首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
An exact, closed-form analytical solution is developed for calculating ground water transit times within Dupuit-type flow systems. The solution applies to steady-state, saturated flow through an unconfined, horizontal aquifer recharged by surface infiltration and discharging to a downgradient fixed-head boundary. The upgradient boundary can represent, using the same equation, a no-flow boundary or a fixed head. The approach is unique for calculating travel times because it makes no a priori assumptions regarding the limit of the water table rise with respect to the minimum saturated aquifer thickness. The computed travel times are verified against a numerical model, and examples are provided, which show that the predicted travel times can be on the order of nine times longer relative to existing analytical solutions.  相似文献   

2.
The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel‐time‐based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ? of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor's series expansion of the travel‐time solution (of the eikonal equation) as a function of parameter η and azimuth angle ?. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non‐linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ?, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ? reveals that travel times are more sensitive to η than to the symmetry axis azimuth ?. Thus, η is better constrained from travel times than the azimuth. Moreover, the two‐parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ? differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ?, on the other hand, depend on the background model errors. We also propose a layer‐stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.  相似文献   

3.
An analytical solution for calculating the contaminant discharge rate in an aquifer following an instantaneous release of reactive contaminant mass to groundwater is used to derive relationships for the time and magnitude of peak concentration in a river receiving the transported material. Relationships are developed for the time of peak concentration relative to the time of travel for the contaminant, and the magnitude of peak concentration relative to the concentration calculated at the time of travel. Both quantities are found to be a function of two dimensionless parameters characterizing advective‐dispersive‐reactive transport—the Peclet number and the Damkohler number. It is shown that the time to peak concentration may occur before the time of travel, considering advection and retardation only, depending on the magnitudes of the Peclet and Damkohler numbers. Similarly, the magnitude of peak concentration may exceed the concentration calculated assuming that the time of peak concentration coincides with time of travel for the contaminant. For large Damkohler numbers, equating the time of peak concentration with the time of travel for the contaminant can significantly underestimate peak concentrations.  相似文献   

4.
A travel time distribution based on a particle-tracking analysis in a ground water model containing weak sinks is often uncertain because whether a particle is discharged or allowed to pass through a weak sink is unresolved by particle-tracking theory. We present a probability-based method to derive an objective travel time distribution in models containing weak sinks. The method discharges a fraction of the particle at the weak sink and allows the remaining fraction to pass through the weak sink. The weight of the discharged fraction depends on the ratio of the sink flux to the influx into the weak sink cell. We tested this approach on a coarse (100 × 100 m) and a fine (25 × 25 m) horizontal resolution regional scale ground water model (34.5 × 24 km). We compared the travel time distributions in a small subcatchment derived from particle-tracking analysis with one derived from a transport model. We found that the particle-tracking analysis with the coarse model underestimated the travel time distribution of the catchment compared to the transport solution or a particle-tracking analysis with the fine model. The underestimation of travel times with the coarse model was a result of a large area covered by sink cells in this model and the more accurate flow patterns simulated by the fine model. The probability-based method presented here compares favorably with a solute transport solution and provides an accurate travel time distribution when used with a fine-resolution ground water model.  相似文献   

5.
It has been known for many years that dispersivity increases with solute travel distance in a subsurface environment. The increase of dispersivity with solute travel distance results from the significant variation of hydraulic properties of heterogeneous media and was identified in the literature as scale-dependent dispersion. This study presents an analytical solution for describing two-dimensional non-axisymmetrical solute transport in a radially convergent flow tracer test with scale-dependent dispersion. The power series technique coupling with the Laplace and finite Fourier cosine transform has been applied to yield the analytical solution to the two-dimensional, scale-dependent advection–dispersion equation in cylindrical coordinates with variable-dependent coefficients. Comparison between the breakthrough curves of the power series solution and the numerical solutions shows excellent agreement at different observation points and for various ranges of scale-related transport parameters of interest. The developed power series solution facilitates fast prediction of the breakthrough curves at any observation point.  相似文献   

6.
The ray-theoretical transport equation for inhomogeneous isotropic media (2D-SH case) is solved by the method of finite differences on a rectangular grid, both for an incident plane wave (explicit scheme) and a line source (implicit scheme). Results for homogeneous models and for heterogeneous models with structural discontinuities are discussed. First-arrival travel times calculated by various techniques serve as input for the solution of the transport equation and the computation of amplitudes of first arrivals. To obtain correct amplitudes the travel times must be highly accurate and the discontinuities must be smoothed out; the reason is that the spatial second derivatives of the travel time field enter the transport equation. In the simple cases studied, finite differences provide a fast and efficient tool for the computation of first-arrival amplitudes.  相似文献   

7.
Recently, several expressions for the two-point paraxial travel time in laterally varying, isotropic or anisotropic layered media were derived. The two-point paraxial travel time gives the travel time from point S′ to point R′, both these points being situated close to a known reference ray Ω, along which the ray-propagator matrix was calculated by dynamic ray tracing. The reference ray and the position of points S′ and R′ are specified in Cartesian coordinates. Two such expressions for the two-point paraxial travel time play an important role. The first is based on the 4 × 4 ray propagator matrix, computed by dynamic ray tracing along the reference ray in ray-centred coordinates. The second requires the knowledge of the 6 × 6 ray propagator matrix computed by dynamic ray tracing along the reference ray in Cartesian coordinates. Both expressions were derived fully independently, using different methods, and are expressed in quite different forms. In this paper we prove that the two expressions are fully equivalent and can be transformed into each other.  相似文献   

8.
For the one-dimensional analysis of soft-soil layers on an elastic half-space, a general form of analytical solution is developed for converting radiation damping due to energy leaking back to the half-space into equivalent modal damping, allowing the modal analysis technique to be extended to a site where radiation damping has to be accounted for. Closed-form solutions for equivalent modal damping ratios and effective modal participation factors are developed for a single layer with a shear wave velocity distribution varying from constant to linearly increasing with depth. Compact and recursive forms of solutions for equivalent modal damping ratios are developed for a system with an arbitrary number of homogeneous layers on an elastic half-space. Comparisons with numerical solutions show that the modal solutions are accurate. The nominal frequency of a site, i.e. the inverse of four times the total shear wave travel time through the layers, is an important parameter for estimating the high mode frequencies. A parameter study shows that for the same impedance ratio of the bottom layer to the elastic half-space, a system of soil layers with an increasing soil rigidity with depth has, in general, larger peak modal amplifications at the ground surface than does a single homogeneous layer on an elastic half-space, while a system with a decreasing soil rigidity with depth has smaller modal peak amplifications. © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
Infrasonic signals propagate from an atmospheric source via media with stochastic and fast space-varying conditions. Hence, their travel time, the amplitude at sensor recordings and even manifestation in the so-called “shadow zones” are random. Therefore, the traditional least-squares technique for locating infrasonic sources is often not effective, and the problem for the best solution must be formulated in probabilistic terms. Recently, a series of papers has been published about Bayesian Infrasonic Source Localization (BISL) method based on the computation of the posterior probability density function (PPDF) of the source location, as a convolution of a priori probability distribution function (APDF) of the propagation model parameters with likelihood function (LF) of observations. The present study is devoted to the further development of BISL for higher accuracy and stability of the source location results and decreasing of computational load. We critically analyse previous algorithms and propose several new ones. First of all, we describe the general PPDF formulation and demonstrate that this relatively slow algorithm might be among the most accurate algorithms, provided the adequate APDF and LF are used. Then, we suggest using summation instead of integration in a general PPDF calculation for increased robustness, but this leads us to the 3D space-time optimization problem. Two different forms of APDF approximation are considered and applied for the PPDF calculation in our study. One of them is previously suggested, but not yet properly used is the so-called “celerity-range histograms” (CRHs). Another is the outcome from previous findings of linear mean travel time for the four first infrasonic phases in the overlapping consecutive distance ranges. This stochastic model is extended here to the regional distance of 1000 km, and the APDF introduced is the probabilistic form of the junction between this travel time model and range-dependent probability distributions of the phase arrival time picks. To illustrate the improvements in both computation time and location accuracy achieved, we compare location results for the new algorithms, previously published BISL-type algorithms and the least-squares location technique. This comparison is provided via a case study of different typical spatial data distributions and statistical experiment using the database of 36 ground-truth explosions from the Utah Test and Training Range (UTTR) recorded during the US summer season at USArray transportable seismic stations when they were near the site between 2006 and 2008.  相似文献   

10.
We present expressions satisfied by the first statistical moments (mean and variance–covariance) of travel time and trajectory of conservative solute particles advected in a three-dimensional heterogeneous aquifer under uniform in the mean flow conditions. Closure of the model is obtained by means of a consistent second-order expansion in σY (standard deviation of the log hydraulic conductivity) of (statistical) moments of quantities of interest. As such, the results obtained are nominally limited to mildly non-uniform fields, with σY < 1. Resulting mean and variance of particles travel time and trajectory are functions of first and second moments and cross-moments of trajectory and velocity components. Our solution is applicable to infinite domains and is free of distributional assumptions. As an important application of the methodology we obtain closed-form expressions for the unconditional mean and variance of travel time and particle trajectory for isotropic log-conductivity domain characterized by an exponential variogram. This allows us to recover the non linear behavior of mean travel time versus distance, in agreement with numerical results published in the literature, as well as a non-linear effect in the mean trajectory. The analysis of trajectory variance allows recovering some known results regarding transverse macro-dispersion, evidencing some limitations typical of perturbation theory.  相似文献   

11.
In the problems of three-dimensional (3D) travel time seismic tomography where the data are travel times of diving waves and the starting model is a system of plane layers where the velocity is a function of depth alone, the solution turns out to strongly depend on the selection of the starting model. This is due to the fact that in the different starting models, the rays between the same points can intersect different layers, which makes the tomography problem fundamentally nonlinear. This effect is demonstrated by the model example. Based on the same example, it is shown how the starting model should be selected to ensure a solution close to the true velocity distribution. The starting model (the average dependence of the seismic velocity on depth) should be determined by the method of successive iterations at each step of which the horizontal velocity variations in the layers are determined by solving the two-dimensional tomography problem. An example illustrating the application of this technique to the P-wave travel time data in the region of the Black Sea basin is presented.  相似文献   

12.
— A P-wave tomographic method for 3-D complex media (3-D distribution of elastic parameters and curved interfaces) with orthorhombic symmetry is presented in this paper. The technique uses an iterative linear approach to the nonlinear travel-time inversion problem. The hypothesis of orthorhombic anisotropy and 3-D inhomogeneity increases the set of parameters describing the model dramatically compared to the isotropic case. Assuming a Factorized Anisotropic Inhomogeneous (FAI) medium and weak anisotropy, we solve the forward problem by a perturbation approach. We use a finite element approach in which the FAI medium is divided into a set of elements with polynomial elastic parameter distributions. Inside each element, analytical expressions for rays and travel times, valid to first-order, are given for P waves in orthorhombic inhomogeneous media. More complex media can be modeled by introducing interfaces separating FAI media with different elastic properties. Simple formulae are given for the Fréchet derivatives of the travel time with respect to the elastic parameters and the interface parameters. In the weak anisotropy hypothesis the P-wave travel times are sensitive only to a subset of the orthorhombic parameters: the six P-wave elastic parameters and the three Euler angles defining the orientation of the mirror planes of symmetry. The P-wave travel times are inverted by minimizing in terms of least-squares the misfit between the observed and calculated travel times. The solution is approached using a Singular Value Decomposition (SVD). The stability of the inversion is ensured by making use of suitable a priori information and/or by applying regularization. The technique is applied to two synthetic data sets, simulating simple Vertical Seismic Profile (VSP) experiments. The examples demonstrate the necessity of good 3-D ray coverage when considering complex anisotropic symmetry.  相似文献   

13.
We propose an optimized method to compute travel times for seismic inversion problems. It is a hybrid method combining several approaches to deal with travel time computation accuracy in unstructured meshes based on tetrahedral elementary cells. As in the linear travel time interpolation method, the proposed approach computes travel times using seismic ray paths. The method operates in two sequential steps: At a first stage, travel times are computed for all nodes of the mesh using a modified version of the shortest path method. The difference with the standard version is that additional secondary nodes (called tertiary nodes) are added temporarily around seismic sources in order to improve accuracy with a reasonable increase in computational cost. During the second step, the steepest travel time gradient method is used to trace back ray paths for each source–receiver pair. Travel times at each receiver are then recomputed using slowness values at the intersection points between the ray path and the traversed cells. A number of numerical tests with an array of different velocity models, mesh resolutions and mesh topologies have been carried out. These tests showed that an average relative error in the order of 0.1% can be achieved at a computational cost that is suitable for travel time inversion.  相似文献   

14.
Acoustic inversion in one-dimension gives impedance as a function of travel time. Inverting the reflection response is a linear problem. Recursive methods, from top to bottom or vice versa, are known and use a fundamental wave field that is computed from the reflection response. An integral over the solution to the Marchenko equation, on the other hand, retrieves the impedance at any vertical travel time instant. It is a non-recursive method, but requires the zero-frequency value of the reflection response. These methods use the same fundamental wave field in different ways. Combining the two methods leads to a non-recursive scheme that works with finite-frequency bandwidth. This can be used for target-oriented inversion. When a reflection response is available along a line over a horizontally layered medium, the thickness and wave velocity of any layer can be obtained together with the velocity of an adjacent layer and the density ratio of the two layers. Statistical analysis over 1000 noise realizations shows that the forward recursive method and the Marchenko-type method perform well on computed noisy data.  相似文献   

15.
阐述了氡在地下水中的不同存在形式及不同形式氡的运移机理和传递地壳应力应变信息的机理,结合实际观测结果对其映震效能的差异性进行了研究。结果表明:逸出氡比溶解氡能更好地反映地壳的应力应变的变化,其映震效能明显高于溶解氡。因此,逸出氡可作为新的映震组分纳入水化台网观测,从而成为地震监测与预报的一种较有效的手段。  相似文献   

16.
Analyses of travel times and amplitudes of crosshole georadar data provide estimates of the electromagnetic velocity and attenuation of the probed media. Whereas inversions of travel times are well established and robust, ray-based inversions of amplitudes depend critically on the complex directive properties of the georadar antennae. We investigate the variations of radiation patterns in the presence of water-filled boreholes and/or changes of electrical material properties in the vicinity of the transmitters or receivers. To assess the implications of such complicating factors for ray-based georadar amplitude tomography, we generate crosshole georadar data for a suite of canonical models using a finite difference time domain (FDTD) solution of Maxwell's equations in cylindrical coordinates. The emitting dipole-type antenna is approximated by an infinitesimal vertical electric dipole, whereas a corresponding receiving antenna is emulated by recording the vertical component of the transmitted electric field. Inversions of the amplitudes of these synthetic data demonstrate that the presence of water-filled boreholes as well as changes in the material properties along the boreholes may cause substantial artifacts in the estimated attenuation structure. Furthermore, our results indicate that ray-based amplitude tomography of crosshole georadar data is unable to constrain absolute values of attenuation. Despite these inherent limitations, the method is surprisingly robust at detecting and constraining relative changes in attenuation. In particular, we find the method to be highly effective for locating conductivity contrasts that are not associated with corresponding changes in dielectric permittivity, and hence, cannot be located by travel time tomography alone.  相似文献   

17.
三维介质中速度结构和界面的联合成像   总被引:16,自引:5,他引:11       下载免费PDF全文
根据波逆行原理推导了三维介质中地震波射线走时对界面偏导数的完整基本关系式,并对基本关系式进行简化,得到其在二维和一维介质中的关系式. 给出了任意多个复杂界面情况下,反演时所需的走时对界面偏导数系数矩阵. 为了检验三维介质中速度和界面联合成像理论的有效性,进行了数值模拟计算,很好地对三维速度结构和界面进行了重建.  相似文献   

18.
A solution conduit has a permeable wall allowing for water exchange and solute transfer between the conduit and its surrounding aquifer matrix. In this paper, we use Laplace Transform to solve a one‐dimensional equation constructed using the Euler approach to describe advective transport of solute in a conduit, a production‐value problem. Both nonuniform cross‐section of the conduit and nonuniform seepage at the conduit wall are considered in the solution. Physical analysis using the Lagrangian approach and a lumping method is performed to verify the solution. Two‐way transfer between conduit water and matrix water is also investigated by using the solution for the production‐value problem as a first‐order approximation. The approximate solution agrees well with the exact solution if dimensionless travel time in the conduit is an order of magnitude smaller than unity. Our analytical solution is based on the assumption that the spatial and/or temporal heterogeneity in the wall solute flux is the dominant factor in the spreading of spring‐breakthrough curves, and conduit dispersion is only a secondary mechanism. Such an approach can lead to the better understanding of water exchange and solute transfer between conduits and aquifer matrix. Highlights:
    相似文献   

19.
The calculation of ground water transit times is one important factor in ground water protection. In this paper, we present an analytical solution for the transit time for a Dupuit-type flow system applicable to saturated flow through a horizontal leaky aquifer discharging to a downgradient fixed-head boundary under steady-state conditions. We investigate the influence of leakage when comparing the resulting travel times of our model based on head-dependent leakage with the commonly used model with no leakage and a simplified model with constant leakage. The results show significant differences in the position of the water divide and transit time, suggesting that leakage cannot be ignored.  相似文献   

20.
Analytical solutions of groundwater travel time to a pumping well in an unconfined aquifer have been developed in previous studies, however, the change in evapotranspiration was not considered. Here, we develop a mathematical model of unconfined flow toward a discharge well with redistribution of groundwater evapotranspiration for travel time analysis. Dependency of groundwater evapotranspiration on the depth to water table is described using a linear formula with an extinction depth. Analytical solutions of groundwater level and travel time are obtained. For a typical hypothetical example, these solutions perfectly agree with the numerical simulation results based on MODFLOW and MODPATH. As indicated in a dimensionless framework, a lumped parameter which is proportional to the pumping rate controls the distributions of groundwater evapotranspiration rate and the travel time along the radial direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号