首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
34S/32S ratios have been measured in a suite of samples from the stratabound, volcanogenic massive sulphide deposit at Woodlawn, N.S.W. 34S values for the sulphides vary as follows: in the ore horizon, pyrite +6.7 to +9.2%. (mean +8.1‰), sphalerite +5.2 to +8.6‰. (mean +6.9‰), chalcopyrite +6.4 to +7.0‰ (mean +6.7‰) and galena +2.8 to +5.5‰ (mean +4.4‰); in the vein mineralization, the host volcanics—pyrite +8.7 to +11.4%. (mean +9.8‰), sphalerite +7.8 to + 10.3‰ (mean +9.2‰), chalcopyrite; +8.8 to +10.1‰ (mean +9.2‰) and galena +6.9 to +7.2‰ (mean +7.1‰). Barite from the upper ore horizon levels has an isotopic composition of +30.0‰, consistent with its having originated from Silurian ocean sulphate. The general order of 34S enrichment in the sulphides is pyrite > chalcopyrite sphalerite > galena. Isotopic fractionations in the systems galena/sphalerite/pyrite and chalcopyrite/pyrite indicate an equilibration temperature of 275–300°C. This temperature is considered to represent that of sulphide deposition.  相似文献   

2.
The Blue Dot gold deposit, located in the Archean Amalia greenstone belt of South Africa, is hosted in an oxide (± carbonate) facies banded iron formation (BIF). It consists of three stratabound orebodies; Goudplaats, Abelskop, and Bothmasrust. The orebodies are flanked by quartz‐chlorite‐ferroan dolomite‐albite schist in the hanging wall and mafic (volcanic) schists in the footwall. Alteration minerals associated with the main hydrothermal stage in the BIF are dominated by quartz, ankerite‐dolomite series, siderite, chlorite, muscovite, sericite, hematite, pyrite, and minor amounts of chalcopyrite and arsenopyrite. This study investigates the characteristics of gold mineralization in the Amalia BIF based on ore textures, mineral‐chemical data and sulfur isotope analysis. Gold mineralization of the Blue Dot deposit is associated with quartz‐carbonate veins that crosscut the BIF layering. In contrast to previous works, petrographic evidence suggests that the gold mineralization is not solely attributed to replacement reactions between ore fluid and the magnetite or hematite in the host BIF because coarse hydrothermal pyrite grains do not show mutual replacement textures of the oxide minerals. Rather, the parallel‐bedded and generally chert‐hosted pyrites are in sharp contact with re‐crystallized euhedral to subhedral magnetite ± hematite grains, and the nature of their coexistence suggests that pyrite (and gold) precipitation was contemporaneous with magnetite–hematite re‐crystallization. The Fe/(Fe+Mg) ratio of the dolomite–ankerite series and chlorite decreased from veins through mineralized BIF and non‐mineralized BIF, in contrast to most Archean BIF‐hosted gold deposits. This is interpreted to be due to the effect of a high sulfur activity and increase in fO2 in a H2S‐dominant fluid during progressive fluid‐rock interaction. High sulfur activity of the hydrothermal fluid fixed pyrite in the BIF by consuming Fe2+ released into the chert layers and leaving the co‐precipitating carbonates and chlorites with less available ferrous iron content. Alternatively, the occurrence of hematite in the alteration assemblage of the host BIF caused a structural limitation in the assignment of Fe3+ in chlorite which favored the incorporation of magnesium (rather than ferric iron) in chlorite under increasing fO2 conditions, and is consistent with deposits hosted in hematite‐bearing rocks. The combined effects of reduction in sulfur contents due to sulfide precipitation and increasing fO2 during progressive fluid‐rock interactions are likely to be the principal factors to have caused gold deposition. Arsenopyrite–pyrite geothermometry indicated a temperature range of 300–350°C for the associated gold mineralization. The estimated δ34SΣS (= +1.8 to +2.5‰) and low base metal contents of the sulfide ore mineralogy are consistent with sulfides that have been sourced from magma or derived by the dissolution of magmatic sulfides from volcanic rocks during fluid migration.  相似文献   

3.
河北寿王坟铜矿黄铜矿铷锶同位素年龄测定及其成矿意义   总被引:9,自引:3,他引:6  
张瑞斌  刘建明  叶杰  陈福坤 《岩石学报》2008,24(6):1353-1358
本文以黄铜矿及其共生矿物为定年对象,采用亚样品取样和铷锶等时线定年方法测定了寿王坟铜矿的成矿时代.分析测试获得黄铜矿 黄铁矿单矿物组合的等时线年龄113.6Ma,黄铜矿 夕卡岩组合的等时线年龄112.3Ma和黄铜矿 黄铁矿 夕卡岩组合的等时线年龄115.0Ma.对比同一矿石亚样品,认为河北寿王坟夕卡岩型铜矿成矿时代为111.0Ma.实验表明,采用矿石亚样品取样方法和直接测定金属硫化物单矿物铷-锶同位素年龄可以有效地确定矿床成矿时代.  相似文献   

4.
拉水峡铜镍矿床位于化隆基性—超基性岩带中,岩体几乎全岩发生铜、镍硫化物矿化,且已遭受强烈蚀变,以角闪岩为主。岩浆期主要金属硫化物矿物组合为磁黄铁矿、黄铜矿、镍黄铁矿;热液蚀变期主要有紫硫镍矿、黄铁矿、黄铜矿、针镍矿等;氧化表生期主要为含镍高岭石、含镍绿泥石、孔雀石等。矿石轻稀土元素富集和负Eu异常明显,说明岩浆演化过程中发生了大量斜长石等的分离结晶作用。∑PGE含量平均为2460.46×10-9,(Pd+Pt)/(Os+Ir+Ru)值为0.40~2.00,表明铂族元素与岩浆深部熔离作用密切相关;但Pt/Pd(0.01~2.62)、Pd/Ir(0.91~8.77)说明热液作用对铂族元素具有一定的富集作用。S同位素组成变化范围很小,δ34S平均值为2.24‰,硫化物中的S以地幔S为主。拉水峡矿床的形成经历了岩浆融离贯入、热液叠加改造及表生氧化作用3个阶段。  相似文献   

5.
Fractionation of sulfur isotopes and selenium was measured between coexisting pyrite and chalcopyrite and between coexisting pyrrhotite and chalcopyrite from the Besshi deposit of Kieslager-type, Central Shikoku, Japan. In all the pyrite-chalcopyrite pairs studied, 34S is enriched in pyrite relative to chalcopyrite, while selenium is enriched conversely in chalcopyrite relative to pyrite. The mean 34Spy-cp value is +0.53±0.36 per mil, and the mean value of the distribution coefficient of selenium, Dcp-py, is 2.58±0.64. In all the pyrrhotite-chalcopyrite pairs studied, the two minerals are very close to each other both in sulfur isotope and Se/S ratios. The mean 34Spo-cp value is –0.08±0.16 per mil and the mean Dcp-po value is 0.99±0.05. The results have been discussed in comparison with similar data obtained for the Hitachi deposits of Kieslager-type, Japan (Yamamoto et al. 1983).  相似文献   

6.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

7.
Kuroko-type massive sulfide deposits of the Eastern Black Sea province of Turkey are related to the Upper Cretaceous felsic lavas and pyroclastic rocks, and associated with clay and carbonate alteration zones in the footwall and hangingwall lithologies. A complete upward-vertical section of a typical orebody consists of a stringer-disseminated sulfide zone composed mainly of pyrite and chalcopyrite; a massive pyrite zone; a massive yellow ore consisting mainly of chalcopyrite and pyrite; a black ore made up mainly of galena and sphalerite with minor amounts of chalcopyrite, bornite, pyrite and various sulfosalts; and a barite zone. Most of the deposits in the province are associated with gypsum in the footwall or hangingwall. The paragenetic sequence in the massive ore is pyrite, sphalerite, chalcopyrite, bornite, galena and various sulfosalts, with some overlap between the mineral phases. Massive, stringer and disseminated sulfides from eight kuroko-type VMS deposits of the Eastern Black Sea province have a 34S range of 0–7 per mil, consistent with the 34S range of felsic igneous rocks. Sulfides in the massive ore at Madenköy (4.3–6.1 per mil) differ isotopically from sulfides in the stringer zone (6.3–7.2 per mil) suggesting a slightly increased input of H2S derived from marine sulfate with time. Barite and coarse-grained gypsum have a 34S range of 17.7–21.5 per mil, a few per mil higher than the 34S value of contemporaneous seawater sulfate. The deposits may, therefore, have formed in restricted basins in which bacterial reduction of sulfate was taking place. Fine-grained, disseminated gypsum at Kutlular and Tunca has 34S values (2.6–6.1 per mil) overlapping those of ore sulfides, indicating sulfide oxidation during waning stages of hydrothermal activity.  相似文献   

8.
Interpretation of various exploration data, in particular geochemical prospecting, offers a powerful and rapid assessment of grass-root projects in a green-field terrain. Here, we present an example of the Collins epithermal prospect in Aceh Province, Indonesia. In this area, the Au+ base-metal-bearing sheeted quartz veins (individually mostly 2–4 cm wide), which are controlled by a 250 m wide by 800 m long NNE-trending structural corridor within Paleogene sandstone and volcanic rocks, are the product of two main stages of deposition. Stage I formed veins with a sliver of cryptocrystalline quartz wall zone followed by an inner zone of comb quartz with interstitial rhombic adularia that terminates in open space. Stage I or main-stage sulfide mineralization consisting of early galena + sphalerite and later chalcopyrite occurs with the quartz + adularia. Small amounts of galena also occur in the wall zone. Stage II mineralization brecciated Stage I veins and overprinted them with silicification characterized by vuggy texture. Mineralization associated with this episode consists of earlier chalcopyrite + sphalerite + tennantite–tetrahedrite and later, vug-filling Au–Ag alloy (Ag0.37–0.41Au0.62–0.59). The above mineralized veins are successively flanked by silicic selvages, an illite + chlorite + pyrite ± kaolinite zone and a chlorite + epidote + carbonate + pyrite zone. Local supergene alteration induced replacement of galena by plumbogummite and anglesite and chalcopyrite by covellite. Data from fluid inclusion microthermometry in quartz indicated that the inner zone of Stage I veins formed from fluids with a 2.3 wt% salinity (0.5–3.3 wt% NaCl equivalent), at 174°C (155–211°C). Combining these physico-chemical parameters with the mineral assemblage, the mineralization occurred under a reduced environment. Rock and soil assays indicate that elevated Au concentrations (up to 16.5 ppm over 1 m) occur along northeast-trending zones and show a strong correlation with Pb, while Cu (up to 2.58% over 1 m), Zn, As, Sb, and Mo anomalies lie mostly at the periphery. The high-grade mineralized veins correlate with moderate to high resistivity and chargeability zones, and the pseudosections of such geophysical signals are interpreted as reflecting coalesced or enlarged veins at depth, or inclined veins in other localities. The intermediate sulfidation affinity for Collins points to potential mineralization at depth as well as preservation of Au-rich and sulfide-poor zones in the less eroded areas.  相似文献   

9.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

10.
Karavansalija ore zone is situated in the Serbian part of the Serbo‐Macedonian magmatic and metallogenic belt. The Cu–Au mineralization is hosted mainly by garnet–pyroxene–epidote skarns and shifts to lesser presence towards the nearby quartz–epidotized rocks and the overlying volcanic tuffs. Within the epidosites the sulfide mineralogy is represented by disseminated cobalt‐nickel sulfides from the gersdorfite‐krutovite mineral series and cobaltite, and pyrite–marcasite–chalcopyrite–base metal aggregates. The skarn sulfide mineralization is characterized by chalcopyrite, pyrite, pyrrhotite, bismuth‐phases (bismuthinite and cosalite), arsenopyrite, gersdorffite, and sphalerite. The sulfides can be observed in several types of massive aggregates, depending on the predominant sulfide phases: pyrrhotite‐chalcopyrite aggregates with lesser amount of arsenopyrite and traces of sphalerite, arsenopyrite–bismuthinite–cosalite aggregates with subordinate sphalerite and sphalerite veins with bismuthinite, pyrite and arsenopyrite. In the overlying volcanoclastics, the studied sulfide mineralization is represented mainly by arsenopyrite aggregates with subordinate amounts of pyrite and chalcopyrite. Gold is present rarely as visible aggregate of native gold and also as invisible element included in arsenopyrite. The fluid inclusion microthermometry data suggest homogenization temperature in the range of roughly 150–400°C. Salinities vary in the ranges of 0.5–8.5 wt% NaCl eq for two‐phase low density fluid inclusions and 15–41 wt% NaCl eq for two‐phase high‐salinity and three‐phase high‐salinity fluid inclusions. The broad range of salinity values and the different types of fluid inclusions co‐existing in the same crystals suggest that at least two fluids with different salinities contributed to the formation of the Cu–Au mineralization. Geothermometry, based on EPMA data of arsenopyrite co‐existing with pyrite and pyrrhotite, suggests a temperature range of 240–360°C for the formation of the arsenopyrite, which overlaps well with the data for the formation temperature obtained through fluid inclusion microthermometry. The sulfur isotope data on arsenopyrite, chalcopyrite, pyrite and marcasite from the different sulfide assemblages (ranging from 0.4‰ to +3.9‰ δ34SCDT with average of 2.29 δ34SCDT and standard deviation of 1.34 δ34SCDT) indicates a magmatic source of sulfur for all of the investigated phases. The narrow range of the data points to a common source for all of the investigated sulfides, regardless of the host rock and the paragenesis. The sulfur isotope data shows good overlap with that from nearby base‐metal deposits; therefore the Cu–Au mineralization and the emblematic base‐metal sulfide mineralization from this metallogenic belt likely share same fluid source.  相似文献   

11.
德兴铜矿是中国东部重要的大型斑岩铜矿,由朱砂红、铜厂和富家坞等3个矿床组成。在详细的野外脉体填图基础上,文章把德兴铜厂斑岩铜矿的成矿脉体划分为A脉、B脉、D脉和H脉等4种类型。研究发现,A脉的形成与钾化蚀变有关,脉体不规则且不连续,以粒状石英±钾长石±黑云母±磁铁矿±少量黄铁矿±少量黄铜矿的矿物组合为特征;B脉的形成与钾质硅酸盐水解有关,脉体较规则且连续,以石英±辉钼矿±黄铜矿±黄铁矿的矿物组合为特征,石英颗粒呈典型的梳状或长柱状对称于脉壁生长;D脉的形成与石英-绢云母化蚀变有关,以黄铁矿±石英±黄铜矿的矿物组合为特征,脉壁发育绢云母晕;H脉的形成与碳酸盐化有关,以方解石±赤铁矿±黄铁矿±黄铜矿的矿物组合为特征。这4种脉体分别记录了成矿流体演化至不同阶段,热液蚀变作用的特点及其与Cu-Mo硫化物沉淀的关系。脉体的宽度-间距定量统计分析表明,脉体宽度(T)服从于幂次分布定律;脉体间距(S)服从于负指数分布或介于对数正态分布与负指数分布之间。脉体宽度分维值D值(0.91~1.35)普遍>1,反映脉体系统的连通性较差,矿化程度较弱。脉体间距变差系数Cν值(0.49~0.92)均<1,说明脉体簇生聚集程度较低,矿化程度较弱;处于脉体聚集中心的脉体,代表着热液流体运移的通道,制约着其他脉体的展布。  相似文献   

12.
利用电子探针研究甘肃陇南赵家庄金矿载金矿物特征   总被引:1,自引:1,他引:0  
应用偏光显微镜与电子探针相结合的手段是研究载金矿物的主要方法。本文采用镜下鉴定和电子探针分析技术,对赵家庄金矿中载金矿物含量、形态特征及其与其他矿物的空间关系开展研究,并对载金矿物进行定性和定量分析,探寻具有找矿意义的载金矿物和总结标志矿物特征。结果表明:研究区金矿石中主要载金矿物为黄铁矿,少量为黄铜矿、闪锌矿,这些载金矿物中Au含量依次为:细晶黄铁矿粗晶黄铁矿草莓状黄铁矿黄铜矿。不同时期的黄铁矿(粗晶黄铁矿、细晶黄铁矿、草莓状黄铁矿)中Au的分布均匀,但存在差异性,主要表现为细晶黄铁矿和草莓状黄铁矿中的Au含量较高(平均含量0. 14%~0. 18%),这种现象表明此类矿物为构造热液期形成,金易富集。Au以两种形式存在,一种是"可见金"包裹于脉石矿物中,或以裂隙金的形式嵌布在矿物晶隙及裂隙中;另一种是"不可见金"以纳米级颗粒金的形式存在于载金矿物中,也是Au的主要存在形式。本研究为后期矿床的成因、成矿过程和成矿机理研究提供了佐证,同时易于根据含金矿物的特征选择合适的选冶方法。  相似文献   

13.
This work focuses on sulfide mineral oxidation rates under oxic conditions in freshly processed pyrite-rich tailings from the ore concentrator in Boliden, northern Sweden. Freshly processed tailings are chemically treated in the plant to kill bacteria and to obtain increased metal yields, resulting in a high pH level of 10–12 in the process water. Different oxidation experiments (abiotic oxidation in untreated tailings, acid abiotic oxidation and acid microbial oxidation), containing the Boliden tailings, were performed at room temperature with dissolved oxygen (0.21 atm O2) for 3 months. The different pyrite oxidation rates given from the study were 2.4×10−10 mol m−2 s−1 for the microbial, 5.9×10−11 mol m−2 s−1 for the acidic abiotic and 3.6×10−11 mol m−2 s−1 for the untreated experiments. Because of the potential precipitation of gypsum in the batch solutions, these oxidation rates are considered minimum values. The release rates for copper and zinc from chalcopyrite and sphalerite in the acid experiments were also investigated. These rates were normalized to the metal concentration in the tailings, and then compared to the release rate for iron from pyrite. These normalized results indicated that metal release decreased in the order Cu>Zn>Fe, demonstrating that pyrite is more resistant to oxidation than sphalerite and chalcopyrite. Pyrite was also more resistant to acidic dissolution than to microbial dissolution, while a significant fraction of sphalerite and chalcopyrite dissolved in the acid abiotic solutions.  相似文献   

14.
The Banská?tiavnica ore district is in the central zone of the largest stratovolcano in the Central Slovakia Neogene Volcanic Field, which is situated at the inner side of the Carpathian arc over the Hercynian basement with the Late Paleozoic and Mesozoic sedimentary cover. Volcanic rocks of the High-K orogenic suite are of the Badenian through Pannonian age (16.5–8.5?Ma). Their petrogenesis is closely related to subduction of flysch belt oceanic basement underneath the advancing Carpathian arc and to back-arc extension processes. The stratovolcano includes a large caldera 20?km in diameter and a late-stage resurgent horst in its centre, exposing a basement and extensive subvolcanic intrusive complex. The following stages have been recognized in the evolution of the stratovolcano: (1)?formation of a large pyroxene/hornblende-pyroxene andesite stratovolcano; (2)?denudation, emplacement of a diorite intrusion; (3) emplacement of a large granodiorite bell-jar pluton within the basement; (4) emplacement of granodiorite/quartz-diorite porphyry stocks and dyke clusters around the pluton; (5) caldera subsidence and its filling by biotite-hornblende andesite volcanics, emplacement of quartz-diorite porphyry sills and dykes at the subvolcanic level; (6)?renewed activity of andesites from dispersed centres on slopes of the volcano; (7) uplift of a resurgent horst accompanied by rhyolite volcanics and granite porphyry dykes. The following types of ore deposits (mineralizations) have been identified in the Banská?tiavnica ore district: 1. Quartz-pyrophyllite-pyrite high-sulphidation system at ?obov, related to the diorite intrusion. 2. Magnetite skarn deposits and occurrences?at contacts of the granodiorite pluton with Mesozoic carbonate rocks. Magnetite ores occur as lenses in the calcic skarns. 3.?Stockwork/disseminated base metal deposit along an irregular network of fractures in apical parts of the granodiorite pluton and in remnants of basement rocks. Mineral paragenesis is simple, with leading sphalerite and galena and minor chalcopyrite and pyrite. In overlying andesites the mineralization is accompanied by metasomatic quartzites and argillites with pyrophyllite, kaolinite, illite and pyrite. 4. Porphyry/skarn copper deposits and occurrences related to granodiorite/quartz-diorite porphyry dyke clusters and stocks around the granodiorite intrusion. The mineralized zone is represented by accumulations of chalcopyrite in exo- and endo-skarns, usually of the magnesian type affected by serpentinization. Besides chalcopyrite, pyrhotite, minor bornite, chalcosite, tennantite and magnetite, rare molybdenite and gold are present. The alteration pattern around productive intrusions includes an external zone of propylitization, a zone of argillitic alteration (kaolinite – illite – pyrite) and an internal zone of phyllic alteration (quartz – sericite – pyrite). Biotitization is rare and limited to porphyry intrusions. 5. Intrusion related “mesothermal” gold deposit in an andesitic environment just above the granodiorite intrusion. Gold of high fineness with base metal mineralization is contained in brecciated and/or banded quartz veins of subhorizontal orientation, parallel to the surface of granodiorite pluton. At least the first phase of mineralization is older than quartz-diorite porphyry sills, which separate granodiorite and blocks of mineralized andesite. 6. Hot spring type advanced argillic systems in the caldera filling. Silicites and opalites accompanied by kaolinite, alunite and pyrite grade downward into smectite dominated argillites. 7. Vein type epithermal precious/base metal deposits and occurrences as a result of the long lasting interaction among structural evolution of the resurgent horst and evolving hydrothermal system, extensive intrusive complex and deep seated siliceous magma chamber serving as heat and magmatic fluid source. Three types of epithermal veins occur in a zonal arrangement: (a) base metal veins ± Au with transition to Cu?±?Bi mineralization at depth in the east/central part of the horst, (b)?Ag – Au veins with minor base metal mineralization and (c) Au – Ag veins located at marginal faults of the horst. Isotopic composition of oxygen and hydrogen in hydrothermal fluids indicate mixing of magmatic and meteoric component (with generally increasing proportion of meteoric component towards younger mineralization periods?). Veins are accompanied by zones of silicification, adularization and sericitization, indicating a low sulphidation environment. 8.?Replacement base metal mineralization of a limited extent in the Mesozoic carbonate rocks next to sulphide rich epithermal base metal veins.  相似文献   

15.
In the Ospin–Kitoi ultramafic massif of the Eastern Sayan, accessory and ore Cr-spinel are mainly represented by alumochromite and chromite. Copper–nickel mineralization hosted in serpentinized ultramafic rocks occurs as separate grains of pentlandite and pyrrhotite, as well as assemblages of (i) hexagonal pyrrhotite + pentlandite + chalcopyrite and (ii) monoclinal pyrrhotite + pentlandite + chalcopyrite. Copper mineralization in rodingite is presented by bornite, chalcopyrite, and covellite. Talc–breunnerite–quartz and muscovite–breunnerite–quartz listvenite contains abundant sulfide and sulfoarsenide mineralization: pyrite, gersdorffite, sphalerite, Ag–Bi and Bi-galena, millerite, and kuestelite. Noble metal mineralization is represented by Ru–Ir–Os alloy, sulfides, and sulfoarsenides of these metals, Au–Cu–Ag alloys in chromitite, laurite intergrowth, an unnamed mineral with a composition of Cu3Pt, orcelite in carbonized serpentinite, and sperrylite and electrum in serpentinite. Sulfide mineralization formed at the late magmatic stage of the origination of intrusion and due to fluid–metamorphic and retrograde metasomatism of primary rocks.  相似文献   

16.
Chalcopyrite was reacted with covellite and with chalcocite, respectively, between 200°C and 500°C. The ensuing solid-state replacement of chalcopyrite by bornite was studied both texturally and chemically. The relatively oxidizing conditions of the reaction chalcopyrite+covellite result in massive replacement, lacking structural control, where bornite and pyrite form complex intergrowth textures in chalcopyrite. Bornite nucleates around growing pyrite aggregates because of the release of copper and a decrease in volume. Diffusion of sulphur along grain boundaries and fractures largely controls the textural development. Reaction under the relatively reducing conditions involving chalcopyrite+chalcocite results in replacement of chalcopyrite in the sequence where chalcopyrite is replaced by bornite, below about 355°C, and by intermediate solid solution (ISS) and later bornite, above 355°C. The textural development, changing from replacement, apparently uninfluenced by directional properties in the host, to semioriented replacement, is structurally controlled. This suggests that the process is governed by diffusion of copper and iron through a sulphur framework. It is suggested that the observed formation of oriented bornite lamellae in chalcopyrite and in ISS during the chalcopyrite+chalcocite reaction may be explained by replacement exsolution at constant temperature.  相似文献   

17.
《Applied Geochemistry》1997,12(5):577-592
A densely sampled profile (58 cm in thickness) composed of 13 samples of the Kupferschiefer and overlying Zechstein carbonates from the Sangerhausen Basin, Germany has been analysed by various geochemical and microscopic methods in order to clarify the mechanism of base metal accumulation. In this location, the Kupferschiefer is only slightly influenced by the hematite-bearing, oxidized fluids calledRote Fäule.The determination of facies-dependent parameters along the profile indicates that Kupferschiefer from the Sangerhausen Basin was largely deposited in a marine environment; only at the beginning of Kupferschiefer sedimentation did euxinic conditions prevail. The bottom part of the profile is significantly enriched in trace elements such as Cu, Ph, Zn, As, Co, Ag and U. The Cu concentration amounts to 19.88 wt.%. Post-depositional oxidation of the organic matter is observed only in the transition zone between the Kupferschiefer and the Zechstein conglomerate indicating the influence of ascending, oxidizing brines. Microscopic analyses show that only Fe sulfides form framboidal textures; Cu minerals are present along the total profile preferentially in fractures and as patchy structures composed of chalcocite, chalcopyrite and bornite. In the highly mineralized bottom section, Cu sulfides are associated with pyrobitumen, sparry calcite and arsenopyrite. Results from maturation studies of organic matter suggest that the maximum temperature affecting the Kupferschiefer was approximately 130°C.A 3-step-process of metal accumulation is proposed. During deposition of the sediment, framboidal pyrite and pyrite precursors were precipitated by bacterial SO42− reduction (BSR). During diagenesis the pyrite and pyrite precursors were largely replaced by mixed Cu/Fe minerals and by chalcocite (PR). In the section with very high Cu contents (> 8%) reduced sulfur from Fe-sulfides was not sufficient for precipitation of Cu and other trace metals from ascending solutions. In this part of the profile, thermochemical SO42− reduction (TSR) occurred after pyrite replacement as indicated by the presence of pyrobitumen and sparry calcite.  相似文献   

18.
Copper, zinc, lead, manganese, arsenic, iron, cadmium and molybdenum were measured in specimens of Rumex acetosella and Minuartia verna and in soils where these plants grow. In Macedonia and the Chalkidiki peninsula both plants occur on newly investigated sulphide-mineralized ground. There are highly significant correlations between the levels of copper, zinc and lead in the plants and those in the soils. Where high concentrations of arsenic occur in the soil, this is also reflected in the plants. Because of the common association of gold and arsenic, it is suggested that analysis of Rumex and Minuartia for arsenic may be a useful prospecting tool since most of the ore occurrences in the Serbomacedonian massif are auriferous. The high levels of manganese in both plants from a manganese mineralized area indicate a strong possibility of using biogeochemical methods to define zones of some types of mineralization of this element also.  相似文献   

19.
A previous study briefly described the occurrence of a new type of Nb(Ta)-Zr(Hf)-REY-Ga (REY: rare earth elements and yttrium) polymetallic mineralization in eastern Yunnan, southwest China. In this paper, the mineralogical and geochemical features have been further advanced through a study of two regionally extensive and relatively flat-lying mineralized layers from No. XW drill core. The layers are clay-altered volcanic ash and tuffaceous clay, and are dominated by clay minerals (mixed layer illite/smectite, kaolinite, berthierine, and chamosite); with lesser amounts of quartz and variable amounts of anatase, siderite and calcite; along with trace pyrite, barite, zircon, ilmenite, galena, chalcopyrite, and REE-bearing minerals. The mineralized samples have higher Al2O3/TiO2 values (13.7–41.4) and abundant rare metal elements (Nb, Ta, Zr, Hf, REE, Ga, Th, and U) whereas less mineralized samples are rich in V, Cr, Co, and Ni and have lower Al2O3/TiO2 values (2.32–7.67). The mineralized samples also have strong negative δEu in chondrite-normalized REE patterns. Two processes are most likely responsible for the geochemical and mineralogical anomalies of the mineralized samples: airborne volcanic ash and multi-stage injection of low-temperature hydrothermal fluids. Based on paragenetic analysis, this polymetallic mineralization is derived from the interaction between alkaline volcanic ashes and subsequent percolation of low-temperature fluids. The intense and extensive alkaline volcanism of the early Late Permian inferred from this study possibly originated from the coeval Emeishan large igneous province (ELIP). This unique Nb(Ta)-Zr(Hf)-REE-Ga mineralization style has significant economic and geological potential for the study of mineralization of the lowest Xuanwei Formation.  相似文献   

20.
Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper‐gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper‐gold deposit are enargite and luzonite, with significant presence of tennantite‐tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold‐silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper‐gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite‐luzonite‐pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite‐tennantite‐pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite‐digenite‐telluride assemblage caused the deposition of native gold/electrum and gold‐silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic‐argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate‐silica stages. The crosscutting and overprinting relationships of the Victoria quartz‐gold‐base metal veins on the Lepanto copper‐gold veins manifest the late introduction of near neutral pH hydrothermal fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号