首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
介微孔复合沸石分子筛对重金属离子吸附性能的实验研究   总被引:12,自引:0,他引:12  
以介微孔复合沸石分子筛MCM-41/ZSM-3为吸附剂,采用静态吸附方法初步研究了其对重金属离子Cu^2 、Zn^2 、Pb^2 、Cd^2 的吸附性能。结果表明:对于配置的60mg/dm^3重金属离子溶液,使用分子筛用量为10g/dm^3时,在较宽的pH范围内MCM-41/ZSM-3对Cu^2 、Zn^2 、Pb^2 、Cd^2 的吸附率可达90%以上;对等温吸附曲线的回归分析得出Cu^2 、Zn^2 、Pb^2 、Cd^2 在实验浓度范围内符合Langmuir单吸附位吸附曲线且具有较大的吸附容量。  相似文献   

2.
Removal of Lead,Copper, Zinc and Cadmium from Water Using Phosphate Rock   总被引:2,自引:0,他引:2  
Removal of Pb^2+, Cu^2+, Zn^2+ and Cd^2+ from aqueous solutions by sorption on a natural phosphate rock (FAP) was investigated. The effects of the contact time and initial metal concentration were examined in the batch method. The percentage sorption of heavy metals from solution ranges generally between 50% and 99%. The amount of sorbed metal ions follows the order Cu〉Pb〉Cd〉Zn. Heavy metal immobilization was attributed to both surface complexation of metal ions on the surface of FAP grains and partial dissolution and precipitation of a heavy metal-containing phosphate. The very low desorption ratio of heavy metals further supports the effectiveness of FAP as an alternative and low-cost material to remove toxic Pb^2+, Cu^2+, Zn^2+ and Cd^2+ from polluted waters.  相似文献   

3.
柱撑蛭石吸附去除废水中重金属离子的实验研究   总被引:2,自引:0,他引:2  
刘云  吴平霄  党志 《矿物岩石》2006,26(4):8-13
分别利用有机柱化剂十二烷基磺酸钠(SDS)和无机柱化剂聚羟基铝(HA)对蛭石进行柱撑制得十二烷基磺酸钠柱撑蛭石(SDS-V erm icu lite)和聚羟基铝柱撑蛭石(HA-V erm icu lite),并通过XRD、红外光谱、ZETA电位等表征手段对柱撑蛭石进行表征,同时针对柱撑蛭石对Cu2 ,Cd2 ,C r3 3种重金属离子的吸附进行研究,结果表明:吸附去除率受反应时间、重金属离子的初始浓度、pH值等因素的影响,经柱撑后的蛭石对重金属离子吸附的吸附性能比蛭石原矿要强。柱撑蛭石吸附3种重金属离子的动力学吸附过程可用E lov icb方程和双常数方程进行较好的拟合。  相似文献   

4.
研究了二异氰酸酯与壳聚糖的交联反应,其产物与壳聚糖相比,酸溶解度由82.04%降到58.08%。DSC曲线表明,交联产物的热稳定性明显提高,对低价重金属离子(Hg  相似文献   

5.
采用改性海泡石从锌渣酸浸液中提取、回收稀散金属镓,取得了良好的试验结果。分别考察了溶液的酸度、海泡石的用量及提取时间对提取率的影响,并对镓的解吸和海泡石的再生性进行了研究。结果表明:试验料液pH值等于3,海泡石的量为3.0 g,提取时间30 min的条件下,镓的提取率大于95%,其他干扰离子Cd2 、Zn2 、Pb2 及Cu2 的提取率小于10%。提取镓后的海泡石,用2.0 mol/L HCl解吸,镓的解吸率大于99%,且解吸后的海泡石仍可循环再利用。  相似文献   

6.
土壤矿物对金属离子的临界吸附量   总被引:3,自引:0,他引:3  
本文从矿物表面羟基与溶液中金属离子反应的化学平衡方程出发,得到金属离子在矿物表面单基配位和双基配位吸附的覆盖度计算公式,并据此探讨了覆盖度的影响因素和变化规律,指出覆盖度随pH变化曲线拐点的实际意义。假设土壤和地表水达到平衡,参比水质标准,提出了矿物吸附金属离子的临界覆盖度公式,并初步探讨了石英吸附Cd2 的临界覆盖度-pH曲线,进而推导出土壤矿物对金属离子的临界吸附量公式。  相似文献   

7.
针铁矿/水界面反应性的实验研究   总被引:1,自引:0,他引:1  
选择针铁矿对Pb2+、Cu2+、Cd2+等3种重金属离子的吸附实验,开展矿物/水界面反应性研究.金属离子(M2+)在矿物-水溶液间分配有多种表面反应机制,这些表面反应发生作用的条件主要取决于吸附质水化学性质和矿物表面荷电性,因此,溶液pH值是影响矿物/水界面反应性的关键因素.在不同pH值条件下, 表面羟基可通过发生质子化或去质子化反应而使得矿物表面产生荷电性并发生改变,而金属离子的水解则可显著加快金属羟基配合物的形成,从而进一步增强了矿物/水界面反应.本实验条件下针铁矿表面对重金属离子的吸着量随pH值升高而升高,在一个较窄的pH值范围内吸附率急剧升高,呈S形分布.针铁矿对3种不同的重金属离子的吸附能力的强弱顺序是Cu2+>Pb2+>Cd2+.无论是Langmuir方程还是Freundlich方程,都能较好拟合针铁矿对重金属离子的等温吸附过程.Freundlich方程的n值均在0.1~0.5之间,说明重金属离子在针铁矿表面的吸附并不能简单地归结为单配位或双配位模式,可能存在着多种吸附结合形态.表观吸附常数KM值的变化规律,说明重金属离子与针铁矿表面反应模式及其表面吸附形态发生了变化,具体的吸附形态还有待谱学研究进一步证实.  相似文献   

8.
As, Hg and Pb are examples of heavy metals which are present in different types of industrial effluents responsible for environmental pollution. Their removal is traditionally made by chemical precipitation, ion-exchange and so on. However, this is expensive and not completely feasible to reduce their concentrations to the levels as low as required by the environmental legislation. Biosorption is a process in which solids of natural origin are employed for binding the heavy metal. It is a promising alternative method to treat industrial effluents, mainly because of its low cost and high metal binding capacity. The kinetics was studied for biosorption experiments using coconut fiber for As (III), Hg (II) and Pb (II) ions adsorption. The specific surface area and surface charge density of the coconut fiber are 1.186×1025 (m2/g) and 5.39 ×1024 (meq/m2), respectively. The maximum adsorption capacity was found to be the highest for Pb (II) followed by Hg (II) and As (III). The modification of the adsorbent by thiolation affected the adsorption capacity. Equilibrium sorption was reached for the metal ions at about 60 min. The equilibrium constant and free energy of the adsorption at 30 °C were calculated. The mechanism of sorption was found to obey the particle-diffusion model. The kinetic studies showed that the sorption rates could be described by both pseudo first-order and pseudo second-order models. The pseudo second-order model showed a better fit with a rate constant value of 1.16 × 10?4/min. for all three metal ions. Therefore, the results of this study show that coconut fiber, both modified and unmodified, is an efficient adsorbent for the removal of toxic and valuable metals from industrial effluents.  相似文献   

9.
Recent studies suggest that siderophores form stable complexes with divalent metals and affect their mobility. In this work, effects of trihydroxamate microbial siderophores and desferrioxamine-B (DFOB) on Pb(II), Zn(II), and Cd(II) sorption by two kinds of synthesized zeolites (13X and Na?CY) as a function of pH were investigated. Results showed that 13X zeolite has a higher sorption affinity for studied metals than Na?CY. DFOB strongly affected metal sorption on both zeolites. Under slightly acidic to neutral condition, DFOB increased the metal sorption on zeolites due to the sorption of positively charged heavy metal?CDFOB complexes. Whereas by increasing pH (>7), the mobilizing effect of DFOB was observed for Pb, Zn, and Cd. DFOB drastically decreased (80?%) Zn sorption in alkaline condition. As a result, siderophores can weaken the treatment efficiency of zeolites and increase the bioavailability of metals in soils. Surface complexation modeling revealed that the effects of DFOB on metal sorption by 13X and Na?CY zeolites can be explained by the differences in their surface charge. In general, the result shows the influence of DFOB on metal sorption by zeolites over the pH range 4?C9 and decreasing in the sequence Zn?>?Pb?>?Cd.  相似文献   

10.
施氏矿物吸附Cu2+及氧化亚铁硫杆菌的实验研究   总被引:8,自引:1,他引:7  
在金属硫化物的表生氧化过程中,施氏矿物是最常见的一种次生矿物.施氏矿物具有粒度小、比表面积大、表面吸附能高的特点,能够吸附环境流体中的重金属离子和微生物细胞,从而影响重金属元素及微生物的表生地球化学行为.利用化学合成的施氏矿物,开展了施氏矿物吸附Cu2+及氧化亚铁硫杆菌的实验.结果显示:施氏矿物对金属Cu2+及氧化亚铁硫杆菌均有较强的吸附性;施氏矿物对Cu2+的吸附基本符合Langmuir吸附模型,而对氧化亚铁硫的吸附行为不符合Langmuir模型,可用Freundlich模型描述;施氏矿物的存在对流体中微生物的活动性及其地球化学行为有重要影响,可能会降低氧化菌分解金属硫化物的效率.  相似文献   

11.
The effects of organic matter (80% humic and 15% fulvic acid) and coexistence of heavy metals (Ni, Pb and Zn) on sorption of three polycyclic aromatic hydrocarbons (PAHs)—acenaphthene, fluorene and fluoranthene—were examined for kaolinite, 60% kaolinite?+?40% sand, and 43% kaolinite?+?42% sand?+?15% bentonite. In total 108 batch sorption tests of PAHs were conducted for three types of clay mineral mixtures in six possible combinations of soil organic matter and heavy metal contents from no heavy metals and organic matter added to maximum organic matter added with spiked heavy metals. Results showed that the existence of metals increased the sorption of PAHs onto kaolinite from 4.7% for acenaphthene to 17.9% for fluoranthene. Organic matter in a kaolinite-sand-bentonite matrix could increase PAH sorption by up to 140% for fluoranthene. In all cases, increases were greater for fluoranthene, a larger PAH molecule. Heavy metals coexisting with organic matter led to enhanced sorption of PAHs compared to clay minerals without organic matter. Synergistic effects of organic matter and heavy metals on PAH sorption increments in the mixtures studied were such that the overall sorption could be 10–41% higher than that based on summation of the separate effects of metals and organics.  相似文献   

12.
This study introduces the application of a dynamic fuzzy neural network for fitting and simulating the adsorption of nickel, cadmium, and zinc ions in mono- and bi-metallic solutions (nickel–cadmium, nickel–zinc, and cadmium–zinc) using packed-bed columns with bone char. This neural network model has shown a flexible and self-adaptive architecture with a faster learning speed than that of traditional artificial neural approaches. Results showed that this neural network model was reliable for representing the high asymmetry behavior of concentration profiles in both mono- and bi-metallic breakthrough curves where its accuracy was quite reasonable. Breakthrough parameters for mono-component and binary systems of tested heavy metals were calculated and compared. This analysis showed that the removal of these heavy metal ions in binary systems was a strong competitive adsorption process where the presence of co-ions reduced the removal performance of bone char at fixed-bed adsorbers. Results of surface characterization of adsorbent samples with X-ray photoelectron and infrared spectroscopy supported a removal mechanism based on an ion exchange between calcium from hydroxyapatite of bone char and heavy metal ions in the solution forming new metal–phosphate interactions in the adsorbent surface.  相似文献   

13.
Unfertilizable fruiting buds of mango plant Mangifera Indica L, an agrowaste, is used as a biomass in this study. The efficacy of the biosorbent was tested for the removal of lead, copper, zinc and nickel metal ions using batch experiments in single and binary metal solution under controlled experimental conditions. It is found that metal sorption increases when the equilibrium metal concentration rises. At highest experimental solution concentration used (150 mg/L), the removal of metal ions were 82.76 % for lead, 76.60 % for copper, 63.35 % for zinc and 59.35 % for nickel while at lowest experimental solution concentration (25 mg/L), the removal of metal ions were 92.00% for lead, 86.84 % for copper, 83.96 % for zinc and 82.29 % for nickel. Biosorption equilibrium isotherms were plotted for metal uptake capacity (q) against residual metal concentrations (Cf) in solution. The q versus Cf sorption isotherm relationship was mathematically expressed by Langmuir and Freundlich models. The values of separation factor were between zero and one indicating favourable sorption for four tested metals on the biosorbent. The surface coverage values were approaching unity with increasing solution concentration indicating effectiveness of biosorbent under investigation. The non-living biomass of Mangifera indica L present comparable biosorption capacity for lead, copper, zinc and nickel metal ions with other types of biosorbent materials found in literature and is effective to remove metal ions from single metal solutions as well as in the presence of other co-ions with the main metal of solution.  相似文献   

14.
The presence of heavy metal concentrations was examined in natural sediments from four sites along the Jajrood river in northeast of Tehran, the capital of Iran. Besides determination of elemental concentrations (Pb, Cu, Zn, Cd, Ni and Cr), X-ray fluorescence and X-ray diffraction tests were carried out to determine other chemical components in these adsorbents. Also the ability of sediments to adsorb these heavy metal ions from aqueous solutions was investigated. Results show that the extent of adsorption increases with increase in adsorbent concentration. The amount of adsorbed Pb, Cu and Zn in sediments was much greater than that of the other metals, and Cr was adsorbed much less than others. The adsorbabilities of sediments to heavy metals increased in the order of Pb > Cu > Zn > Cd > Ni > Cr. Based on the adsorption data, equilibrium isotherms were determined at selected areas to characterize the adsorption process. The adsorption data followed Freundlich and Langmuir isotherms in most cases. Correlation and cluster analysis was performed on heavy metals adsorption and sediment components at each site to evaluate main adsorbing compounds in sediments for each metal. Results demonstrated that heavy metals sorption is mostly related to load of organic matter in the Jajrood river sediments.  相似文献   

15.
An attempt has been made to delineate the hydrochemistry for a small island based on the major ions and heavy metal concentrations. In this investigation, six sampling campaigns were conducted to measure the concentrations of major ions (Ca, Mg, Na, K, HCO3, Cl, and SO4) and heavy metals (Zn, Cr, Pb, Mn, As, and Cu) in groundwater samples collected from seven sampling stations (boreholes) located on Kapas Island, Terengganu, Malaysia. The distribution of major ions is illustrated by a piper plot where Ca–HCO3 is the dominant type. In addition, the concentrations of heavy metals demonstrate that Mn shows as being the highest concentrated heavy metal in the groundwater sampled in the sampling campaigns; the average Mn content in groundwater sampled was 54.05 μg/L. However, a comparison of the heavy metal (Mn, Cr, Zn, As, Pb, and Cu) concentrations in groundwater samples with the Drinking Water Quality Standard prescribed by World Health Organization reveals that none of these heavy metals exceeded the recommended threshold limits. The principal component analyses (PCA) extracted four components that control the groundwater chemistry. Components 1 and 2 from the PCA analyses extracted approximately 52.11 % of the total variance, which represent the heavy metals (As and Mn) and physical parameters (pH, redox potential, electrical conductivity, temperature, and total dissolved solids). Based on the output of the PHREEQC hydrogeochemical software, several species of heavy metals exist, in which the dominant species found are Mn2+, PbCO3, Cu(OH)2, and Zn+.  相似文献   

16.
溶液介质条件对重金属离子与石英表面反应的影响   总被引:12,自引:2,他引:10  
实验研究表明,随着溶液PH值的升高石芟夺Cu^2+、Pb^2_、Cd^2+等重金属离子的吸附量和表面吸附覆盖率逐渐增大,而表面反应产物的结合开矿相应地出现由单核化合物、多核化合物〖SOCu4(OH)3^4+〗,直至表面沉淀(SOH…Cu(OH)2(s)〗。随着温度升高,石英对Cu^2+、Pb^2+、Cd^2+等重金属离子的吸附量逐渐减是随着溶液离子强度的增大,石英对Cu^2+离子的吸附量和表面离了  相似文献   

17.
Multi-walled carbon nanotubes were used successfully for the removal of Copper(II), Lead(II), Cadmium(II), and Zinc(II) from aqueous solution. The results showed that the % adsorption increased by raising the solution temperature due to the endothermic nature of the adsorption process. The kinetics of Cadmium(II), Lead(II), Copper(II), and Zinc(II) adsorption on Multi-walled carbon nanotubes were analyzed using the fraction power function model, Lagergren pseudo-first-order, pseudo-second-order, and Elovich models, and the results showed that the adsorption of heavy metal ions was a pseudo-second-order process, and the adsorption capacity increased with increasing solution temperature. The binding of the metal ions by the carbon nanotubes was evaluated from the adsorption capacities and was found to follow the following order: Copper(II) > Lead(II) > Zinc(II) > Cadmium(II). The thermodynamics parameters were calculated, and the results showed that the values of the free energies were negative for all metals ions, which indicated the spontaneity of the adsorption process, and this spontaneity increased by raising the solution temperature. The change in entropy values were positives, indicating the increase in randomness due to the physical adsorption of heavy metal ions from the aqueous solution to the carbon nanotubes’ surface. Although the enthalpy values were positive for all metal ions, the free energies were negative, and the adsorption was spontaneous, which indicates that the heavy metal adsorption of Multi-walled carbon nanotubes was an entropy-driving process.  相似文献   

18.
凹凸棒石与Ni2+的长期吸附作用   总被引:2,自引:1,他引:1  
以Ni2+为例研究了凹凸棒石与重金属离子长期作用过程,探讨了重金属离子在凹凸棒石上的吸附反应动力学,并运用高分辨透射电镜揭示了凹凸棒石与重金属离子互相作用引起重金属离子水解沉淀、形成氢氧化物或层状双氢氧化物次生物相的现象.实验表明,凹凸棒石-Ni2+水悬浮体系中,随着时间的延长溶液的pH值逐渐升高,Ni2+浓度逐渐降低,并且长期作用后悬浮液的pH值和重金属离子浓度受到固/液比控制.Ni2+在凹凸棒石和水两相中的分配在长达40 d的时间内都没有达到完全平衡,表明凹凸棒石-Ni2+水悬浮体系中存在凹凸棒石与重金属离子长期互相作用.凹凸棒石与Ni2+长期作用Ni2+浓度变化可以用抛物线扩散方程、双常数方程、一级扩散方程、Elovich方程较好地拟合.凹凸棒石与重金属的长期作用反应机制可能是由于凹凸棒石纳米效应和反应活性,表面缓慢水化导致含重金属离子溶液pH值缓慢升高,诱导了Ni2+在凹凸棒石表面沉淀,在凹凸棒石表面形成了氢氧化物或层状双氢氧化物.  相似文献   

19.
The limitation of plant growth in the polluted mediums can be used as a factor to determine of plant tolerance and the toxic effect of these mediums. In this work, the effect of Pb2+, Cd2+, Ni2+and Znsu2+ (individually) on Azolla filiculoides growth in the aqueous solution and using this method to water post treatment were studied. During 15 days the biomass the fresh Azolla with initial mass of 20 g was grown on the nutrient solution containing these metal ions, each in a concentration 4 mg/l. The presence of these ions, caused about 25%, 42%, 31% and 17% inhibition of biomass growth, respectively, in comparison to Azolla control weight which had not heavy metals. The water salinity of 1, 2 and 4 g. NaCl/l decreased the removal of these heavy metals about 4–7%, 20–24% and 40–55%, respectively. The addition of total dissolved solids (TDS) from 50 to 300 ppm. (as CaCO3) into the samples of containing heavy metals increased Azolla growth, but decreased the control Azolla growth.  相似文献   

20.
A thermodynamic model of the behavior of heavy metals in bottom sediments during their eutrophication is developed. The results show that liberation of heavy metals from the reduced ferrous sorbent is accompanied by sorption on clay and organic sorbents. The process is complicated by competitive correlations between heavy metals and calcium ions, while the formation of carbonate cement in the sediments yields additional sorption. As a result, the predicted concentrations of the majority of microelements, namely heavy metals, in the interstitial water of the reduced bottom sediments do not exceed the maximum permissible concentration (MPC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号