首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30‐min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric‐based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
3.
New methods for obtaining and quantifying spatially distributed subsurface moisture are a high research priority in process hydrology. We use simple linear regression analyses to compare terrain electrical conductivity measurements (EC) derived from multiple electromagnetic induction (EMI) frequencies to a distributed grid of water‐table depth and soil‐moisture measurements in a highly instrumented 50 by 50 m hillslope in Putnam County, New York. Two null hypotheses were tested: H0(1), there is no relationship between water table depth and EC; H0(2), there is no relationship between soil moisture levels and EC. We reject both these hypotheses. Regression analysis indicates that EC measurements from the low frequency EM31 meter with a vertical dipole orientation could explain over 80% of the variation in water‐table depth across the test hillslope. Despite zeroing and sensitivity problems encountered with the high frequency EM38, EC measurements could explain over 70% of the gravimetrically determined soil‐moisture variance. The use of simple moisture retrieval algorithms, which combined EC measurements from the EM31 and EM38 meters in both their vertical and horizontal orientations, helped increase the r2 coefficients slightly. This first hillslope hydrological analysis of EMI technology in this way suggests that it may be a promising method for the collection of a large number of distributed soilwater and groundwater depth measurements with a reasonable degree of accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Minha Choi 《水文研究》2012,26(4):597-603
In the past few decades, there have been great developments in remotely sensed soil moisture, with validation efforts using land surface models (LSMs) and ground‐based measurements, because soil moisture information is essential to understanding complex land surface–atmosphere interactions. However, the validation of remotely sensed soil moisture has been very limited because of the scarcity of the ground measurements in Korea. This study validated Advanced Microwave Scanning Radiometer E (AMSR‐E) soil moisture data with the Common Land Model (CLM), one of the most widely used LSMs, and ground‐based measurements at two Korean regional flux monitoring network sites. There was reasonable agreement regarding the different soil moisture products for monitoring temporal trends except National Snow and Ice Data Centre (NSIDC) AMSR‐E soil moisture, albeit there were essential comparison limitations by different spatial scales and soil depths. The AMSR‐E soil moisture data published by the National Aeronautics and Space Administration and Vrije Universiteit Amsterdam (VUA) showed potential to replicate temporal variability patterns (root‐mean‐square errors = 0·10–0·14 m3 m?3 and wet BIAS = 0·09 ? 0·04 m3 m?3) with the CLM and ground‐based measurements. However, the NSIDC AMSR‐E soil moisture was problematic because of the extremely low temporal variability and the VUA AMSR‐E soil moisture was relatively inaccurate in Gwangneung site characterized by complex geophysical conditions. Additional evaluations should be required to facilitate the use of recent and forthcoming remotely sensed soil moisture data from Soil Moisture and Ocean Salinity and Soil Moisture Active and Passive missions at representative future validation sites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

6.
An improved, iteratively re‐weighted factor analysis procedure is presented to interpret engineering geophysical sounding logs in shallow unsaturated sediments. We simultaneously process cone resistance, electric resistivity, and nuclear data acquired by direct‐push tools to give robust estimates of factor variables and water content in unconsolidated heterogeneous formations. The statistical procedure is based on the iterative re‐weighting of the deviations between the measured and calculated data using the most frequent value method famous for its robustness and high statistical efficiency. The iterative approach improves the result of factor analysis for not normally distributed data and extremely noisy measurements. By detecting a strong regression relation between one of the extracted factors and the fractional volume of water, we establish an independent method for water content estimation along the penetration hole. We verify the estimated values of water volume by using a highly over‐determined, quality‐checked interval inversion procedure. The multidimensional extension of the statistical method allows the estimation of water content distribution along both the vertical and the horizontal coordinates. Numerical tests using engineering geophysical sounding data measured in a Hungarian loessy–sandy formation demonstrate the feasibility of the most frequent value‐based factor analysis, which can be efficiently used for a more reliable hydrogeophysical characterisation of the unsaturated zone.  相似文献   

7.
A method for estimating daily mean transit time (DMTT) within a soil layer was proposed using field measurements of soil moisture. Vertical profiles of soil moisture time series were used for storage estimation. Water fluxes were evaluated through matrix and bypass flow. Variations in soil moisture and soil thickness were used to evaluate matrix flow. Exponential decay in depth of macropores was also used for bypass flow approximation. DMTT evaluation was compared to results obtained from a stable water isotope model using two years of data acquired on a steep granite hillslope in the Sulmachun watershed, South Korea. Various uncertainties in transit time evaluation such as model structure, non‐stationary assumption and data acquisition of existing approaches can be accounted for in the proposed methodology, and the flowpath contribution can be further configured in conjunction with hydrometric measurements. Probability density functions of isotope analyses were partially explained by transit time distributions that were based on soil moisture measurements. Supplementary sensitivity analyses for uncertainty configurations indicate that matrix flow is the primary process in determining transit time distribution while the impact of bypass flow is minor. The feasibility of a DMTT approach over isotope‐based methodologies highlights not only the strength of this proposed method, both in cost and time, but also its further application potential for existing soil moisture measurements. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Building codes have widely considered the shear wave velocity to make a reliable subsoil seismic classification, based on the knowledge of the mechanical properties of material deposits down to bedrock. This approach has limitations because geophysical data are often very expensive to obtain. Recently, other alternatives have been proposed based on measurements of background noise and estimation of the H/V amplification curve. However, the use of this technique needs a regulatory framework before it can become a realistic site classification procedure. This paper proposes a new formulation for characterizing design sites in accordance with the Algerian seismic building code(RPA99/ver.2003), through transfer functions, by following a stochastic approach combined to a statistical study. For each soil type, the deterministic calculation of the average transfer function is performed over a wide sample of 1-D soil profiles, where the average shear wave(S-W) velocity, V s, in soil layers is simulated using random field theory. Average transfer functions are also used to calculate average site factors and normalized acceleration response spectra to highlight the amplification potential of each site type, since frequency content of the transfer function is significantly similar to that of the H/V amplification curve. Comparison is done with the RPA99/ver.2003 and Eurocode8(EC8) design response spectra, respectively. In the absence of geophysical data, the proposed classification approach together with micro-tremor measures can be used toward a better soil classification.  相似文献   

9.
Soil moisture is one of the important input variables in hydrological and water erosion models. The extraction of information on near surface soil moisture from synthetic aperture radar (SAR) is well established mostly for flat terrain and using low incidence angle single polarisation data. The ENVISAT advanced SAR (ASAR) data available in multiple incidence angles and alternate polarisation modes were investigated in this study for soil moisture estimation in sloping terrain. The test site was Sitla Rao watershed in the Lesser Himalayas of northern India. Empirical models were developed to estimate near surface soil moisture in bare agricultural fields using alternate polarisation ASAR data. Both soil moisture and surface roughness field measurements were performed during the satellite passes. Backscatter from medium incidence angle (IS‐4) and vertical‐vertical (VV) polarisation signal is correlated better with volumetric soil moisture content compared to other incidence angles. The model parameters were further improved, and soil moisture estimation was refined by combining medium incidence angle (IS4) vertical‐horizontal polarisation response as another variable along with VV polarisation response. The effect of slope on the radar backscatter was minimized by incorporating local incidence angles derived from an ASTER DEM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Soil moisture estimation based on BeiDou B1 interference signal analysis   总被引:1,自引:0,他引:1  
BeiDou Navigation Satellite System reflectometry (BDS-R) is an emerging area of BD (BeiDou) applications that uses multipath reflected signals in microwave remote sensing. Soil moisture estimation is one of the potential important applications of BDS-R. This study aims to investigate the feasibility of soil moisture estimation based on BD B1 band interference signals, which are composed of direct and reflected BD signals and can be readily captured using low-cost commercial BDS receivers. In this paper, a theoretical background for soil estimation from interference signals was introduced, and an analysis of field experimental data was conducted. First, a cosine model for the interference signal power was built, and a non-uniform power spectrum analysis was performed on the received interference signals to determine its main frequency. Then, a least squares curve fitting was applied on the interference signal power to extract its phase. The relationship between the soil moisture and the phase was then determined. Two months of experimental data were collected at BaoXie, Wuhan and analyzed for further inversion. Experimental results show that the phase of the interference signals increases with the increase of soil moisture. The correlation coefficient between the phase and the in-situ soil moisture value is approximately 0.8. Finally, the relationship between the phase and soil moisture is employed to estimate soil moisture. Results show that using BDS-R to measure soil moisture is feasible, which demonstrates a great potential of new application of the BD system.  相似文献   

11.
This paper presents a top–down approach for soil moisture and sap flux sampling design with the goal of understanding ecohydrologic response to interannual climate variation in the rain–snow transition watersheds. The design is based on a priori estimates of soil moisture and transpiration patterns using a physical distributed model, Regional Hydro‐Ecologic Simulation System (RHESSys). RHESSys was initially calibrated with existing snow depth and streamflow data. Calibrated model estimates of seasonal trajectories of snowmelt, root‐zone soil moisture storage, and transpiration were used to develop five hydrologic similarity indicators and map these at (30 m) patch scale across the study watershed. The partitioning around medoids‐clustering algorithm was then used to define six distinctive spatially explicit clusters based on the five hydrologic similarity indictors. A representative site within each cluster was identified for sampling. For each site, soil moisture sensors were installed at the 30‐ and 90‐cm depths and at the five soil pits and a sap flux sensor at the averaged‐size white fir tree for each site. The model‐based cluster analysis suggests that the elevation gradient and topographically driven flow drainage patterns are the dominant drivers of spatial patterns of soil moisture and transpiration. The comparison of model‐based calculated hydrological similarity indicators with measured‐data‐based values shows that spatial patterns of field‐sampled soil moisture data typically fell within uncertainty bounds of model‐based estimates for each cluster. There were however several notable exceptions. The model failed to capture the soil moisture and sap flux dynamics in a riparian zone site and in a site where lateral subsurface flow may not follow surface topography. Results highlight the utility of using a hypothesis driven sampling strategy, based on a physically based model, for efficiently providing new information that can drive both future measurements and strategic refinements to model inputs, parameters, or structure that might reduce these errors. Future research will focus on strategies for using of finer scale representations of microclimate, topography, vegetation, and soil properties to improve models.  相似文献   

12.
Three controlled experiments were conducted at the Oregon Graduate Institute (OGI) with the purpose of evaluating electrical resistance tomography for imaging underground processes associated with in-situ site assessment and remediation. The OGI facilities are unique: a double-wall tank 10 m square and 5 m deep, filled with river bottom sediments and instrumented for geophysical and hydrological studies. At this facility, liquid contaminants could be released into the confined soil at a scale sufficiently large to represent real-world physical phenomena.In the first test, images of electrical resistivity were made before and during a controlled spill of gasoline into a sandy soil. The primary purpose was to determine if electrical resistivity images could detect the hydrocarbon in either the vadose or saturated zone. Definite changes in electrical resistivity were observed in both the vadose and saturated soils. The effects were an increase in resistivity of as much as 10% above pre-release values. A single resistive anomaly was imaged, directly below the release point, principally within the vadose zone but extending below the phreatic surface. The anomaly remained identifiable in tomograms taken two days after the release ended with clear indications of lateral spreading along the water table.The second test involved electrical resistance measurements before, during, and after air sparging in a saturated soil. The primary purpose was to determine if the electrical images could be used to detect and delineate the extent of the zone influenced by sparging. The images showed an increase of about 20% in resistivity over background values within the sparged zone and the extent of the imaged zone agreed with that inferred from other information.Electrical resistivity tomography measurements were made under a simulated oil storage tank in the third test. Comparison of images taken before and during separate releases of brine and water showed effects of changes induced by the water or brine. The simulated leak and its location were imaged as a conductive anomaly centered near the point of origin and were observed to spread with time during the release.  相似文献   

13.
Active microwave remote sensing observations of backscattering, such as C‐band vertically polarized synthetic aperture radar (SAR) observations from the second European remote sensing (ERS‐2) satellite, have the potential to measure moisture content in a near‐surface layer of soil. However, SAR backscattering observations are highly dependent on topography, soil texture, surface roughness and soil moisture, meaning that soil moisture inversion from single frequency and polarization SAR observations is difficult. In this paper, the potential for measuring near‐surface soil moisture with the ERS‐2 satellite is explored by comparing model estimates of backscattering with ERS‐2 SAR observations. This comparison was made for two ERS‐2 overpasses coincident with near‐surface soil moisture measurements in a 6 ha catchment using 15‐cm time domain reflectometry probes on a 20 m grid. In addition, 1‐cm soil moisture data were obtained from a calibrated soil moisture model. Using state‐of‐the‐art theoretical, semi‐empirical and empirical backscattering models, it was found that using measured soil moisture and roughness data there were root mean square (RMS) errors from 3·5 to 8·5 dB and r2 values from 0·00 to 0·25, depending on the backscattering model and degree of filtering. Using model soil moisture in place of measured soil moisture reduced RMS errors slightly (0·5 to 2 dB) but did not improve r2 values. Likewise, using the first day of ERS‐2 backscattering and soil moisture data to solve for RMS surface roughness reduced RMS errors in backscattering for the second day to between 0·9 and 2·8 dB, but did not improve r2 values. Moreover, RMS differences were as large as 3·7 dB and r2 values as low as 0·53 between the various backscattering models, even when using the same data as input. These results suggest that more research is required to improve the agreement between backscattering models, and that ERS‐2 SAR data may be useful for estimating fields‐scale average soil moisture but not variations at the hillslope scale. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
BeiDou Navigation Satellite System reflectometry(BDS-R) is an emerging area of BD(BeiDou) applications that uses multipath reflected signals in microwave remote sensing.Soil moisture estimation is one of the potential important applications of BDS-R.This study aims to investigate the feasibility of soil moisture estimation based on BD B1 band interference signals,which are composed of direct and reflected BD signals and can be readily captured using low-cost commercial BDS receivers.In this paper,a theoretical background for soil estimation from interference signals was introduced,and an analysis of field experimental data was conducted.First,a cosine model for the interference signal power was built,and a non-uniform power spectrum analysis was performed on the received interference signals to determine its main frequency.Then,a least squares curve fitting was applied on the interference signal power to extract its phase.The relationship between the soil moisture and the phase was then determined.Two months of experimental data were collected at BaoXie,Wuhan and analyzed for further inversion.Experimental results show that the phase of the interference signals increases with the increase of soil moisture.The correlation coefficient between the phase and the in-situ soil moisture value is approximately 0.8.Finally,the relationship between the phase and soil moisture is employed to estimate soil moisture.Results show that using BDS-R to measure soil moisture is feasible,which demonstrates a great potential of new application of the BD system.  相似文献   

15.
This paper reviews the recent geophysical literature addressing the estimation of saturated hydraulic conductivity (K) from static low frequency electrical measurements (electrical resistivity, induced polarization (IP) and spectral induced polarization (SIP)). In the first part of this paper, research describing how petrophysical relations between electrical properties and effective (i.e. controlling fluid transport) properties of (a) the interconnected pore volumes and interconnected pore surfaces, have been exploited to estimate K at both the core and field scale is reviewed. We start with electrical resistivity measurements, which are shown to be inherently limited in K estimation as, although resistivity is sensitive to both pore volume and pore surface area properties, the two contributions cannot be separated. Efforts to utilize the unique sensitivity of IP and SIP measurements to physical parameters that describe the interconnected pore surface area are subsequently introduced and the incorporation of such data into electrical based Kozeny–Carman type models of K estimation is reviewed. In the second part of this review, efforts to invert geophysical datasets for spatial patterns of K variability (e.g. aquifer geometries) at the field-scale are considered. Inversions, based on the conversion of an image of a geophysical property to a hydrological property assuming a valid petrophysical relationship, as well as joint/constrained inversion methods, whereby multiple geophysical and hydrological data are inverted simultaneously, are briefly covered. This review demonstrates that there currently exists an opportunity to link, (1) the petrophysics relating low frequency electrical measurements to effective hydraulic properties, with (2) the joint inversion strategies developed in recent years, in order to obtain more meaningful estimates of spatial patterns of K variability than previously reported.  相似文献   

16.
To supplement conventional geophysical log data, this study presents temporal variations in electrical conductivity (EC) and temperature with depth in a multilayered coastal aquifer, on the eastern part of Jeju Island, Korea. One‐month time‐series data obtained at eight points from a multi‐depth monitoring system showed that semidiurnal and semimonthly tidal variations induced dynamic fluctuations in EC and temperature. At some depths, EC ranged from 1483 to 26 822 µS cm?1, while some points showed no significant variations. The results of EC log and time‐series data revealed that a sharp fresh‐saltwater interface occurred at low tide, but the diffusion zone broadened to 20 m at high tide. EC, temperature, and tide level data were used for the cross‐correlation analysis. The response time of EC and temperature to tide appears to range from less than 30 min to 11 h. Using end‐member mixing analysis (EMMA), the fraction of variations of chloride concentration in the multilayered aquifer was explained, and a conceptual model was developed which subdivided the coastal aquifer into four vertical zones. The percentage of water derived from seawater varied from 2 to 48 at specific depth, owing to tidal fluctuations. Continuous observations of EC and temperature at multiple depths are powerful tools for quantifying the transport of saline water by tidal variations in multilayered coastal aquifers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The Soil Conservation Service curve number (CN) method commonly uses three discrete levels of soil antecedent moisture condition (AMC), defined by the 5‐day antecedent rainfall depth, to describe soil moisture prior to a runoff event. However, this way may not adequately represent soil water conditions of fields and watersheds in the Loess Plateau of China. The objectives of this study were: (1) to determine the effective soil moisture depth to which the CN is most related; (2) to evaluate a discrete and a linear relationship between AMC and soil moisture; and (3) to develop an equation between CN and soil moisture to predict runoff better for the climatic and soil conditions of the Loess Plateau of China. The dataset consisted of 10 years of rainfall, runoff and soil moisture measurements from four experimental plots cropped with millet, pasture and potatoes. Results indicate that the standard CN method underestimated runoff depths for 85 of the 98 observed plot‐runoff events, with a model efficiency E of only 0·243. For our experimental conditions, the discrete and linear approaches improved runoff estimation, but still underestimated most runoff events, with E values of 0·428 and 0·445 respectively. Based on the measured CN values and soil moisture values in the top 15 cm of the soil, a non‐linear equation was developed that predicted runoff better with an E value of 0·779. This modified CN equation was the most appropriate for runoff prediction in the study area, but may need adjustments for local conditions in the Loess Plateau of China. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The accurate estimation of profile soil moisture is usually difficult due to the associated costs, strong spatiotemporal variability, and nonlinear relationship between surface and profile moisture. Here, we used data sets from the Soil and Climate Analysis Network to test how reliably observation operators developed based on the cumulative distribution function matching method can predict profile soil moisture from surface measurements. We first analysed how temporal resolution (hourly, daily, and weekly) and data length (half year, 1 year, 2 years, and 4 years) affected the performance of observation operators. The results showed that temporal resolution had a negligible influence on the performance of observation operators. However, a leave‐one‐year‐out cross‐validation showed that data length affected the performance of observation operators; a 2‐year interval was identified as the most suitable duration due to its low uncertainty in prediction accuracy. The robustness of the observation operators was then tested in three primary climates (humid continental, humid subtropical, and semiarid) of the continental United States, with the exponential filter employed as an independent method. The results indicated that observation operators reliably predicted profile soil moisture for most of the tested stations and performed almost equally well as the exponential filter method. The presented results verified the feasibility of using the cumulative distribution function matching method to predict profile soil moisture from surface measurements.  相似文献   

19.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this work is to introduce the application of the fuzzy ordered weighted averaging method as a straightforward knowledge‐driven approach to explore porphyry copper deposits in an airborne prospect. In this paper, the proposed method is applied to airborne geophysical (potassium radiometry, magnetometry, and frequency‐domain electromagnetic) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic–sedimentary belt in Kerman province of Iran that is located within the Urumieh–Dokhtar (Sahand–Bazman) magmatic arc is chosen for this study. This region has high potential of mineral occurrences, especially porphyry copper, containing some active world‐class copper mines such as Sarcheshmeh. Two evidential layers, including the downward continued map and the analytic signal of such filtered magnetic data, are generated to be used as geophysical plausible traces of porphyry copper occurrences. The low values of the resistivity layer acquired from airborne frequency‐domain electromagnetic data are also used as an electrical criterion in this study. Four remote sensing evidential layers, including argillic, phyllic, propylitic, and hydroxyl alterations, are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer images in order to map the altered areas associated with porphyry copper deposits. The Enhanced Thematic Mapper plus images are used to map iron oxide layer. Since potassium alteration is the mainstay of copper alteration, the airborne potassium radiometry data are used. Here, the fuzzy ordered weighted averaging method uses a wide range of decision strategies in order to generate numerous mineral potential/prospectivity maps. The final mineral potential map based upon desired geo‐data set indicates adequately matching of high‐potential zones with previous working mines and copper deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号