首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lavas produced by the Timanfaya eruption of 1730–1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/86Sr (around 0.703) and 143Nd/144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/144Nd ratios show crustal values (0.13–0.16) in the ultramafic xenoliths and mantle values (0.18–0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange (87Sr/86Sr and 143Nd/144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.  相似文献   

2.
The Rb–Sr decay system is one of the most widely used geochronometers for obtaining ages and cooling rates of terrestrial magmatic, metamorphic, and hydrothermal events. It has also been extensively applied to date extraterrestrial, early solar system events. The accuracy of Rb–Sr ages, however, strongly depends on the accuracy of the 87Rb decay constant (λ87Rb). We determined λ87Rb relative to the decay constants of 235U and 238U by comparing Rb–Sr ages of minerals with U–Pb ages obtained from the same intrusion. Comparison of U–Pb emplacement ages with high-precision Rb–Sr mineral ages from three rapidly cooled igneous rocks covering an age range of ca. 2.5 Ga yields an unweighted mean λ87Rb of 1.393 ± 0.004 × 10?11 yr?1 (i.e., ± 0.3%), corresponding to a half-life of 49.76 × 109 years. Because this decay constant is 2% lower than the presently recommended one, many previously published ages are 2% too young and the resulting geologic interpretations may need revision.  相似文献   

3.
We report trace element, samarium (Sm)–neodymium (Nd) and lead (Pb) isotopic data for individual micro-and mesobands of the Earth's oldest Banded Iron Formation (BIF) from the ∼ 3.7–3.8 Ga Isua Greenstone Belt (IGB, West Greenland) in an attempt to contribute to the characterization of the depositional environment and to the understanding of depositional mechanisms of these earliest chemical sediments. Rare earth element (REE)-yttrium (Y) patterns of the individual mesobands show features of modern seawater with diagnostic cerium (Ce/Ce), presodymium (Pr/Pr) and Y/holmium (Ho) anomalies. Very low high field strength elements (HFSE) concentrations indicate essentially detritus-free precipitation. Uranogenic Pb isotope data define a correlation line with a slope of 3691 ± 41 Ma, indicating that the uranium (U)–lead (Pb) system remained closed after the formation of this BIF. High 207Pb/204Pb relative to 206Pb/204Pb ratios compared to average mantle growth evolution models are a feature shared by BIF, penecontemporaneous basalts and clastic volcanogenic metasediments and are indicative of the ultimate high-μ (238U/204Pb) character of the source region, an essentially mafic Hadean protocrust. Sm–Nd isotopic relations on a layer-by-layer basis point to two REE sources controlling the back-arc basin depositional environment of the BIF, one being seafloor-vented hydrothermal fluids (εNd (3.7 Ga)  + 3.1), the other being ambient surface seawater which reached its composition by erosion of parts of the protocrustal landmass (εNd(3.7 Ga)  + 1.6). The validity of two different and periodically interacting water masses (an essentially two-component mixing system) in the deposition of alternating iron- and silica-rich layers is also reflected by systematic trends in germanium (Ge)/silicon (Si) ratios. These suggest that significant amounts of silica were derived from unexposed and/or destroyed mafic Hadean landmass, unlike iron which probably originated from oceanic crust following hydrothermal alteration by deep percolating seawater. Ge/Si distributional patterns in the early Archean Isua BIF are similar to those reported from the Paleoproterozoic Hamersley (Western Australia) BIF, but overall Ge concentrations are about one order of magnitude higher in the Archean BIF. This seems consistent with other lines of evidence that the ambient Archean seawater was enriched with iron relative to Proterozoic and recent seawater.  相似文献   

4.
In situ LA-ICPMS U-Pb, trace element, and Hf isotope data in zircon demonstrate a Carboniferous age for eclogite-facies metamorphism in Siluro-Devonian protoliths in the Huwan shear zone, Dabie Mountains, Central China. This age contrasts with the more prevailing Triassic age for high- to ultrahigh pressure (HP to UHP) metamorphism in the Qinling-Dabie-Sulu orogen. Metamorphic zircon in two eclogite samples from Sujiahe is characterized by low Th/U ratios, small negative Eu anomalies, flat HREE patterns, and low 176Lu/177Hf ratios. These geochemical signatures suggest that the zircon crystallized in the presence of garnet and in the absence of plagioclase feldspar. Furthermore, temperatures of ~ 655 and ~ 638 °C, calculated using the Ti content of zircon, are consistent with their formation during eclogite-facies metamorphism. The weighted mean 206Pb/238U age of 309 ± 4 Ma (2δ) for this zircon improves previous age estimates for eclogite-facies metamorphism in the Huwan shear zone, ranging from 420 to 220 Ma. Metamorphic zircon from one eclogite sample from Hujiawan, most likely formed during prograde metamorphism, yields an equivalent age estimate of 312 ± 11 Ma. Magmatic zircon cores in the three samples yield ages for the magmatic protoliths of the eclogites ranging from 420 ± 7 to 406 ± 5 Ma, and post-dating the middle Paleozoic collision of the North China and the Qinling terrain. The zircon crystals in the three eclogite samples display a large variation of εHf (t) values of ? 4.9 to 21.3. The metamorphic zircon overgrowths show the same range of εHf (t) values as those of the inherited magmatic crystal interiors. This suggests that the metamorphic zircon overgrowths may have formed by dissolution-reprecipitation of pre-existing magmatic zircon thereby preserving their original Hf isotopic composition. The high εHf (t) values suggest that the protoliths were derived from depleted mantle sources, most likely Paleotethyan oceanic crust; while the low εHf (t) values are attributed to crustal contamination. Some eclogites in the Huwan shear zone have a distinctive signature of continental crust most probably derived from the Yangtze Craton. The coexistence of Paleozoic oceanic crust and Neoproterozoic continental crust with similar metamorphic ages in the Huwan shear zone implies that Paleozoic Paleotethyan oceanic crust was produced within a marginal basin of the northern Yangtze Craton. The opening of the Paleo-Tethyan ocean was slightly younger than the collision of the North China Craton and the Qinling terrain during the Late Paleozoic in the Qinling-Dabie-Sulu orogen. Subduction of the Paleo-Tethyan oceanic crust and associated continental basement resulted in the 309 ± 2 Ma (2σ) eclogite-facies metamorphism in the Huwan shear zone. The subsequent Triassic continent-continent collision led to the final coalescence of the Yangtze and Sino-Korean cratons. Amalgamation of the Yangtze and North China cratons was, therefore, a multistage process extending over at least 200 Ma.  相似文献   

5.
New trace element and Hf, Nd, and Pb isotope data are reported for 22 basalts collected between 22°N and 35°N on the Mid-Atlantic Ridge. (La / Sm)N ratios identify the presence of enriched (E)-MORB in the northernmost part of this area and normal (N)-MORB elsewhere. A negative correlation is observed when 143Nd / 144Nd is plotted against 206Pb / 204Pb, 207Pb / 204Pb, and 208Pb / 204Pb, whereas 176Hf / 177Hf appears not to correlate with any of the other isotopic ratios. The E-MORB samples are characterized by high 206Pb / 204Pb, 207Pb / 204Pb, 208Pb / 204Pb, and low 143Nd / 144Nd. Principal Component Analysis (PCA) of Pb isotopes alone identifies three, and only three, significant geochemical end-members (‘components’). Including Nd and Hf isotopic data in the PCA produces spurious components, partly because of curved mixing relationships, and partly because of fractionation during melting. Our preferred interpretation of why 176Hf / 177Hf is decoupled from the other isotopic ratios is, as inferred from recent experimental data, that the Hf isotopic compositions of the melt and the residue fail to equilibrate during melting. A strong correlation between (Sr / Nd)N and (Eu / Eu*)N indicates that plagioclase is a residual phase of N-MORB, but not of E-MORB melting. The three end-members identified in this study are the depleted mantle, a common-type component, and an enriched plume-type end-member. The common, or ‘C’-type, end-member is characteristic of E-MORB and may itself be a mixture containing recycled oceanic crust (the MORB suite, terrigenous sediments, and/or oceanic plateaus). The plume-type end-member is likely to represent the lower mantle and may involve some primordial material. It is shown that mantle isochrons in general and the Pb–Pb isochron in particular do not characterize a specific geodynamic process acting to create mantle heterogeneities.  相似文献   

6.
We present sub-crystal-scale 238U–230Th zircon ages and 238U–230Th–226Ra plagioclase ages of bulk mineral separates from the Holocene (2.0–2.3 ka) eruptions of the Rock Mesa (RM) and Devil's Hills (DH) rhyolites at South Sister volcano, Oregon. We link these age data with sub-crystal trace-element analyses of zircon and plagioclase to provide insight into the subvolcanic system at South Sister, as an example of a small-volume continental arc volcano. Our results document the presence of coeval yet physically-distinct regions within the magma reservoir and constrain the timescales over which these heterogeneities existed. Zircons from the RM and DH dominantly record ages from 20 to 80 ka, with some grains recording ages > 350 ka, whereas plagioclase records 230Th–226Ra ages of 2.3–6.8 ka (RM) and 4.0–9.6 ka (DH-3) and a 238U–230Th age of 10 ± 34 ka (DH-3). We interpret zircons with ages < 350 ka as antecrysts inherited from a longer lived upper-crustal magma reservoir from which the rhyolites were generated, based on crystallization ages coeval with earlier periods of silicic volcanism at South Sister, the undersaturated nature of the RM and DH magmas with respect to zircon, and Ti-in-zircon temperatures consistent with low-temperature (< 815 °C) crystallization. In contrast, plagioclase ages are near the eruption age and dominantly preserve information about the recent (< 10 ka), higher-temperature evolution of the host magmas. Although zircon and plagioclase record different crystallization ages, each phase crystallized over the same time period in the RM compared to DH rhyolites. Linking these crystal age data with sub-crystal trace-element analyses demonstrates that zircon and plagioclase have distinct trace-element characteristics between eruptions, which require that the RM and DH crystals (and therefore magmas) were derived from distinct regions that had evolved independently for > 50 ka within a heterogeneous magmatic system and coexisted as physically-distinct, dominantly-liquid bodies prior to eruption. Thus, we favor a model where rhyolites are generated in independent batches by accumulation of evolved liquids in a heterogeneous, largely crystalline reservoir. Similarities in crystal age and chemical data to that at other young silicic systems (e.g., Mount St. Helens, Okataina Caldera Complex) suggest that this model may be more generally applicable to silicic magmas.  相似文献   

7.
The Earth's mantle is chemically and isotopically heterogeneous, and a component of recycled oceanic crust is generally suspected in the convecting mantle [Hofmann and White, 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436]. Indeed, the HIMU component (high µ = 238U/204Pb), one of four isotopically distinct end-members in the Earth's mantle, is generally attributed to relatively old (≥ 1–2 Ga) recycled oceanic crust in the form of eclogite/pyroxenite, e.g. [Zindler and Hart, 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493–571]. Although the presence of the recycled component is generally supported by element and isotopic data, little is known about its physical state at mantle depths. Here we show that the concentrations of Ni, Mn and Ca in olivine from the Canarian shield stage lavas, which can be used to assess the physical nature of the source material (peridotite versus olivine-free pyroxenite) [Sobolev et al., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417], correlate strongly with bulk rock Sr, Nd and Pb isotopic ratios. The most important result following from our data is that the enriched, HIMU-type (having higher 206Pb/204Pb than generally found in the other mantle end-members) signature of the Canarian hotspot magmas was not caused by a pyroxenite/eclogite constituent of the plume but appears to have been primarily hosted by peridotite. This implies that the old (older than ~ 1 Ga) ocean crust, which has more evolved radiogenic isotope compositions, was stirred into/reacted with the mantle so that there is not significant eclogite left, whereas younger recycled oceanic crust with depleted MORB isotopic signature (< 1 Ga) can be preserved as eclogite, which when melted can generate reaction pyroxenite.  相似文献   

8.
The possible sources of pre-anthropogenic Pb contributed to the world's oceans have been the focus of considerable study. The role of eolian dust versus riverine inputs has been of particular interest. With better calibration of isotopic records from central Pacific ferromanganese crusts using Os isotope stratigraphy it now appears that deep water Pb isotopic compositions were effectively homogeneous over a distance of 5000 km for the past 80 Myr. The composition shifted slightly from high 206Pb/204Pb ratios in the range of 18.87 ± 0.02 before 65 Ma to lower values of 18.62 ± 0.02 by 45 Ma and then gradually increased again very slightly to the present day ratio of 18.67 ± 0.02. The regional homogeneity provides evidence of a dominant well-mixed atmospheric source the most likely candidate for which is volcanic aerosols contributed either directly or as soluble condensates on eolian dust. The slight shift in Pb isotope composition of deep waters in the central Pacific between 65 and 45 Ma may be the result of a regional- or perhaps global-scale change in the sources of volcanic exhalations and volcanic activity caused by an increase in the importance of melting and assimilation of older continental crustal components over the Cenozoic.  相似文献   

9.
Large (> 100 km) meteorite impact cratering events play important roles in surface and biosphere evolution, however, their potential for widespread ductile modification of the lithosphere has been difficult to assess, due partly to our inability to isotopically age-correlate deep mineral fabrics with surface records. We have integrated benchmark U–Pb zircon dating methods (ID-TIMS, SHRIMP) with new microstructural techniques (EBSD, µXRD) to demonstrate that crystal–plastic deformation can cause rapid out-diffusion of radiogenic Pb and accompanying trace element alteration in crystalline zircon. We have used this phenomenon to directly date fabric in Archean zircons and xenoliths of the lower crust of South Africa at 2023 ± 15 million years, coeval with the 2020 ± 3 million year old Vredefort cratering event at surface, with extent ≥ 20,000 km2. Our findings indicate that regional exogenic fabrics, similar to high-temperature tectonic fabrics, exist in ancient crust. Moreover, our results establish that crystal-plastic deformation in the lithosphere can now be directly dated and linked to planetary evolution by zircon U–Pb strain chronometry.  相似文献   

10.
U–Pb dating is increasingly used to date speleothems that are too old for precise U–Th disequilibrium dating; however there is little data that can independently validate its application to such material. This study presents U–Pb ages for speleothems from the Spannagel Cave in the Austrian Alps including a detailed comparison with U–Th ages from an unusually U–rich sample that yields precise ages by both methods. Sample SPA4 is a flowstone with three growth phases separated by distinct hiatuses. For the youngest growth phase the U–Pb and U–Th ages are 267 ± 1 ka and 267 ± 5 ka respectively; the middle growth phase is 291 ± 1 versus 295 ± 11 ka while for the oldest growth phase a single sub-sample, assuming the same initial Pb composition as for the younger phases, yields an age of 340 ± 2 ka compared to 353 ± 9 ka by U–Th. Correlation of these ages with the marine isotope stages confirms that these speleothems grew during glacial stages as suggested by previous work on the same sample. Sample SPA 15 has U–Th isotopic compositions indistinguishable from secular equilibrium; the U–Pb data on the main growth phase of this sample give an age of 551 ± 10 ka, whereas a single analysis from the oldest phase suggests it may be on the order of 40 ka older. This detailed comparison of U–Pb and U–Th ages provides important support for the potential validity of the U–Pb method in older samples beyond the range of U–Th.  相似文献   

11.
Os–Hf–Sr–Nd isotopes and PGE were determined in peridotite xenoliths carried to the surface by Quaternary alkali basaltic magmas in the Tokinsky Stanovik Range on the Aldan shield. These data constrain the timing and nature of partial melting and metasomatism in the lithospheric mantle beneath SE Siberian craton. The xenoliths range from the rare fertile spinel lherzolites to the more abundant, strongly metasomatised olivine-rich (70–84%) rocks. Hf–Sr–Nd isotope compositions of the xenoliths are mainly within the fields of oceanic basalts. Most metasomatised xenoliths have lower 143Nd / 144Nd and 176Hf / 177Hf and higher 87Sr / 86Sr than the host basalts indicating that the metasomatism is older and has distinct sources. A few xenoliths have elevated 176Hf / 177Hf (up to 0.2838) and plot above the Hf–Nd mantle array defined by oceanic basalts.187Os / 188Os in the poorly metasomatised, fertile to moderately refractory (Al2O3  1.6%) Tok peridotites range from 0.1156 to 0.1282, with oldest rhenium depletion ages being about 2 Ga. The 187Os / 188Os in these rocks show good correlations with partial melting indices (e.g. Al2O3, modal cpx); the intercept of the Al–187Os / 188Os correlation with lowest Al2O3 estimates for melting residues (∼0.3–0.5%) has a 187Os / 188Os of ∼0.109 suggesting that these peridotites may have experienced melt extraction as early as 2.8 Gy ago. 187Os / 188Os in the strongly metasomatised, olivine-rich xenoliths (0.6–1.3% Al2O3) ranges from 0.1164 to 0.1275 and shows no apparent links to modal or chemical compositions. Convex-upward REE patterns and high abundances of heavy to middle REE in these refractory rocks indicate equilibration with evolved silicate melts at high melt / rock ratios, which may have also variably elevated their 187Os / 188Os. This inference is supported by enrichments in Pd and Pt on chondrite-normalised PGE abundance patterns in some of the rocks. The melt extraction ages for the Tok suite of 2.0 to 2.8 Ga are younger than oldest Os ages reported for central Siberian craton, but they must be considered minimum estimates because of the extensive metasomatism of the most refractory Tok peridotites. This metasomatism could have occurred in the late Mesozoic to early Cenozoic when the Tok region was close to the subduction-related Pacific margin of Siberia and experienced large-scale tectonic and magmatic activity. This study indicates that metasomatic effects on the Re–Os system in the shallow lithospheric mantle can be dramatic.  相似文献   

12.
The location in the Barberton Greenstone Belt (Kaapvaal Craton) of ∼3.26–3.24 Ga asteroid impact ejecta units at, and immediately above, a sharp break between a > 12 km-thick mafic–ultramafic volcanic crust (Onverwacht Group ∼3.55–3.26 Ga, including the ∼3.298 > 3.258 Ga Mendon Formation) and a turbidite–felsic volcanic rift-facies association (Fig Tree Group ∼3.258–3.225 Ga), potentially represents the first documented example of cause–effect relations between extraterrestrial bombardment and major tectonic and igneous events [D.R. Lowe, G.R. Byerly, F. Asaro, F.T. Kyte, Geological and geochemical record of 3400 Ma old terrestrial meteorite impacts, Science 245 (1989) 959–962; D.R. Lowe, G.R. Byerly, F.T. Kyte, A. Shukolyukov, F. Asaro, A. Krull, Spherule beds 3.47–3.34 Ga-old in the Barberton greenstone belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution, Astrobiology 3 (2003) 7–48; A.Y. Glikson, The astronomical connection of terrestrial evolution: crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 ± 0.1 Ga bombardment of the Earth–Moon system, J. Geodyn. 32 (2001) 205–229]. Here we correlate this boundary with a contemporaneous break and peak magmatic and faulting events in the Pilbara Craton, represented by the truncation of a 3.255–3.235 Ga-old volcanic sequence (Sulphur Springs Group—SSG) by a turbidite-banded iron formation–felsic volcanic association (Pincunah Hill Formation, basal Gorge Creek Group). These events are accompanied by ∼3.252–3.235 Ga granitoids (Cleland plutonic suite). The top of the komatiite–tholeiite–rhyolite sequence of the SSG is associated with a marker chert defined at 3.238 ± 3–3.235 ± 3 Ga, abruptly overlain by an olistostrome consisting of mega-clasts of felsic volcanics, chert and siltstone up to 250 × 150 m-large, intercalated with siliciclastic sedimentary rocks and felsic volcanics (Pincunah Hill Formation-basal Gorge Creek Group-GCG [R. M. Hill, Stratigraphy, structure and alteration of hanging wall sedimentary rocks at the Sulphur Springs volcanogenic massive sulphide (VMS) prospect, east Pilbara Craton, Western Australia. B.Sc Hon. Thesis, University of Western Australia (1997) 67 pp.; M.J. Van Kranendonk, A.H. Hickman, R.H. Smithies, D.R. Nelson, Geology and tectonic evolution of the Archaean north Pilbara terrain, Pilbara Craton, Western Australia, Econ. Geol. 97 (2002) 695–732; M.J. Van Kranendonk, Geology of the North Shaw 1 : 100 000 Sheet. Geological Survey Western Australia 1 : 100 000 Geological Series (2000) 86 pp., R. Buick, C.A.W. Brauhart, P. Morant, J.R. Thornett, J.G. Maniew, J.G. Archibald, M.G. Doepel, I.R. Fletcher, A.L. Pickard, J.B. Smith, M.B. Barley, N.J. McNaughton, D.I. Groves, Geochronology and stratigraphic relations of the Sulphur Springs Group and Strelley Granite: a temporally distinct igneous province in the Archaean Pilbara Craton, Australia, Precambrian Res. 114 (2002) 87–120]). The structure and scale of the olistostrome, not seen elsewhere in the Pilbara Craton, is interpreted in terms of intense faulting and rifting, supported by topographic relief represented by deep incision of overlying arenites (Corboy Formation) into underlying units [M.J. Van Kranendonk, Geology of the North Shaw 1 : 100 000 Sheet. Geological Survey Western Australia 1 : 100 000 Geological Series (2000) 86 pp.]. The age overlaps between (1) 3.255 ± 4–3.235 ± 3 Ga peak igneous activity represented by the SSG and the Cleland plutonic suite (Pilbara Craton) and the 3.258 ± 3 Ga S2 Barberton impact unit, and (2) 3.235 ± 3 Ga top SSG break and associated faulting and the 3.243 ± 4 S3–S4 Barberton impact units may not be accidental. Should correlations between the Barberton S2–S4 impact units and magmatic and tectonic events in the Pilbara Craton be confirmed, they would imply impact-triggered reactivation of mantle convection, crustal anatexis, faulting and strong vertical movements in Archaean granite–greenstone terrains associated with large asteroid impacts, culminating in transformation from sima-dominated crust to continental rift environments.  相似文献   

13.
This study presents major-, trace-element, and rhenium–osmium (Re–Os) isotope and elemental data for basalts and gabbros from the Zermatt-Saas ophiolite, metamorphosed to eclogite-facies conditions during the Alpine orogeny. Igneous crystallisation of the gabbros occurred at 163.5 ± 1.8 Ma and both gabbro and basalt were subject to ‘peak’ pressure–temperature (PT) conditions of > 2.0 GPa and ~ 600 °C at about 40.6 ± 2.6 Ma.Despite such extreme PT conditions, Re–Os isotope and abundance data for gabbroic rocks suggest that there has been no significant loss of either of these elements during eclogite-facies metamorphism. Indeed, 187Re–187Os isotope data for both unaltered gabbros and gabbroic eclogites lie on the same best-fit line corresponding to an errorchron age of 160 ± 6 Ma, indistinguishable from the age of igneous crystallisation. In contrast, metamorphosed basalts do not yield age information; rather most possess 187Re/188Os ratios that cannot account for the measured 187Os/188Os ratios, given the time since igneous crystallisation. Taken with their low Re contents these data indicate that the basalts have experienced significant Re loss (∼ 50–60%), probably during high-pressure metamorphism. Barium, Rb and K are depleted in both gabbroic and basaltic eclogites. In contrast, there is no evident depletion of U in either lithology.Many ocean-island basalts (OIB) possess radiogenic Os and Pb isotope compositions that have been attributed to the presence of recycled oceanic crust in the mantle source. Published Re–Os data for high-P metabasaltic rocks alone (consistent with this study) have been taken to suggest that excessive amounts of oceanic crust are required to generate such signatures. However, this study shows that gabbro may exert a strong influence on the composition of recycled oceanic crust. Using both gabbro and basalt (i.e. a complete section of oceanic crust) calculations suggest that the presence of ≥ 40% of 2 Ga oceanic crust can generate the radiogenic Os compositions seen in some OIB. Furthermore, lower U/Pb ratios in gabbro (compared to basalt) serve to limit the 206Pb/204Pb ratios generated, while having a minimal effect on Os ratios. These results suggest that the incorporation of gabbro into recycling models provides a means of producing a range of OIB compositions having lower (and variable) 206Pb/204Pb ratios, but still preserving 187Os/188Os compositions comparable to HIMU-type OIB.  相似文献   

14.
Late Cretaceous (66.2 ± 0.5 Ma amphibole and 66.7 ± 0.2 Ma phlogopite 40Ar/39Ar ages) nephelinitic volcanic rocks from Godzilla Seamount in the eastern North Atlantic (34°N latitude) have trace element and Sr–Nd–Pb–Hf-isotope compositions similar to the Enriched Mantle I (EM-I) endmember, except for their low 207Pb/204Pb relative to 206Pb/204Pb ratios (206Pb/204Pbin = 17.7, 207Pb/204Pbin = 15.34) plotting below the Northern Hemisphere Reference Line on the uranogenic Pb isotope diagram. O isotope data on amphibole separates are mantle-like (δ18O = 5.6–5.8‰). Age and location of the isolated Godzilla Seamount, however, preclude it from being derived from the Madeira or Canary hotspots, making a lower-mantle origin unlikely. Therefore we propose derivation from a shallow (lithospheric/asthenospheric) melting anomaly. As observed in mid-ocean-ridge and ocean-island basalts, there is a systematic decrease of 207Pb/204Pb ratios (and Δ7/4) in the individual EM-I endmember type localities towards northern latitudes with Godzilla lying on the extension of this trend. This trend is mirrored in ultra-potassic volcanic rocks such as lamproites and kimberlites, which reflect the composition of enriched subcontinental lithospheric mantle. Therefore, a global pattern in 207Pb/204Pb ratios and Δ7/4 is suggested. The geochemical composition of EM-I endmember type localities, including Godzilla lavas, and the enriched (DUPAL) anomaly in the southern hemisphere could reflect derivation from ancient, metasomatized subcontinental lithospheric mantle. We propose a two-stage model to explain the trace element and isotopic composition of the EM-I mantle endmember localities worldwide: 1) during the early history of the Earth, subcontinental lithosphere was metasomatized by melts from subducted slabs along convergent margins generating high μ (238U/204Pb) sources, and 2) as the Earth cooled, hydrous fluids replaced hydrous melts as the main slab component metasomatizing the subcontinental lithospheric mantle (generating EM-I sources with lower μ). In accordance with this model, the global variations in 207Pb/204Pb ratios and Δ7/4 could reflect geographic differences in μ and/or the age at which the transition from stages 1 to 2 took place in the Archaean lithosphere. The model would require a re-definition of the EM-I endmember to low 206Pb/204Pb, high 208Pb/204Pb (positive Δ8/4) but variable 207Pb/204Pb (positive and negative Δ7/4).  相似文献   

15.
Abundant dunite and harzbugite xenoliths are preserved in Early Cretaceous high-Mg# [63–67, where Mg# = molar 100 × Mg/(Mg + Fetot)] diorite intrusions from western Shandong in the North China Craton (NCC). Dunite and some harzburgite xenoliths typically preserve areas of orthopyroxenite (sometimes accompanied by phlogopite) either as veins or as zones surrounding chromite grains. Harzburgite is chiefly composed of olivine, orthopyroxene, minor clinopyroxene and chromian-spinel. High Mg#'s (averaging 91.4) and depletions in Al2O3 and CaO (averaging 0.52 wt.% and 0.29 wt.%, respectively) in harzburgite and dunite xenoliths suggest that they are residues formed by large degrees of polybaric melting. However, olivines and orthopyroxenes from dunite xenoliths spatially associated with orthopyroxenite display lower Mg#'s (i.e., 82–87 and 83–89, respectively), suggesting that an adakitic melt–peridotite reaction has taken place. This is consistent with the production of veined orthopyroxene or orthopyroxene + phlogopite in dunite and some harzburgite xenoliths in response to the introduction of adakitic melt into the previously depleted lithospheric mantle (i.e., harzburgite and dunite xenoliths). The presence of orthopyroxene in veins or as a zones surrounding chromite in peridotite xenoliths is thought to be representative of adakitic melt metasomatism. The dunite and harzbugite xenoliths are relatively rich in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), poor in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), and lack Eu anomalies on chondrite normalized trace element diagrams. The initial 87Sr/86Sr ratios and εNd(t) values for the xenoliths range from 0.7058 to 0.7212 and + 0.18 to ? 19.59, respectively. Taken together, these features, combined with the strong depletion in HFSE and the existence of Archean inherited zircons in the host rocks, suggest that the adakitic melt was derived from the partial melting of early Mesozoic delaminated lower continental crust. The interaction of the adakitic melt with peridotite is responsible for the high-Mg# character of the early Cretaceous diorites in western Shandong.  相似文献   

16.
SHRIMP zircon U–Pb dating, mineral chemical, element geochemical and Sr–Nd–Pb–Hf isotopic data have been determined for the Yulong monzogranite-porphyry in the eastern Tibet, China. The Yulong porphyry was emplaced into Triassic strata at about 39 Ma. The rocks are weakly peraluminous and show shoshonitic affinity, i.e., alkalis-rich, high K2O contents with high K2O / Na2O ratios, enrichment in LREE and LILE. They also show some affinities with the adakite, e.g., high SiO2 and Al2O3, and low MgO contents, depleted in Y and Yb, and enrichment in Sr with high Sr / Y and La / Yb ratios, and no Eu anomalies. The Yulong porphyry has radiogenic 87Sr / 86Sr (0.7063–0.7070) and unradiogenic 143Nd / 144Nd (εNd =  2.0 to − 3.0) ratios. The Pb isotopic compositions of feldspar phenocrysts separated from the Yulong porphyry show a narrow range of 206Pb / 204Pb ratios (18.71–18.82) and unusually radiogenic 207Pb / 204Pb (15.65–15.67) and 208Pb / 204Pb (38.87–39.00) ratios. In situ Hf isotopic composition of zircons that have been SHRIMP U–Pb dated is characterized by clearly positive initial εHf values, ranging from + 3.1 to + 5.9, most between + 4 and + 5. Phenocryst clinopyroxene geothermometry of the Yulong porphyry indicates that the primary magmas had anomalously high temperature (> 1200 °C). The source depth for the Yulong porphyry is at least 100 km inferred by the metasomatic volatile phase (phlogopite–carbonate) relations. Detailed geochemical and Sr–Nd–Pb–Hf isotopic compositions not only rule out fractional crystallization or assimilation-fractional crystallization processes, but also deny the possibility of partial melting of subducted oceanic crust or basaltic lower crust. Instead, low degree (1–5%) partial melting of a metasomatized lithosphere (phlogopite–garnet clinopyroxenite) is compatible with the data. This example gives a case study that granite can be derived directly by partial melting of an enriched lithospheric mantle, which is important to understand the source and origin of diverse granites.  相似文献   

17.
In order to better understand the nature and formation of oceanic lithosphere beneath the Early Cretaceous Ontong Java Plateau, Re–Os isotopes have been analysed in a suite of peridotite xenoliths from Malaita, Solomon Islands. Geological, thermobarometric and petrological evidence from previous studies reveal that the xenoliths represent virtually the entire thickness of the southern part of subplateau lithospheric mantle (< 120 km). This study demonstrates that vertical Os isotopic variations correlate with compositional variations in a stratified lithosphere. The shallowest plateau lithosphere (< 85 km) is dominated by fertile lherzolites showing a restricted range of 187Os/188Os (0.1222 to 0.1288), consistent with an origin from ~ 160 Ma Pacific lithosphere. In contrast, the basal section of subplateau lithospheric mantle (~ 95–120 km) is enriched in refractory harzburgites with highly unradiogenic 187Os/188Os ratios ranging from 0.1152 to 0.1196, which yield Proterozoic model ages of 0.9–1.7 Ga. Although the whole range of Os isotope compositions of Malaita peridotites is within the variations seen in modern abyssal peridotites, the contrasting isotopic compositions of shallow and deep plateau lithosphere suggest their derivation from different mantle reservoirs. We propose that the subplateau lithosphere forms a genetically unrelated two-layered structure, comprising shallower, typical oceanic lithosphere underpinned by deeper impinged material, which included a component of recycled Proterozoic lithosphere. The impingement of residual but chemically heterogeneous mantle, mechanically coupled to the recently formed, thin lithosphere, may have a bearing on the anomalous initial uplift and late subsidence history of the seismically anomalous plateau root.  相似文献   

18.
The Permo-Carboniferous Oslo Rift developed in the foreland of the Variscan orogen over a period of some 50 million years through a process characterized by moderate extension and widespread magmatism. The overall tectonic situation places the Oslo Rift in a post-collisional, dextral transtensional setting related to the convergence between Baltica, Laurentia, Gondwana and Siberia during assembly of Pangea, the location probably reflecting the control by pre-existing lithospheric structures. Although a detailed understanding of these factors and processes relies strongly on having a good age control, the dating of mafic to ultramafic alkalic volcanic units formed during initial rifting has been a very challenging task. In this study we have successfully employed perovskite from melilitic and nephelinitic volcanic rocks, together with magmatic titanite in a more evolved ignimbrite, to obtain ID-TIMS high-precision U–Pb ages. Three samples from various levels of the Brunlanes succession, in the southernmost exposures of the Oslo Graben, yield ages of 300.2 ± 0.9, 300.4 ± 0.7 and 299.9 ± 0.9 Ma. A melililitic tuff at the base of the Skien succession further to the northwest yields a slightly younger age of 298.9 ± 0.7 Ma. The initial Pb compositions derived mainly from coexisting pyroxene, apatite and hornblende are characterized by extremely radiogenic initial 206Pb/204Pb ratios (up to 21.3) that confirm a provenance of these early alkaline basalts from HIMU-type sources. The U–Pb ages coincide with the Gzhelian age inferred from fossils in the upper part of the basal rift sedimentary fill of the Asker Group, and post-date the underlying basal sedimentary sequences by some 10 million years, pointing to a relatively rapid initiation of the rifting process.  相似文献   

19.
Carbonatites are mantle-derived, intraplate magmas that provide a means of documenting isotopic variations of the Earth's mantle through time. To investigate the secular Li isotopic evolution of the mantle and to test whether Li isotopes document systematic recycling of material processed at or near the Earth's surface into the mantle, we analyzed the Li isotopic compositions of carbonatites and spatially associated mafic silicate rocks. The Li isotopic compositions of Archean (2.7 Ga) to Recent carbonatites (δ7Li = 4.1 ± 1.3 (n = 23, 1σ)) overlap the range typical for modern mantle-derived rocks, and do not change with time, despite ongoing crustal recycling. Thus, the average Li isotopic composition of recycled crustal components has not deviated greatly from the mantle value (~ + 4) and/or Li diffusion is sufficiently fast to attenuate significant heterogeneities over timescales of 108 years. Modeling of Li diffusion at mantle temperatures suggests that limited δ7Li variation in the mantle through time reflects the more effective homogenization of Li in the mantle compared to radiogenic isotope systems. The real (but limited) variations in δ7Li that exist in modern mantle-derived magmas as well as carbonatites studied here may reflect isotopic fractionation associated with shallow-level processes, such as crustal assimilation and diffusive isotopic fractionation in magmatic systems, with some of the scatter possibly related to low-temperature alteration.  相似文献   

20.
High 4He/3He ratios of 100 000 to 160 000 found at HIMU ocean islands (“high μ,” where μ is the U/Pb ratio) are usually attributed to the presence of recycled oceanic crust in the HIMU mantle source. However, significantly higher 4He/3He ratios are expected in recycled crust after residence in the mantle for periods greater than 1 Ga. In order to better understand the helium isotopic signatures in HIMU basalts, we have measured helium and neon isotopic compositions in a suite of geochemically well-characterized basalts from the Cook–Austral Islands. We observe 4He/3He ratios ranging from 56 000 to 141 000, suggesting the involvement of mantle reservoirs both more and less radiogenic than the mantle source for mid-ocean ridge basalts (MORBs). In addition, we find that the neon isotopic compositions of HIMU lavas extend from the MORB range to compositions less nucleogenic than MORBs. The Cook-Austral HIMU He–Ne isotopic compositions, along with Sr, Nd, Pb, and Os isotopic compositions, indicate that in addition to recycled crust, a relatively undegassed mantle end-member (e.g., FOZO) is involved in the genesis of these basalts. The association of relatively undegassed mantle material with recycled crust provides an explanation for the close geographical association between HIMU lavas and EM (enriched mantle)-type lavas from this island chain: EM-type signatures represent a higher mixing proportion of relatively undegassed mantle material. Mixing between recycled material and relatively undegassed mantle material may be a natural result of entrainment processes and convective stirring in deep mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号