首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
This paper focuses on the formation mechanism of fractures induced by excavation of a gallery in soft sedimentary rocks in the Horonobe area of Japan.Detailed fracture mapping of the gallery indicates that the fractures consist of both pre-existing shear fractures and excavation damaged zone(EDZ) fractures. EDZ fractures correspond to weak planes associated with bedding planes or transgranular cracks.The EDZ fractures terminate against pre-existing shear fractures.Therefore,even for excavations in soft sedimentary rocks,formation of the EDZ fractures are controlled by pre-existing fractures and earlier weak planes.  相似文献   

4.
As karst systems are natural windows to the underground, speleology, combined with geological surveys, can be useful tools for helping understand the geological evolution of karst areas. In order to enhance the reconstruction of the structural setting in a gypsum karst area (Vena del Gesso, Romagna Apennines), a detailed analysis has been carried out on hypogeal data. Structural features (faults, fractures, tectonic foliations, bedding) have been mapped in the ”Grotta del Re Tiberio” cave, in the nearby gypsum quarry tunnels and open pit benches. Five fracture systems and six fault systems have been identified. The fault systems have been further analyzed through stereographic projections and geometric-kinematic evaluations in order to reconstruct the relative chronology of these structures. This analysis led to the detection of two deformation phases. The results permitted linking of the hypogeal data with the surface data both at a local and regional scale. At the local scale, fracture data collected in the underground have been compared with previous authors’ surface data coming from the quarry area. The two data sets show a very good correspondence, as every underground fracture system matches with one of the surface fracture system. Moreover, in the cave, a larger number of fractures belonging to each system could be mapped. At the regional scale, the two deformation phases detected can be integrated in the structural setting of the study area, thereby enhancing the tectonic interpretation of the area (e.g., structures belonging to a new deformation phase, not reported before, have been identified underground). The structural detailed hypogeal survey has, thus, provided very useful data, both by integrating the existing information and revealing new data not detected at the surface. In particular, some small structures (e.g., displacement markers and short fractures) are better preserved in the hypogeal environment than on the surface where the outcropping gypsum is more exposed to dissolution and recrystallization. The hypogeal geological survey, therefore, can be considered a powerful tool for integrating the surface and log data in order to enhance the reconstruction of the deformational history and to get a three-dimensional model of the bedrock in karst areas.  相似文献   

5.
The study of the creation and evolution of the excavation disturbed zone (EDZ) in argillaceous rocks is a major issue for the safety of nuclear wastes underground repositories. In this context, the argillaceous Tournemire site has provided a unique opportunity to study the evolution of the EDZ with time thanks to the existence of three openings of different ages. A thorough characterization of the EDZ has been conducted by different means such as visual observation, analysis of samples extracted from drilled boreholes, EDZ permeability measurements, etc. On the basis of these measurements, a conceptual model of the EDZ initiation and propagation at the Tournemire site has been proposed. In order to validate this model, numerical simulations of increasing complexity have been carried out. In a first attempt, the response of the rock mass to the excavation phase, followed by seasonal cyclic variations of temperature and relative humidity inside the opening, has been simulated by means of a purely mechanical analysis, using a simple elastic material model. The EDZ has been estimated by post-processing the calculated stress states, using a Mohr–Coulomb failure criterion. The results obtained show that no EDZ could be predicted unless adopting a low cohesion value for the rock mass. Moreover, the deferred nature of the EDZ formation in Tournemire could not be reproduced. These limitations have then been suppressed by using a coupled viscoplastic-damaging mechanical model, the parameters of which have been identified from different laboratory experiments. With this model, a time evolution of the EDZ could be predicted, but the EDZ pattern could not match the one observed in situ. Finally, in view of the importance of the hydraulic couplings, unsaturated hydro-mechanical calculations have been carried out to investigate the effect of the numerous seasonal variations cycles and the resulting shrinkage.  相似文献   

6.
Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this article, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularization method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped EDZ. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone), but also quantitatively (for the obtained displacement in three particular radial directions).  相似文献   

7.
Around galleries excavated at depth in geological media, the creation of a damaged zone with significant irreversible deformation is generally unavoidable. In the case of a geological disposal system for high-level radioactive waste, the resulting change in the host rock properties in this damaged zone may potentially be important with respect to the long-term evolution and the performance of that system. In this context, predicting the extent of the so-called Excavation Damaged Zone (EDZ) and, possibly, the fractures’ network topology remains a challenge. This study is aimed to simulate numerically the extension of this zone at the large scale’s excavation, around the Connecting gallery (HADES URL, Mol, Belgium), in Boom clay host rock through analyzing the evolution of strain localization in shear bands mode. To realistically model the involved phenomena, the concrete lining is considered on the gallery wall highlighting its impacts on the evolution of convergence and EDZ around the gallery. The focus of the current paper is made on analyzing the coupled hydro-mechanical behavior of Boom clay host rock during and after the gallery excavation with respect to the evolution of localized shear bands around the gallery. This study is accompanied by the analysis of the contact mechanism on the interface between the clay massive and the lining. The obtained results reveal some interesting features regarding the contact phenomenon relatively to the evolution pattern of shear bands within the clay around the gallery. To assess the reliability of the proposed approach, a discussion on some in-situ observations during the gallery’s construction is also performed based on which a good agreement is found between the in-situ evidence and simulated results.  相似文献   

8.
In this paper, we study two different model reduction strategies for solving problems involving single phase flow in a porous medium containing faults or fractures whose location and properties are known. These faults are represented as interfaces of dimension N ? 1 immersed in an N dimensional domain. Both approaches can handle various configurations of position and permeability of the faults, and one can handle different fracture permeabilities on the two inner sides of the fracture. For the numerical discretization, we use the hybrid finite volume scheme as it is known to be well suited to simulating subsurface flow. Some results, which may be of use in the implementation of the proposed methods in industrial codes, are demonstrated.  相似文献   

9.
Dye-tracing methods are utilized in an area of southwestern Missouri, USA, in order to evaluate factors influencing groundwater flow in the karst lithology. Four new dye traces were conducted in the Burlington Limestone formation of the surficial Springfield Plateau aquifer. Dye traces were conducted with two large sinkholes with mapped caves as their drainage base, one with fluorescein and one with rhodamine-WT. Two other traces, both using fluorescein dye, were performed where dye was introduced into a groundwater-level monitoring well and an exploratory borehole. Results of these four traces indicate that structural geologic control—as expressed by joints, fractures, faults, and photolineaments—does not account solely for the observed dye-trace results. The available data suggest that significant influence on groundwater movement is exerted by bedding planes within the low dip-angle limestone formation or by lithologic variability within the formation (such as silt- or clay-rich layers that have not yet been clearly identified). Average linear tracer velocities from each of the four traces indicate groundwater movement is primarily through conduits that flow slower than open channel surface waters in the region, but significantly faster than typical groundwater flow through porous media.  相似文献   

10.
In this paper, we investigate the influence of the excavation damaged zone (EDZ) on the geomechanical performance of compressed air energy storage (CAES) in lined rock caverns. We conducted a detailed characterization of the EDZ in rock caverns that have been excavated for a Korean pilot test program on CAES in (concrete) lined rock caverns at shallow depth. The EDZ was characterized by measurements of P- and S-wave velocities and permeability across the EDZ and into undisturbed host rock. Moreover, we constructed an in situ concrete lining model and conducted permeability measurements in boreholes penetrating the concrete, through the EDZ and into the undisturbed host rock. Using the site-specific conditions and the results of the EDZ characterization, we carried out a model simulation to investigate the influence of the EDZ on the CAES performance, in particular related to geomechanical responses and stability. We used a modeling approach including coupled thermodynamic multiphase flow and geomechanics, which was proven to be useful in previous generic CAES studies. Our modeling results showed that the potential for inducing tensile fractures and air leakage through the concrete lining could be substantially reduced if the EDZ around the cavern could be minimized. Moreover, the results showed that the most favorable design for reducing the potential for tensile failure in the lining would be a relatively compliant concrete lining with a tight inner seal, and a relatively stiff (uncompliant) host rock with a minimized EDZ. Because EDZ compliance depends on its compressibility (or modulus) and thickness, care should be taken during drill and blast operations to minimize the damage to the cavern walls.  相似文献   

11.
Displacement gradients on single fault surfaces are a function of the maximum displacement on a fault and the dimensions of the fault surface. Data on the maximum lateral dimensions (widths) and maximum displacements on normal faults and thrusts, with maximum displacements from 4 mm to 40 km, are used to derive an expression relating width, displacement and material properties. The basis of this expression is a fault growth model in which width is proportional to the square root of displacement. Width/displacement ratios vary systematically with the size of a fault from values of ca 30,000, which are characteristic of a single slip event, to about 10 in the case of thrusts with displacements of 40 km. Rocks from which the fault data are derived have a likely range of shear moduli from ca 0.1 to ca 30 GPa, which is sufficient to account for the range of data.Data on widths and maximum displacements of 308 fault traces recorded on British coalmine plans are shown to be consistent with variation of shear modulus of about half an order of magnitude. Data on 58 further fault traces are shown to be consistent with the fault growth model. Synsedimentary faults may have growth curves characteristically different from those of other faults.It is suggested that the increase in dimensions of a fault is a postseismic process of subcritical crack propagation for which the significant material property is fracture toughness.  相似文献   

12.
This paper describes the structural, petrophysical and hydromechanical properties relationships between a small fault zone and the porous layered carbonate series which host it. In a gallery located at 250-m depth, the deformation of a 22-m thick section of layered carbonates-, affected by a strike slip-fault have been characterized by means of structural (Q-value), acoustic velocities (Vp), porosity and uniaxial compressive strength (σc) measurements conducted in situ at the meter scale, and on laboratory samples at the infra-centimeter scale. A clear influence of the layers initial properties on fault architecture and properties evolution is underlined. In the porous layers with a low σc, there is an important accommodation of the deformation by micro-mechanisms resulting in a progressive decrease in the porosity toward the fault core. In the low-porosity layers with a high σc, deformations are accommodated toward the fault core by: an increase in the fracture porosity, in the micro-cracks porosity, and by displacements along pre-existing fractures resulting from a joint roughness decrease. The fault zone appears as relatively stiff and low permeable zones intercalated with low stiffness and high fracture permeability zones that extend one to tens of meters from the fault following the initial properties contrasts and geometry of the sedimentary layers.  相似文献   

13.
 The analysis of the fractures in the marble forming sierras Blanca and Mijas (southern Spain), with faults of markedly different sizes and joints measured at 21 stations, demonstrate the presence of two principal directions of fractures (NNW-SSE and NNE-SSW). Other major directions of fractures, although less distinct, are N100E, N120E and N60E. The form of the karstic cavities known in these sierras was influenced by fractures, fundamentally NNW-SSE and, to a lesser extent, NNE-SSW, as well as by the mineralogical composition of the marble. All the cavities known are located in blue limestone marble and appear to have formed by the end of the Miocene, principally during the Pliocene and the Pleistocene. From a hydrogeological standpoint, Sierra Blanca and Sierra Mijas constitute a unit limited by faults oriented ENE-WSW, NNW-SSE and NNE-SSW. Specifically, fractures of the latter two directions influence the compartmentalization and the hydrogeological functioning of the unit. According to the degree of fracturing and/or karstification, three basic types (apart from intermediate situations) of aquiferous behavior have been distinguished: karstic aquifer, fissured aquifer, and porous aquifer. Received: 2 October 1995 · Accepted: 29 May 1996  相似文献   

14.
Fracture mechanics theory and field observations together indicate that the shear stress on many faults is non-uniform when they slip. If the shear stress were uniform, then: (a) a physically implausible singular stress concentration theoretically would develop at a fault end; and (b) a single curved ‘tail fracture’ should open up at the end of every fault trace, intersecting the fault at approximately 70 °. Tail fractures along many small faults instead range in number, commonly form behind fault trace ends, have nearly straight traces and intersect a fault at angles less than 50 °. A ‘cohesive zone’, in which the shear stress is elevated near the fault end, can eliminate the stress singularity and can account for the observed orientation, shape, and distribution of tail fractures. Cohesive zones also should cause a fault to bend. If the cohesive zone shear stress were uniform, then the distance from the fault end to the bend gives the cohesive zone length. The nearly straight traces of the tail fractures and the small bends observed near some fault ends implies that the faults slipped with low stress drops, less than 10% of the ambient fault-parallel shear stress.  相似文献   

15.
张万良 《地质科学》2008,43(2):359-369
江西省中部宁都北部地区断裂构造发育,ETM453合成图像线形影像主要有北东向、北北东向和北西向,少量近东西向,线性构造具明显的新构造运动踪迹,地质证据有断层的走滑、地震、温泉和水系被错断等。其中,斜贯研究区中部的桃山断裂构造为一向南东下滑的右行张扭性断层,具捩断层性质,其挽近时期明显的构造运动造成桃山构造上盘距构造面不远的地带,特别是桃山构造的北东端如打鼓寨岩体北东部及外围,侵蚀作用较弱,保矿条件较好,具有较大的找矿潜力。  相似文献   

16.
The geodynamic model of the Palaeozoic basin opening of central Jebilet has been unknown before this study in spite of the abundance in the geological studies carried out in the studied sector using conventional methods. This is due to the scarcity of the key beds and synsedimentary structures. Using the synergy between the image data of the Landsat satellite TM sensor and the ground data, we have highlighted, herein, new structural data allowing the design of a new model of the Palaeozoic basin opening of central Jebilet. This opening could have been made according to dextral submeridian transverse faults with the individualization of subequatorial normal faults. To cite this article: A. El Harti et al., C. R. Geoscience 336 (2004).  相似文献   

17.
This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr–Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.  相似文献   

18.
Below the melt lens of fast spreading ridges, a low seismic velocity zone has been identified. From the study of ophiolite gabbros, in particular in Oman, this domain has been interpreted as a large magma chamber filled by a melt-poor mush where granular flow controlled by pressure solution-crystallization predominates over plastic flow. Melt migration through the mush is difficult to study in the field because the large magmatic flow taking place in this magma chamber has erased nearly all traces of migration paths. It is, however, still possible to identify sills and former dikes, now largely transposed into the layering. Physical traces for porous flow are rare, but petrological and geochemical evidence suggests that it also contributed to melt migration. Finally, in the lower gabbro horizons large magmatic folds and brecciated zones may bear evidence for magmatic intrusions. The combination of diking, porous flow and large-scale intrusions to carry melt through the magma chamber may be explained by the granular behaviour of the medium. It is suggested that the melt film present between grains and clots of grains reduces the large cohesive forces which characterize a solid, plastic, medium. Melt migration through the mush may thus depend on the size of cohesive clots, evolving through time and space, from porous flow to diking and melt intrusions for increasing larger clots. This process is illustrated by a physical experiment on pressurized air circulation through a granular medium.  相似文献   

19.
滇西北金顶巨型Zn-Pb矿田产于兰坪晚中生代—新生代盆地中北部,对其成矿作用机制仍存在分歧。跑马坪铅锌矿床是其北东部的一个大型隐伏矿床,由众多规模不等、呈筒柱状、大脉状及不规则囊状的矿体(群)组成。大量的地质填图及坑道观察表明,该矿床的形成严格受北西向逆断层破碎带的控制,矿体就位于云龙组(Ey)砂泥岩不整合面下伏的三合洞组(T3s)碎裂状灰岩、砂结灰岩质角砾岩内;断层破碎带中的矿化更强,而旁侧的次级裂隙多被砖红色砂泥岩充填。依据矿物组合及矿石组构特点,自矿体中心向外,依次可分为致密块状富锌矿带、脉状细粒硫化物矿化带、脉状胶粒状硫化物矿化带、方解石-天青石-铁氧化物矿化带和碳酸盐化带5个矿化带,各带之间多为渐变过渡关系。显微镜、扫描电镜观测和能谱面扫描分析发现,矿石中存在代表流体混合成矿特征的环-胶状构造及包含结构等显微组构,指示富含金属离子及硫酸盐的卤水与富含还原性硫的流体在高渗透性碎裂状灰岩或灰岩质角砾岩中混合而快速沉淀成矿。因此,逆断层控制的幕式流体混合作用可能是跑马坪铅锌矿床的重要成矿机制。  相似文献   

20.
The performance and safety assessment and technology demonstration are the main objectives of research programs for feasibility studies for deep geological repository of radioactive waste. In this context, the French national radioactive waste management agency (ANDRA) started to develop the Meuse/Haute-Marne underground research laboratory (URL) at Bure, nearly 300 km East of Paris. The host formation consists of a Callovo-Oxfordian claystone found between 420 and 550 m below ground, overlain and underlain by poorly permeable carbonate formations. One of the major concerns related to performance assessment is the excavation-induced fractures which may provide groundwater preferential pathway for radionuclide migration. The extent of the fractures possibly acting significantly in the radionuclide migration is known as the excavation damaged zone (EDZ). A scientific study on the EDZ characterization is performed at the main level of the URL (?490 m). Observations such as structural analysis on core, overcored resin-filled samples, geological survey of the drift face and sidewalls, were made to better understand the fracture network characteristics, extent and its generation. Pulse and constant head test hydraulic conductivity measurements were performed with multi packer system to estimate the extension of the EDZ hydraulic conductivity. Fractures exhibited high transmissivity near the excavation walls, but farther from the exaction walls, shear fractures showed hydraulic conductivity values reflecting values of undisturbed or slightly disturbed rock mass condition. The major findings in terms of geometry and properties of excavation-induced fractures are discussed in detail in this paper. For example, it is observed that the shape of the fracture network depends on the orientation of the drift in relation to the orientation of the in situ stress field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号