996, with a beam-trawl (1-m width, 3-mm mesh net). Abundance of YOY winter flounder was highest in the Navesink River estuary and similar between years, but was significantly lower and differed between years in the Great Bay-Little Egg Harbor and Hammonasset River estuaries. Annual temperature differences appear to influence estuary use by YOY. In the years and estuaries studied, where habitat-related differences in abundance were significant, YOY were found in higher densities in unvegetated areas adjacent to eelgrass. The exception was in the Hammonasset River in 1995 when densities were higher in eelgrass. We conclude that the type of habitat most important to YOY winter flounder varies among estuaries and as a result, care should be taken in defining EFH, based only on limited spatial and temporal sampling.  相似文献   

8.
Distribution and abundance of flatfish species (<150 mm standard length) were related to habitat characteristics in the Newport River and Back Sound estuaries in North Carolina. Salinity, turbidity, depth, distance from marsh edge, benthic composition, and grain size were used to describe the different shallow water habitats from April through October 1994. One Scophthalmidae, seven Paralichthyidae, one Achiridae, and one Cynoglossidae species were collected during the study including juvenileParalichthys albigutta (gulf flounder),P. dentatus (summer flounder), andP. lethostigma (southern flounder) along with multiple age classes ofCitharichthys spilopterus (bay whiff),Etropus crossotus (fringed flounder),Symphurus plagiusa (blackcheek tonguefish), andTrinetes maculatus (hogchoker). Incidental catches ofAncylopsetta quadrocellata (ocellated flounder),C. macrops (spotted whiff), andScopthalmus aquosus (windowpane) were also made. Flatfish distributions among habitats varied by species, size within species, and season. Regardless of season, the highest densities of flatfishes were found in the upper estuary. All habitats were used by one or more species and most species occurred at several habitats. Some species were significantly more abundant at specific habitat types. Ontogenetic shifts in habitat utilization were found for several species. High densities of smallP. lethostigma, C. spilopterus, S. plagiusa, andT. maculatus occurred in the upper estuary on muddy substrates. LargeP. dentatus, C. spilopterus, S. plagiusa, andT. maculatus utilized sand flats and channels in the lower estuary.  相似文献   

9.
We examined the community structure of fish and selected decapod crustaceans and tested for within estuary differences among habitats at depths of 0.6 m to 7.9 m, in Great Bay and Little Egg Harbor in southern New Jersey. Several habitat types were identified a priori (e.g., eelgrass, sea lettuce, and marsh creeks) and sampled by trawl (4.9 m headrope, 19-mm mesh wings, 6.3-mm mesh liner), monthly, from June 1988 through October 1989. Repetitive (n=4) 2-min trawl tows were taken at each habitat type from 13 locations. The fishes and decapod crustaceans collected were typical of other Mid-Atlantic Bight estuaries but varied greatly inseasonal abundance and species. In the years sampled, bay anchovy (Anchoa mitchilli) was the dominant species (50.5% of the total number), followed by spot (Leiostomus xanthurus) (10.7%), Atlantic silverside (Menidia menidia) (9.7%), fourspine stickleback (Apeltes quadracus) (5.9%), blue crab (Callinectes sapidus) (4.6%), and northern pipefish (Syngnathus fuscus) (4.2%). The biota were examined by multi-dimensional scaling (MDS) for habitat associations and “best abiotic predictor” of community structure. Percent silt combined with salinity was the most important abiotic determinant of the faunal distributions among habitats. Temperature was a major factor influencing seasonal occurrence of the biota but had less effect on habitat comparisons. The analysis confirmed the distinct nature of the assemblages associated with the habitats, that is, eelgrass, upper estuary subtidal creeks, channels, and open bay areas. Several species were associated with specific habitats: for example,A. quadracus andS. fuscus with eelgrass, clupeids with subtidal creek stations,L. xanthurus with marsh channels, and black sea bass (Centropristis striata) and spotted hake (Urophycis regia) with sponge-peat habitat. Species richness appeared to be positively related to habitat structural heterogeneity. Thus, the best predictors for these estuarine fish and decapod crustacean assemblages were seasonal temperature, percent silt and salinity combined, and the physical heterogeneity of the habitat.  相似文献   

10.
The mummichog,Fundulus heteroclitus, is one of the most abundant macrofaunal components of salt marsh ecosystems along the east coast of the United States. During April–November 1998, we determined the habitat use and movement patterns of young-of-the-year (YOY) and adult mummichogs in a restored marsh, formerly a salt hay farm, and an adjacent creek in order to expand our understanding of the ecology of the species and evaluate the success of the restoration. Four major fish habitat types (large first-order natural creek, second-order created creek, linear drainage ditch, and marsh surface) were identified within the study site. Patterns of relative abundance and mark and recapture using coded wire tags were used to determine the habitat use, tidal movements, home range, and site fidelity of the species within these habitat types. A total of 14,784 fish, ranging from 20–100 mm SL, were captured with wire mesh traps and tagged, and 1,521 (10.3%) fish were recaptured. A variety of gears were used to attempt to recapture fish across all habitat types, including wire mesh traps, push nets, and otter trawls. Based on abundance and recaptures of tagged fish, the YOY and adults primarily used the shallow subtidal and intertidal areas of the created creek, the intertidal drainage ditches, and the marsh surface of the restored marsh but not the larger, first-order natural creek. At low tide, large numbers were found in the subtidal areas of the created creek; these then moved onto the marsh surface on the flooding tide. Elevation, and thus hydroperiod, appeared to influence the microscale use of the marsh surface. We estimated the home range of adults and large YOY (20–100 mm SL) to be 15 ha at high tide, which was much larger than previously quantified. There was strong site fidelity to the created creek at low tide. The habitat use and movement patterns of the mummichog appeared similar to that reported for natural marshes. Coupled with the results of other studies on the feeding, growth, and production of this species in this restoreh, the species appeared to have responded well to the restoration.  相似文献   

11.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

12.
From July to October 2004, five sites in the Hampton–Seabrook Estuary in New Hampshire were sampled with beam and otter trawls. The goals were to describe winter flounder (1) abundance in the estuary, (2) size class distributions, (3) spatial distribution by different size classes, and (4) distribution patterns. Of the 19 species caught, winter flounder was the most abundant and was dominated by young-of-the-year (YOY) fish. The five sites were fairly homogenous in depth, bottom type, salinity, and temperature. However, YOY abundance ranged from 2.1 to 32.1 fish 1,000 m?2 depending on the site. Benthic community was the best indicator of juvenile winter flounder abundance. Catch data of other organisms fluctuated, but no one species was a strong predictor of winter flounder abundance and distribution. During late summer and early fall, the estuary is used primarily by YOY winter flounder, indicating that this estuary functions as a nursery ground.  相似文献   

13.
Larvae of 15 species or genera of crabs were collected and identified during a six month (May 26 to October 28, 1978) study in the mouth of Delaware Bay. Seasonal abundance and vertical distribution of each species were investigated. Most species studied had peak abundance in July and August except forCancer irroratus andOvalipes ocellatus which showed peak occurrence in May and June, respectively. Larvae of species strongly dependent on estuarine habitats, such asUca spp.,Pinnixa chaetopterana, andP. sayana, showed a tendency to congregate in near-bottom waters where net flow of water is landward, thus favoring retention within the estuary. Larvae ofOvalipes ocellatus, Cancer irroratus, andCallinectes sapidus were more common at the surface. This vertical distribution suggests that these larvae are flushed out of the estuary. The mechanisms of recruitment and replenishment of adult populations within the estuary would therefore depend on migration of megalopa and juveniles. *** DIRECT SUPPORT *** A01BY019 00006  相似文献   

14.
Comparison of the relative abundance of fish species from different life-history groups and their temporal patterns of estuarine habitat use from two estuaries north and south of Cape Cod indicates that the Cape acts as a zoogeographic boundary. Between April 1988 and December 1989, monthly seine and trawl samples were collected from nearshore, shallow-water marsh, and beach and deeper open-water habitats in Wells Harbor, Maine, and Waquoit Bay, Massachusetts. Forty-eight species and 80,341 individuals were collected from Waquoit Bay compared to 24 species and 22,561 individuals from Wells Harbor. Waquoit Bay had proportionally fewer resident species and more marine, nursery, and occasional species than Wells Harbor. Annual density and biomass values were greater across all habitats in Waquoit Bay, with the summer values from the marsh habitat an order of magnitude higher than comparable summer data from the Wells habitats. We suggest that marsh and beach habitats provide a nursery area for young-of-the-year fishes, while deeper, open-water habitats serve as a corridor for fishes moving to nearshore habitats or serve as a refuge during low tide.  相似文献   

15.
We investigated whether within wetland environmental conditions or surrounding land cover measured at multiple scales were more influential in structuring regional vegetation patterns in estuarine tidal wetlands in the Pacific Northwest, USA. Surrounding land cover was characterized at the 100, 250, and 1,000 m, and watershed buffer scales. Vegetation communities were characterized by high species richness, lack of monotypic zonation, and paucity of invasive species. The number of species per site ranged between 4 and 20 (mean?±?standard deviation?=?10.2?±?3.1). Sites supported a high richness (mean richness of native species 8.7?±?2.8) and abundance of native macrophytes (mean relative abundance 85 %?±?19 %). Vegetation assemblages were dominated by a mix of grasses, sedges, and herbs with Sarcocornia pacifica and Distichlis spicata being common at sites in the oceanic zone of the estuary and Carex lyngbyei and Agrostis stolonifera being common at the fresher sites throughout the study area. The vegetation community was most strongly correlated with salinity and land cover within close proximity to the study site and less so with land cover variables at the watershed scale. Total species richness and richness of native species were negatively correlated with the amount of wetland in the buffer at all scales, while abundance of invasive species was significantly correlated to within wetland factors, including salinity and dissolved phosphorus concentrations. Landscape factors related to anthropogenic disturbances were only important at the 100-m buffer scale, with anthropogenic disturbances further from the wetland not being influential in shaping the vegetation assemblage. Our research suggests that the traditional paradigms of tidal wetland vegetation structure and environmental determinants developed in east coast US tidal wetlands might not hold true for Pacific Northwest wetlands due to their unique chemical and physical factors, necessitating further detailed study of these systems.  相似文献   

16.
Once viewed as an inexhaustible fishery resource, eastern oyster reefs (Crassostrea virginica) have been dramatically depleted. In North Carolina alone, eastern oyster harvests have declined by 90% since the early 1900s. However, eastern oyster restoration and management efforts have substantially increased since the 1970s. Oyster reefs provide habitat and refuge for organisms, improve water quality, and decrease erosion. Oyster restoration projects aim to construct reefs that function similarly to their natural counterparts. Therefore, post-creation monitoring of these reefs is crucial in determining restoration success. However, monitoring is often lacking or focused only on oyster density and size rather than ecosystem functions such as nekton utilization. This study examines nekton utilization among created reefs compared to natural reefs in an estuary in Wilmington, North Carolina. The objective was to determine whether the created reefs function similarly to the natural reefs in abundance, species richness, and fish size. Using seine nets and Breder traps, reefs were sampled over a 5-month period. No significant difference was detected among reefs for nekton abundance, species richness, and standard length. This is a promising result for future management, indicating that created and natural reefs can support similar communities of fishes and shrimp.  相似文献   

17.
Seasonal ichthyoplankton surveys were made in the lower Laguna Madre, Texas, to compare the relative utilization of various nursery habitats (shoal grass,Halodule wrightii; manatee grass,Syringodium filiforme; and unvegetated sand bottom) for both estuarine and offshore-spawned larvae. The species composition and abundance of fish larvae were determined for each habitat type at six locations in the bay. Pushnet ichthyoplankton sampling resulted in 296 total collections, yielding 107,463 fishes representing 55 species in 24 families. A broad spectrum of both the biotic and physical habitat parameters were examined to link the dispersion and distribution of both pre-settlement and postsettlement larvae to the utilization of shallow seagrass habitats. Sample sites were grouped by cluster analysis (Ward’s minimum variance method) according to the similarity of their fish assemblages and subsequently examined with a multiple discriminant function analysis to identify important environmental variables. Abiotic environmental factors were most influential in defining groups for samples dominated by early larvae, whereas measures of seagrass complexity defined groups dominated by older larvae and juveniles. Juvenile-stage individuals showed clear habitat preference, with the more shallowHalodule wrightii being the habitat of choice, whereas early larvae of most species were widely distributed over all habitats. As a result of the recent shift of dominance fromHalodule wrightii toSyringodium filiforme, overall reductions in the quality of nursery habitat for fishes in the lower Laguna Madre are projected.  相似文献   

18.
We determined the distribution of macroalgae in Hog Island Bay, a shallow coastal lagoon in Virginia, USA, seasonally at 12 sites from 1998 to 2000 and at 3 representative sites from 2000 to 2002. We analyzed macroalgal biomass, taxonomic richness, and abundance of two non-native species, the cryptic invaderGracilaria vermiculophylla and the conspicuousCodium fragile, with respect to season, location (mainland, mid lagoon, barrier island sites), and elevation (intertidal, subtidal). Taxonomic richness, total algal biomass, and nonnative biomass peaked in the summer months when temperature and light availability were highest. A few stress tolerant and ephemeral algae dominated the algal assemblage.G. vermiculophylla constituted 74% of the entire algal biomass, was the most abundant alga in all seasons, locations, and elevation levels, and was positively correlated with taxonomic richness and abundance of filamentous species.Ulva curvata, Bryopsis plumosa, andC. fragile accounted for an additional 16% of the algal biomass. There are distinct habitats in Hog Island Bay that can be classified into low diversity-low biomass regions near the mainland and barrier islands and high diversity-high biomass regions in the open mid lagoon, where abundant shells for attachment and intermediate levels of water column nutrients and turbidity likely create better growth conditions. Taxonomic richness and biomass were higher in subtidal than intertidal zones, presumably due to lower desiccation stress. This study provides an example of how a single invasive species can dominate an entire assemblage, both in terms of biomass (being most abundant in all seasons, locations, and tidal levels) and species richness (correlating positively with epiphytic filamentous taxa). By adding hard-substratum structural complexity to a relatively homogenous soft-substratum system,G. vermiculophylla increases substratum availability for attachment and entanglement of other algal species and enhances local diversity. Without widespread and abundantG. vermiculophylla, taxa likePolysiphonia, Ceramium, Bryopsis, Ectocarpus, andChampia would likely be much less common. This study also highlights the importance of using DNA analysis of voucher specimens in monitoring programs to accurately identify cryptic invaders.  相似文献   

19.
The use of the Tejo estuary, Portugal, salt marsh creeks by nekton was examined based on sampling surveys with a fyke net from September 1998 until August 2001. From the 20 taxa (14 fish species, 5 decapod crustacean species, and 1 cephalopod species) identified in the studied creeks, 16 were regularly caught throughout the sampling period. The shrimpPalaemonetes varians was the most numerically abundant species in the creeks, while the biomass was dominated by the mulletLiza ramada. The nekton assemblage was mainly represented by marine-estuarine opportunist species, comprising 85% of the total. A high seasonality was detected on the species abundance patterns: the most abundant species (P. varians, Crangon crangon, L. ramada, Pomatoschistus microps, Syngnathus sp., andAnguilla anguilla) occurred throughout the sampling period,Sardina pilchardus, Dicentrarchus, labrax, andAtherina boyeri were particularly abundant in spring and summer, andEngraulis encrasicholus, Liza aurata, Gambusia holbrooki, Palaemon longirostris, andPalaemon serratus were most abundant in autumn and winter.L. ramada occurred in the tidal creeks in high numbers during neap tides, while the majority of the remaining taxa were most abundant during spring tides, suggesting a differential pattern of habitat use occording to species.  相似文献   

20.
Estuarine nursery areas are critical for successful recruitment of tautog (Tautoga onitis), yet they have not been studied over most of this species' range. Distribution, abundance and habitat characteristics of young-of-the-year (YOY, age 0) and age 1+juvenile tautog were evaluated during 1988–1992 in the Narragansett Bay estuary, Rhode Island, using a 16-station, beach-seine survey. Estuary-wide abundance was similar among years. Greatest numbers of juveniles were collected at northern Narragansett Bay stations between July and September. Juvenile abundances varied with density of macroalgal and eelgrass cover; abundances ranged from 0.03 fish per 100 m2 to 8.1 fish per 100 m2. Although juveniles use eelgrass, macroalgae is the dominant vegetative cover in Narragansett Bay. Macroalgal habitats play a previously unrealized, important role and contribute to successful recruitment of juvenile tautog in Narragansett Bay. Juvenile abundances did not vary with sediment type or salinity, but were correlated with surface water temperature. Fish collected in June were age 1+ juveniles from the previous year-class (50–167 mm TL) and these declined in number after July or August. The appearance of YOY (25–30 mm TL) in July and August was coincident with the period of their greatest abundances. A precipitous decline in abundance occurred by October because of the individual or combined effects of mortality and movement to alternative habitats. Based on juvenile abundance, a previously unidentified spawning area was noted in Mount Hope Bay, a smaller embayment attached to the northeastern portion of Narragansett Bay. In August 1991, Hurricane Bob disrupted juvenile sise distribution and abundance, resulting in reduced numbers of YOY collected after the storm and few 1+ juveniles in 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号