首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restoration treatments are based on the largely untested notion that desired recovery of plant communities following disturbance wouldn’t occur in the absence of active intervention. We identified rate of short-term (10 year) floristic changes following removal of plant functional groups in Wyoming big sagebrush plant communities in 1999-2005 and 2008. Treatments imposed on 6 × 6 m plots were: 1) removal of all plant functional groups, 2) perennial grass removal, 3) shrub removal and 4) control. Our data suggest recovery of the shrub component on shrub removal plots could take decades. Similarly, perennial grass cover and density on perennial grass removal plots was less than half that of unaltered plots 10 years after treatment. When all functional groups were removed, cover of annual forbs, annual grasses, and shrubs returned to unaltered levels within ten years or less. Perennial forbs were unaffected (p > 0.05) by treatment. The fact that natural recovery of some components occurred within a relatively short post-disturbance time interval (i.e. <10 years) suggests that intervention may not be necessary for some functional groups. Restoring shrubs in areas dominated by perennial grasses may require targeted reductions of competing perennial grasses. Conversely, shrub dominance may limit perennial grass re-establishment.  相似文献   

2.
Overgrazing has been considered one of the maj or causes that trigger shrub encroachment of grassland. Proliferation of shrubs in grassland is recognized as an important indicator of grassland degradation and desertification. In China, various conservation measures, including enclosures to reduce livestock grazing, have been taken to reverse the trend of grassland desertification, yet shrubs have been reported to increase in the grasslands over the past decades. In late 2007, we set up a 400-m-by-50-m exclosure in a long-term overgrazed temperate grassland in Inner Mongolia, with the ob- jective to quantify the spatiotemporal relationship between vegetation dynamics, soil variables, and grazing exclusion. Soil moisture was continuously monitored within the exclosure, and cover and aboveground biomass of the shrubs were measured inside the exclosure in 2007, 2009, 2010, 2012, and 2013, and outside the exclosure in 2012 and 2013. We found the average shrub cover and biomass significantly increased in the six years by 103 % and 120%, respectively. The result supported the hypothesis that releasing grazing pressure following long-term overgrazing tends to trigger shrub invasion into grassland. Our results, limited to a single gradient, suggest that any conservation measures with quick release of overgrazing pressure by enclosure or other similar means might do just the opposite to accelerate shrub en- croachment in grassland. The changes in vegetation cover and biomass were regressed on the temporal average of the soil moisture content by means of the generalized least square technique to quantify the effect of the spatial autocor- relation. The result indicates that the grass cover and biomass significantly increased with the top, but decreased with the bottom layer soil moisture. The shrub cover and biomass, on the other hand, decreased with the top, but increased with bottom soil moisture, although the regression coefficients for the shrubs were not statistically significant. Hence this study supports the two-layered soil model which assumes grasses and shrubs use belowground resources in dif- ferent depths.  相似文献   

3.
干旱半干旱区草原灌丛化的原因及影响-争议与进展   总被引:3,自引:0,他引:3  
高琼  刘婷 《干旱区地理》2015,38(6):1202-1212
灌丛化作为全球干旱半干旱区草原普遍发生的现象,其定义为草原生态系统中灌木/木本的生物量、密度、盖度的增加以及草本的生物量、密度、盖度的减少。草原灌丛化是气候变化和人类活动多种因素综合作用的结果。过度放牧被认为是引发草原灌丛化的主要原因之一。最新的研究结果表明过度放牧并不能导致草原灌丛化,但过度放牧后实施休牧却改变了草本与灌木的种间作用,有可能导致灌木的扩张。灌木入侵草原长期以来被认为是草原的退化,结论来源于干旱区土壤沙化的情形,在沙化的灌木林中,土壤碳库被局限于灌木株丛及其周边,使草原的碳截留和储存降低。但最近的全球性集成研究表明草原中灌木覆盖率盖度增加对生态系统可以产生积极作用,灌木可以增加土壤水分的下渗,有利于生态系统的水分储存和和养分的转化(如加强氮的矿化过程)。草原灌丛化对生态系统结构和功能影响存在景观尺度和斑块尺度上的差异。进一步研究适应灌丛化过程的管理机制,综合不断变化的气候条件因素和地域因素,采取合理的草原管理策略,对于全球草原区生产具有极其重要的意义。  相似文献   

4.
Arthropods living in the canopies of two woody shrub species (a sub-shrub (Gutierrezia sarothrae) and a large shrub (Prosopis glandulosa)) and perennial grasses plus associated herbaceous species, were sampled on 18, 0.5 hectare plots in a Chihuahuan Desert grassland for five consecutive years. Mesquite shrubs were removed from nine plots, six plots were grazed by yearling cattle in August and six plots were grazed in February for the last 3 years of the 5 year study. Arthropod species richness ranged between 154 and 353 on grasses, from 120 to 266 on G. sarothrae, and from 69 to 116 on P. glandulosa. There was a significant relationship between the number of families of insects on grass and G. sarothrae and growing season rainfall but species richness was not a function of growing season rainfall on any of the plants. Several of the arthropod families that were the most species rich in this grassland were found on all of the plants sampled, i.e. Salticid spiders, Bruchid and Curculionid beetles, Cicadellid and Psyllid homopterans, and ants (Formicidae). There were more species rich families that were shared by grasses and the sub-shrub G. sarothrae than with mesquite. The absence of a relationship between growing season rainfall and species richness was attributed to variation in life history characteristics of arthropods and to the non-linear responses of annual and perennial desert grassland plants to rainfall.There were no significant differences in insect family or species richness on any of the plant types as a result of removal of mesquite (P. glandulosa) from selected plots. Intense, short duration (24 h) grazing by livestock during in late summer resulted in reduced species richness in the grass-herb vegetation layer but had no effect on insect species richness on snakeweed or mesquite shrubs. Livestock grazing in winter had no effect on insect species richness on any of the vegetation sampled.  相似文献   

5.
Monthly botanical composition of cattle diet was determined for the period July 1994 to June 1995 in faecal samples by microhistological analysis. Principal components and cluster analyses were used to evaluate diet homogeneity among months. November through March diets were mainly composed of grasses and forbs (50 to 73%). During the April–September period, shrubs represented 36 to 57% of the overall diet. In October more than half the diet came from two species, one shrub (32%) and one grass (25%) making this month very different from the rest. The composition of cattle diets was significantly correlated with temperature and/or rainfall.  相似文献   

6.
The effect of both a non-prescribed summer fire and grazing at high stocking rate following fire on plant community composition, the frequency of occurrence of bare soil, grasses and shrubs, species diversity and biomass of herbaceous forage were evaluated for three growing seasons after fire. Changes in community composition occurred as a consequence of both fire and grazing. Communities were dominated by unpalatable shrubs and grasses in unburned sites as a result of a long history of overgrazing. Fire contributed to a conversion of those shrublands to communities with a more favourable balance between woody and herbaceous species. The frequency of palatable grasses and herbaceous forage biomass increased by a factor ofc. 3 at the expense of woody vegetation. Grazing after fire had significant positive (i.e. decrease in undesirable grasses) and negative (i.e. increase in bare soil) effects.  相似文献   

7.
Grazing effects on patchy dryland vegetation in northern Patagonia   总被引:1,自引:0,他引:1  
In this study the spatial patterns and dynamics of vegetation patches along a grazing gradient in the steppe ofLarrea divaricataandStipaspp. in NE Patagonia (Argentina) are described. A general effect of grazing is the reduction of total plant cover resulting from the decrease in cover of perennial grasses (Stipa speciosa, Poa ligularis, Stipa tenuis) and some tall shrubs (Chuquiraga hystrix, Bougainvillea spinosa, Lycium chilense). Dwarf shrubs (Nassauvia fueguianaandJunellia seriphioides) increase their cover under medium and/or high grazing pressures. Plant species are spatially grouped into patches which alternate with areas of bare soil. Eleven types of vegetation patch differing in the dominant plant functional type or species, floristic richness and size were identified with different relative frequency along the grazing gradient. Based on these results, it is postulated that grazing forces the replacement of large patches dominated by tall shrubs with high species richness, byLarrea divaricatapatches or small dwarf shrub patches with low species richness and the extinction of grass patches. This results from: (1) disruption of local balances of species deletions and additions; (2) fragmentation of large patches; and (3) formation of new vegetation patches. These changes lead to differing plant spatial organization and heterogeneity along the grazing gradient which may be described by characteristic arrays of vegetation patches.  相似文献   

8.
Atriplex canescens is a relatively common dioecious shrub in western North America. It is considered a valuable forage resource for both wild and domestic herbivores. Sex ratios and shrub dimensions were recorded in stands of tetraploid A. canescens that had been either protected from cattle grazing or summer- or winter-grazed by cattle for at least 20 years. Stem diameter and crown shape were used as surrogates for shrub age which could not be estimated by counting growth rings. Shrub sex ratios in exclosures were significantly more female biased than the empirically derived ratio for tetraploid A. canescens (55 female:35 male: 10 monecious). Conversely, shrub sex ratios in grazed pastures were not significantly different from the empirical ratio. Proportion of female shrubs in exclosures was significantly higher than in grazed pastures. Proportion of male shrubs, on the other hand, was similar in exclosures and grazed pastures. Winter-grazed shrub stands were apparently younger than both summer-grazed and protected shrubs. Protected shrubs appeared to be the oldest. Grazed female shrubs were apparently younger than grazed males, however, shrub ages of protected male and female shrubs were apparently not different. Cattle-grazing may have affected female shrubs more negatively at this site, causing gender-based differential mortality, and/or sex-shifting. Such processes could account for the differences in sex ratios, and for the apparent gender-related differences in shrub age that were observed.  相似文献   

9.
Patagonia grasslands are subjected to two main disturbances, fire and grazing, but little information is available about its effects on vegetation. We studied post-fire survival and resprouting ability of two dominant grass species, Stipa speciosa and Festuca pallescens, for four years; evaluated the effect of early post-fire defoliation on both species; and tested whether competition is important in post-fire recovery in San Ramón Ranch, NW Patagonia (Argentina). To simulate grazing, a clipping treatment was applied at the beginning and end of growing seasons. Survival rates were high (>60%) and, after three years, biomass of both species in the burned area was similar to the unburned area. Competition seems to play an important role in the early post-fire recovery of both species, particularly in the case of F. pallescens that increased 87% the biomass production without competition. Fire may improve forage quality by eliminating the standing dead material, but early post-fire grazing might endanger the persistence of F. pallescens. We suggest requiring a resting period before livestock introduction and controlling grazing intensity.  相似文献   

10.
We examined the impact of shrub-shrub interactions and soil type (rocky or sandy) on growth and spatial distribution of the two savanna shrub species Tarchonanthus camphoratus and Acacia mellifera. To explore plant interactions, we compared the size of juvenile and mature T. camphoratus shrubs between different locations (under the subcanopy of A. mellifera and in the open). Juvenile T. camphoratus shrubs had similar sizes regardless of location; however, in rocky soil, mature shrubs in the open were larger than those near A. mellifera, implying an inter-specific competitive effect of A. mellifera on T. camphoratus. Juvenile T. camphoratus shrubs grew faster in the sandy than in the rocky area. Furthermore, we used the Wiegand-Moloney O-ring statistics to explore the spatial distribution of T. camphoratus. T. camphoratus showed spatial aggregation, but in the rocky area T. camphoratus juveniles were positively associated with A. mellifera (indicating facilitation as the pattern-creating process), whereas in the sandy area they were positively associated with mature T. camphoratus shrubs (indicating seed dispersal as the pattern-creating process). T. camphoratus exhibited encroachment potential in the sandy area. We showed how spatial pattern analysis can help to explore processes determining woody plant spacing and recommend its further use.  相似文献   

11.
Rainfall interception by sand-stabilizing shrubs related to crown structure   总被引:2,自引:0,他引:2  
On the edge of the Tengger Desert in northern China,revegetation has changed the landscape from moving dunes to stabilized dunes covered by shrubs,which further modifies the pattern of rainfall redistribution.To study rainfall interception loss by shrubs and its relationship to rainfall properties and crown structure,throughfalls passing through crowns of Artemisia ordosica Krash.and Caragana korshinskii Kom.were measured using nine PVC cups under the canopy of each of the two shrubs during 73 rain events over a three-year period,with total rainfall of 260.9 mm.Interception losses of gross rainfall by A.ordosica and C.korshinskii account for 15% and 27% of the total on a crown area basis,and 6% and 11% on a ground area basis,respectively.Individual throughfall(T) and interception(I) were significantly related to rainfall amount(Pg),duration(D),and intensity(R).Ratios of throughfall to rainfall(T/Pg) and interception to rainfall(I/Pg) were not only significantly related to Pg,D,and R,but also to shrub species,and interactions of species with crown volume(CV) and leaf area index(LAI).Under most rain events,interceptions by C.korshinskii with greater CV and LAI were significantly higher than those by A.ordosica,and more rainfall interception occurred at locations closer to the stems of the two shrubs.For C.korshinskii,I/Pg had a significant positive linear relation with CV and LAI,while T/Pg had a significant negative linear relation with them.CV has a greater influence on T/Pg and I/Pg than does LAI.Using a regression method,canopy water storage capacities are estimated to be 0.52 and 0.68 mm,and free throughfall coefficient to be 0.62 and 0.47 for A.ordosica and C.korshinskii,respectively.  相似文献   

12.
Overgrazing by livestock has caused desertification in the Monte, where ctenomyids and livestock share grasses as main food items. The diet of Ctenomys eremophilus, above-ground food availability and changes related to cattle grazing are analyzed in the arid plain of Mendoza, Argentina. The most available categories were grasses, followed by low shrubs and tall shrubs. Tuco-tucos showed dietary generalism, ate mainly above-ground plant parts, preferred grasses and avoided shrubs at both grazed and ungrazed sites. Plant cover, grass diversity and availability decreased under livestock grazing, which was reflected in the diet by a lower percentage of grasses, a shift toward low shrubs and higher number of frequently used resources. Tuco-tucos in the grazed paddock compensated for lower consumption of vegetative plant parts by increasing the use of Prosopis flexuosa pods stored inside burrows. Moreover, greater dietary variation among individuals suggests foraging restricted to the items closest to burrow holes. These feeding tactics would allow them to reduce above-ground foraging as a response to high raptor predation risk due to increased bare soil. The plant recovery detected during the rest period, favoured by moderate stocking rate and rotational grazing system, would allow coexistence of tuco-tucos and cattle.  相似文献   

13.
Responses of herbaceous and suffrutescent species to fire, grazing, and presence of Prosopis glandulosa were examined in a Chihuahuan desert grassland in south-central New Mexico. Treatments were assigned randomly to eight 12×8 m plots within each of two blocks. Following fires in June 1995, unfenced plots were exposed to livestock grazing over 4 years. Plots were established that either included or excluded P. glandulosa. Perennial grass cover, primarilyBouteloua eriopoda , decreased by 13% in burned plots but increased 5% in unburned areas. Conversely, perennial forb cover was 4% greater after fire. Perennial grass frequency decreased 30% more and perennial forb frequency increased 10% more following burning. Further, increases in evenness after fire resulted in a 225% increase in species diversity. Grazing also resulted in a decrease in perennial grass cover while frequency decreased 22% more in grazed than ungrazed plots. Only frequency and not cover of perennial forbs and annual grasses increased more following grazing. Presence of P. glandulosa had no differential effect on responses of non-shrub species. Fires were conducted during near drought conditions while grazing occurred during years of precipitation equivalent to the long-term average. Precipitation immediately following fire may be critical for recovery of B. eriopoda -dominated desert grasslands; relationships between fire and post-fire precipitation patterns require future investigation.  相似文献   

14.
Throughout the western United States, the invasive annual grass, medusahead (Taeniatherum caput-medusae L. Nevski), is rapidly invading grasslands once dominated by native perennial grasses, such as bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A). It is also invading grasslands dominated by less undesirable invasive annual grasses, especially cheatgrass (Bromus tectorum L.). Understanding medusahead growth dynamics relative to native perennial grasses and cheatgrass is central to predicting and managing medusahead invasion. We hypothesized that medusahead would have a higher relative growth rate (RGR), a longer period of growth, and as a consequence, more total biomass at the end of the growing season than the native perennial grass and cheatgrass. In 2008 (dry conditions), 250 seeds and in 2009 (wet conditions), 250 and 100 seeds of each species were sown in 1 m2 plots with 5 replicates. Shoots were harvested on 3-25 day intervals throughout the growing season. The native perennial grass had more biomass and higher RGR than medusahead in the dry year, but the relationship was reversed in the wet year. Precipitation in 2008 was well-below average and this level of drought is very infrequent based on historical weather data. Medusahead had a longer period of growth and more total biomass than cheatgrass for both years. We expect that medusahead will continue to invade both native perennial and less undesirable invasive annual grasslands because of its higher RGR and extended period of growth.  相似文献   

15.
We quantified soil nutrients and biological crust cover (bryophytes and lichens) under the canopies of three species of Mojave Desert shrubs and in interspaces between shrubs at three elevations to determine the effects of shrub species, soil crust, and elevation on islands of soil fertility. Means of pH, organic matter, total Kjeldahl nitrogen, nitrogen mineralization, and gravimetric soil moisture are significantly greater in soils under Ambrosia dumosa (Gray) Payne, Larrea tridentata Cov., and Coleogyne ramosissima Torr. than soils from adjacent interspace microhabitats. Although soil moisture and soil organic matter increase by a factor of 1.5 from the low elevation to the high elevation site, the ratio of shrub to interspace concentrations, or the difference in mean soil variables between shrubs and interspaces, is effectively constant and independent of elevation. Total bryophyte and lichen cover is relatively low (24.5%), however, there are 11 species of bryophytes and two species of lichens distributed across three elevations with the highest species richness and cover at the low-elevation site. Bryophyte and lichen cover is correlated with silt but is not related, consistently, to soil nutrients. Overall, the balance of processes controlling spatial aggregation of soil nutrients under shrubs is remarkably insensitive to potential differences in organic inputs among elevations, shrub species, and soil crust surfaces.  相似文献   

16.
Shallow-rooted grasses and deep-rooted shrubs dominate arid ecosystems where nitrogen is concentrated in the upper layers of the soil and water is distributed throughout. Analysis of mineral nitrogen and absorption patterns using a tracer indicated that shrubs in Patagonia absorbed nutrients from the lower, relatively nutrient-poor layers of the soil. Are they, consequently, at a competitive disadvantage with grasses that have the opposite pattern? Studies of nitrogen economy indicated that shrub and grass species have similar N-use efficiency but that they achieve it through opposite mechanisms. Shrubs have a conservative N economy absorbing annually only small fraction of their N content, whereas grasses have a more open N economy. This study about N-capture strategies in conjunction with previous studies about water-use by shrubs and grasses in the Patagonian Steppe suggest a coupling of N and water-capture strategies. Our findings have implications for the response of arid and semiarid ecosystems to global warming, nitrogen deposition, and biodiversity change. For example, climate change scenarios predict, for most arid regions, decreases in moisture availability that will result in a reduction in deep water, which in turn will reduce shrub density and result in a less conservative nitrogen economy.  相似文献   

17.
Climate and grazing are the main drivers of plant community composition and species richness in arid environments. This study aimed to examine the vegetation response to a spatial precipitation gradient, interannual rainfall variability, and grazing pressure in Mongolia. To examine the effect of a spatial precipitation gradient, we compared species richness among six sites. To investigate the effects of interannual rainfall variability and grazing pressure, we compared species richness for 2 years at two sites, in desert-steppe and steppe areas. The regional gradient in annual precipitation showed positive and negative relationships with grass richness and shrub richness, respectively, although total species richness did not vary significantly. The proportions of the different functional groups were affected by grazing pressure and rainfall variability in both zones. In the desert-steppe zone, species richness was lower in the drier year but did not vary with grazing pressure. In the steppe zone, species richness varied significantly with grazing pressure but did not vary between years. Precipitation would be more important than grazing pressure on vegetation changes in drier areas with high rainfall variability.  相似文献   

18.
Shrub fertile islands are a common feature in arid ecosystems. To examine the effect of plant species on the spatial patterns of soil chemical and physical properties surrounding individual shrubs, two deciduous shrub species with different morphologies (Tamarix spp. and Haloxylon ammodendron Bge.) were studied at an oasis–desert ecotone in South Junggar Basin. Soil samples were collected under the shrub crown (canopy), at the vertically projected limit of shrub crown margin (periphery), and in the space between shrub crowns (interspace) at two depths, 0–10 and 10–20 cm, to analyze their physical and chemical properties. The results show that the fertile islands of Tamarix spp. are enriched with more soil nutrients (significantly higher, P<0.05; soil organic matter (SOM); total nitrogen (TN) and available nitrogen (AN); to a deeper depth (>20 cm) and in a larger area (beyond the canopied area) compared to that of H. ammodendron (significantly higher, P<0.05, soil nutrients detected only for AN; <20 cm in depth; smaller than the canopied area). Soil texture patterns surrounding the shrubs of the two species are even more different, with more coarse particles under the Tamarix spp. canopies compared to the interspace between shrubs but fewer under the H. ammodendron canopies compared to the interspaces. These variations are attributed to the difference in morphology of the two studied species: the Y-shaped crowns of H. ammodendron are less capable of capturing and maintaining litter under them than the hemispheroidal crowns of Tamarix spp., which leads to the less well developed fertile islands surrounding H. ammodendron shrubs.  相似文献   

19.
The ways in which herbivores regulate their energy and water balance under hot, dry conditions are briefly reviewed. Cattle account for about two-thirds of the biomass of domestic stock in Africa, but their Eurasian origin means that their physiology and grazing behaviour are not wholly adapted to the natural pastures and climate of Africa, especially when drought strikes. In general, most herbivores can withstand heat and water shortage quite well, provided conditions do not become extreme. However, malnutrition will inevitably develop as pasture productivity declines under drought and overgrazing. This will affect most seriously animals that cannot range far from water and that depend mainly on drought susceptible grasses rather than on more resistant shrubs and trees.  相似文献   

20.
The sustainability of ecosystem restoration of refuse dumps in open-pit coal mines depends on plant species selection, their configuration, and the optimal usage of water resources. This study is based on field experiments in the northern refuse dump of the Heidaigou open-pit coal mine in Inner Mongolia of China established in 1995. Eight plant configurations, including trees, shrubs, grasses, and their combinations, as well as the adjacent community of natural vegetation, were selected. The succession of the revegetated plants, soil water storage, the spatiotemporal distribution of plant water deficits degree and its compensation degree were also studied. Results indicated that the vegetation cover (shrubs and herbaceous cover), richness, abundance, soil nutrients (soil organic matter, N and P), and biological soil crust coverage on the soil surface are significantly influenced by the vegetation configurations. The average soil water storage values in the shrub+grass and grass communities throughout the growing season are 208.69 mm and 206.55 mm, which are the closest to that of in the natural vegetation community (215.87 mm). Plant water deficits degree in the grass and shrub+grass communities were the lowest, but the degrees of water deficit compensation in these configuration were larger than those of the other vegetation configurations. Differences in plant water deficit degree and water compensation among the different configurations were significant (P<0.05). Plant water deficit degrees were predominantly minimal on the surface, increased with increasing soil depth, and remained stable at 80 cm soil depth. The soil moisture compensation in the natural vegetation, shrub+grass, and grass communities changed at 10%, while that in other vegetation communities changed between 20% and 40%. Overall, we conclude that the shrub+grass and grass configuration modes are the optimal vegetation restoration models in terms of ecohydrology for future ecological engineering projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号