首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isotopic composition of materials such as glacial ice, tree rings, lake sediments, and speleothems from low-to-mid latitudes contains information about past changes in temperature (T) and precipitation amount (P). However, the transfer functions which link δ18Op to changes in T or P, dδ18Op/dT and dδ18Op/dP, can exhibit significant temporal and spatial variability in these regions. In areas affected by the Southeast Asian monsoon, past variations in δ18O and δD of precipitation have been attributed to variations in monsoon intensity, storm tracks, and/or variations in temperature. Proper interpretation of past δ18Op variations here requires an understanding of these complicated stable isotope systematics. Since temperature and precipitation are positively correlated in China and have opposite effects on δ18Op, it is necessary to determine which of these effects is dominant for a specific region in order to perform even qualitative paleoclimate reconstructions. Here, we evaluate the value of the transfer functions in modern precipitation to more accurately interpret the paleorecord. The strength of these transfer functions in China is investigated using multiple regression analysis of data from 10 sites within the Global Network for Isotopes in Precipitation (GNIP). δ18Op is modeled as a function of both temperature and precipitation. The magnitude and signs of the transfer functions at any given site are closely related to the degree of summer monsoon influence. δ18Op values at sites with intense summer monsoon precipitation are more dependent on the amount of precipitation than on temperature, and therefore exhibit more negative values in the summer. In contrast, δ18Op values at sites that are unaffected by summer monsoon precipitation exhibit strong relationships between δ18Op and temperature. The sites that are near the northern limit of the summer monsoon exhibit dependence on both temperature and amount of precipitation. Comparison with simple linear models (δ18Op as a function of T or P) and a geographic model (δ18Op as a function of latitude and altitude) shows that the multiple regression model is more successful at reproducing δ18Op values at sites that are strongly influenced by the summer monsoon. The fact that the transfer function values are highly spatially variable and closely related to the degree of summer monsoon influence suggests that these values may also vary temporally. Since the Southeast Asian monsoon intensity is known to exhibit large variations on a number of timescales (annual to glacial–interglacial), and the magnitude and sign of the transfer functions is related to monsoon intensity, we suggest that as monsoon intensity changes, the magnitude and possibly even the sign of the transfer functions may vary. Therefore, quantitative paleoclimate reconstructions based on δ18Op variations may not be valid.  相似文献   

2.
The stable isotopic composition of hydrogen and oxygen (δ2H and δ18O) and tritium activity (3H) were monitored in monthly precipitation at two continental stations (Ljubljana, Zagreb) and six stations along the eastern Adriatic coasts of Slovenia and Croatia in the period 2001–2003. Mean air temperatures and amount of precipitation were also recorded.

Distinct differences in both meteorological and isotopic data between the continental and maritime stations were observed. Seasonal variations in δ18O are smaller at the maritime stations than at the continental ones due to smaller seasonal temperature variations. A good correlation between δ18O and δ2H was obtained for each station, and the local meteoric water lines are close to the Global Meteoric Water Line, with a decreasing trend of slope for the south-Adriatic stations. Good correlations between δ18O in monthly precipitation and mean monthly air temperature were observed at all stations. The slope of δ18O vs. T varied between 0.37‰ °C−1 and 0.15‰ °C−1. Mean 3H activity and seasonal variation of 3H activity are smaller at maritime stations than at continental ones. Additionally, 3H activity decreases in the NW–SE direction of the Adriatic coast.

The study of spatial variations over this relatively small area rich in geographical and climatic diversities showed the complexity of the isotopic composition of precipitation and the isotopic data obtained for eight stations, most of them in the karstic area along the Adriatic coast, and gave valuable information for regional hydrological investigations and modelling of isotope variability over the Mediterranean basin.  相似文献   


3.
The response of a climate proxy against measured temperature, rainfall and atmospheric circulation patterns at sub-annual resolution is the ultimate test of proxy fidelity but very few data exist showing the level of correspondence between speleothem climate proxies and the instrumental climate record. Cave sites on the Gibraltar peninsula provide a unique opportunity to calibrate speleothem climate proxies with the longest known available precipitation isotopes and instrumental records. An actively growing speleothem sampled from New St. Michaels Cave in 2004 is composed of paired laminae consisting of light columnar calcite and a darker microsparitic calcite. Stable isotope analysis of samples micromilled in 100 μm steps at the equivalent of bi-monthly intervals reveals fabric-correlated annual cycles in carbon isotopes, oxygen isotopes and trace elements responding to seasonal changes in cave microclimate, hydrology and ventilation patterns. Calcite δ13C values reach a minimum in the light columnar fabric and evidence from trace element behaviour and cave monitoring indicates that this grows under cave ‘winter’ conditions of highest pCO2, whereas the dark microsparitic calcite, characterised by elevated δ13C and δ18O values grows under low ‘summer’ pCO2 conditions. Drip water δ13CDIC reaches a minimum in March–April, at which time the attenuated δ18O signal becomes most representative of winter precipitation. An age model based on cycle counting and the position of the 14C bomb carbon spike yields a precisely dated winter oxygen isotope proxy of cave seepage water for comparison with the GNIP and instrumental climate record for Gibraltar. The δ18O characteristics of calcite deposited from drip water representing winter precipitation for each year can be derived from the seasonally resolved record and allows reconstruction of the δ18O drip water representing winter precipitation for each year from 1951–2004. These data show an encouraging level of correspondence (r2 = 0.47) with the δ18O of rainfall falling each year between October and March and on a decadal scale the δ18O of reconstructed winter drip water mirrors secular change in mean winter temperatures.  相似文献   

4.
孟加拉湾夏季风爆发的判断指标及其年际特征   总被引:1,自引:0,他引:1       下载免费PDF全文
晏红明  孙丞虎  王灵  李蕊  金燕 《地球物理学报》2018,61(11):4356-4372
利用高低层大气环流、OLR(向外长波辐射)、CMAP降水、SST(海表温度)等资料分析了孟加拉湾地区3—5月多年气候平均大气环流及不同要素的演变特征,定义了一个新的孟加拉湾夏季风(BOBSM,下同)爆发指标为孟加拉湾地区(5°N—15°N,90°E—97.5°E)850 hPa和200 hPa纬向风区域平均的变化同时满足U850 > 3 m·s-1和U200 < -5 m·s-1,并持续5天的第一天即作为BOBSM爆发日期.该季风指数有明确的天气学意义,可以反映孟加拉湾低层西南风持续稳定和南亚高压在青藏高原建立早晚的特征.文章进一步分析了BOBSM爆发的年际特征及其前兆海洋信号特征,结果表明:1981—2010年BOBSM爆发的平均日期为5月10日,季风爆发有显著的年际波动,爆发最早在1999年(4月11日)和最晚在1968年(6月1日),年代际尺度上表现为由爆发偏晚至偏早的变化趋势;BOBSM爆发早(晚)与热带印度洋地区850 hPa的越赤道气流和西风异常加强(减弱),以及200 hPa青藏高原南亚高压的季节性建立偏早(晚)等密切联系;前期冬季赤道西太平洋的海温冷(暖)变化对BOBSM爆发早(晚)有很好的指示意义,前期冬季海温偏高(低)有利于季风偏早(晚),其影响的主要途径是通过热源变化激发纬向垂直环流及其热带印度洋和太平洋低层环流异常,进而影响季风爆发早晚.  相似文献   

5.
通过一系列的理想数值试验,研究了亚、非地区热带次尺度的海陆分布和青藏高原大地形在亚洲夏季风形成中的作用.试验结果显示:海陆分布的存在以及海陆分布的几何形状对亚洲夏季风的形成有非常重要的影响.下垫面全是海洋,没有陆地时,无季风现象的存在.当仅有副热带大尺度陆地,而缺乏南亚次尺度陆地和非洲大陆热带陆地时,夏季无明显的越赤道气流,仅在欧亚副热带陆地的东南部有弱的季风,无印度、孟加拉湾和南海夏季风.中南半岛、印度半岛和非洲大陆热带陆地的存在,在夏季引导南半球的东南信风越赤道转向为西南气流,使得南海的北部、中南半岛、孟加拉湾和印度半岛、阿拉伯海上空的低层为强西南气流控制,印度、孟加拉湾和南海夏季风产生.副热带陆地向热带的深入对副热带陆上产生夏季强对流性降水起着至关重要的作用.青藏高原的存在加强了高原东侧的季风,使得季风区向北发展,青藏高原对东亚季风起放大器的作用;减弱了高原西侧的季风,使得季风区向南收缩.  相似文献   

6.
During the summer monsoon season over India a range of intraseasonal modulations of the monsoon rains occur due to genesis of weather disturbances over the Bay of Bengal (BOB) and the east Arabian Sea. The amplitudes of the fluctuations in the surface state of the ocean (sea-surface temperature and salinity) and atmosphere are quite large due to these monsoonal modulations on the intraseasonal scale as shown by the data collected during the field programs under Bay of Bengal Monsoon Experiment (BOBMEX) and Arabian Sea Monsoon Experiments (ARMEX). The focus of BOBMEX was to understand the role of ocean-atmospheric processes in organizing convection over the BOB on intra-seasonal scale. ARMEX-I was aimed at understanding the coupled processes in the development of deep convection off the West Coast of India. ARMEX-II was focused on the formation of the mini-warm pool across the southeast Arabian Sea in April-May and its role in the abrupt onset of the monsoon along the Southwest Coast of India and its further progress along the West Coast of India. The paper attempts to integrate the results of the observational studies and brings out an important finding that atmospheric instability is prominently responsible for convective organization whereas the upper ocean parameters regulate the episodes of the intraseasonal oscillations.  相似文献   

7.
Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM, the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the telecon- nection mode which is from the northwest of India via the Tibetan Plateau to northern China. The for- mer mode is defined as the "south" teleconnection of the Asian summer monsoon, forming in the pe- riod of ISM onset; while the latter mode is called the "north" teleconnection, mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection’s formation, the Asian monsoon circulation has experienced a series of important changes: ISM onset, the northward movement of the south Asia high (SAH), the onset vortex occurrence, the eastward extension of the stronger tropical westerly belt, and the northeastward jump of the western Pacific subtropical high (WPSH), etc. Consequently, since ISM sets up over Kerala, the whole Asian continent is covered by the upper SAH after about two weeks, while in the mid- and lower troposphere, a strong wind belt forms from the Arabian Sea via the southern India, BOB and the South China Sea (SCS), then along the western flank of WPSH, to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams, the upper westerly jet stream and the low level jet have been coupled ver- tically over east Asia, while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet stream and the low level jet, i.e. right of the entrance of the upper jet stream and left of the low level jet. Such a structure of the vertical circulation can trigger the Meiyu onset over the Yangtze River Valley.  相似文献   

8.
Stable isotope values of Costa Rican surface waters   总被引:3,自引:0,他引:3  
Stable isotope data of surface waters from the humid tropics in general, and Costa Rica in particular, are scarce. To improve our understanding of the spatial distribution of stable isotopes in surface waters, we measured δ18O and δD in river and lake (n=63) and precipitation (n=3) samples from Costa Rica. We also present data from the IAEA/WMO isotopes in precipitation network as context for our study. Surface water isotope values do not strongly correlate with elevation, stream head elevation, stream length, distance from Caribbean Sea, or estimated mean annual precipitation for the country as a whole. However, the data show distinct regional trends. The δ18O and δD values downwind of mountain ranges are inversely related to the altitude of the ranges the air masses traverse. In the lee of the high Talamanca Range, δ18O values are 6–8‰ lower, while in the lee of the lower Tilarán Range δ18O values are 2–3‰ lower than upwind sites along the Caribbean Slope. An altitude effect of −1.4‰ δ18O/km is present on the Pacific slope of southern Costa Rica, equivalent to a temperature effect of −0.3‰/°C. The Nicoya and Osa Peninsulas have higher values than upwind sites, suggesting input of Pacific-sourced moisture, evaporative enrichment, or decreased condensation temperatures. Elevated and increasing d-excess values inland along the Nicaragua Trough suggest a recycled component may be an important contributor to the water budget. These data provide preliminary stable isotope information for Costa Rica, and will benefit paleoclimatic research in the region. More detailed studies would be beneficial to our understanding of the controls on stable isotope composition of tropical waters.  相似文献   

9.
Three extreme cases of seasonal precipitation over 31 contiguous meteorological subdivisions of India were decomposed into orthogonal components using eigenvector technique to examine their spatial and temporal behaviour. The first two eigenvectors combined were found to represent the seasonal precipitation over India to a sufficient high degree of accuracy retaining 90–95 percent of the total variance. These two components show high spatial similarity in all the three cases of the precipitation examined.The first component is characterized by a coherent variation over the area with large coherent variation over the north-east India, Central India and the west coast of India. The coefficients of the component show annual behaviour with the peak values generally reached during July. This component is representative of the summer monsoon (June–September) mode.The second component characterizes out of phase variation in precipitation between Central India, adjoining parts of the area, and peninsular India. The coefficients of the component show the semi-annual oscillation. It appears that the role of the second eigenvector might be to represent regionality of the seasonal march of the monsoon rain.  相似文献   

10.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

11.
Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys   总被引:3,自引:0,他引:3  
Many of the heaviest and lightest natural zinc (Zn) isotope ratios have been discovered in hydrothermal ore deposits. However, the processes responsible for fractionating Zn isotopes in hydrothermal systems are poorly understood. In order to better assess the total range of Zn isotopes in hydrothermal systems and to understand the factors which are responsible for this isotopic fractionation, we have measured Zn isotopes in seafloor hydrothermal fluids from numerous vents at 9–10°N and 21°N on the East Pacific Rise (EPR), the TAG hydrothermal field on the Mid-Atlantic Ridge, and in the Guaymas Basin. Fluid δ66Zn values measured at these sites range from + 0.00‰ to + 1.04‰. Of the many physical and chemical parameters examined, only temperature was found to correlate with fluid δ66Zn values. Lower temperature fluids (< 250 °C) had both heavier and more variable δ66Zn values compared to higher temperature fluids from the same hydrothermal fields. We suggest that subsurface cooling of hydrothermal fluids leads to precipitation of isotopically light sphalerite (Zn sulfide), and that this process is a primary cause of Zn isotope variation in hydrothermal fluids. Thermodynamic calculations carried out to determine saturation state of sphalerite in the vent fluids support this hypothesis with isotopically heaviest Zn found in fluids that were calculated to be saturated with respect to sphalerite. We have also measured Zn isotopes in chimney sulfides recovered from a high-temperature (383 °C) and a low-temperature (203 °C) vent at 9–10°N on the EPR and, in both cases, found that the δ66Zn of chimney minerals was lighter or similar to the fluid δ66Zn. The first measurements of Zn isotopes in hydrothermal fluids have revealed large variations in hydrothermal fluid δ66Zn, and suggest that subsurface Zn sulfide precipitation is a primary factor in causing variations in fluid δ66Zn. By understanding how chemical processes that occur beneath the seafloor affect hydrothermal fluid δ66Zn, Zn isotopes may be used as a tracer for studying hydrothermal processes.  相似文献   

12.
Oxygen and carbon data from eight stalagmites from northwest South Island are combined to produce composite records of δ18O and δ13C from 23.4 ka to the present. The chronology is anchored by 43 thermal ionization mass spectrometry (TIMS) uranium series ages. Delta 18O values are interpreted as having a first order positive relationship to temperature, but also to be influenced by precipitation in a complex manner. Delta 13C is interpreted as responding negatively to increases in atmospheric CO2 concentration, biological activity and precipitation amount.

Six climatic phases are recognized. After adjustment of 1.2‰ for the ice volume effect, the δ18O record between 23 and 18 ka varies around −3.72‰ compared to the Holocene average of −3.17‰. Late-glacial warming commenced between 18.2 and 17.8 ka and accelerated after 16.7 ka, culminating in a positive excursion between 14.70 and 13.53 ka. This was followed by a significant negative excursion between 13.53 and 11.14 ka of up to 0.55‰ depth that overlapped the Antarctic Cold Reversal (ACR) and spanned the Younger Dryas (YD). Positive δ18O excursions at 11.14 ka and 6.91–6.47 ka represent the warmest parts of the Holocene. The mid-Holocene from 6 to 2 ka was marked by negative excursions that coincide with increased glacial activity in the South Island. A short positive excursion from 0.71 to 0.57 ka was slightly later than the Medieval Warm Period of Europe.

Delta 13C values were high until 17.79 ka after which there was an abrupt decrease to 17.19 ka followed by a steady decline to a minimum at 10.97 ka. Then followed a general increase, suggesting a drying trend, to 3.23 ka followed by a further general decline. The abrupt decrease in δ-values after 17.79 ka probably corresponds to an increase in atmospheric CO2 concentration, biological activity and wetness at the end of the Last Glaciation, but the reversal identified in the δ18O record from 13.53 to 11.14 ka was not reflected in δ13C changes. The lowest δ13C values coincided with the early Holocene climatic suboptimum when conditions were relatively wet as well as mild.

Major trends in the δ18Oc record are similar to the Northern Hemisphere, but second order detail is often distinctly different. Consequently, at the millennial scale, a more convincing case can be made for asymmetric climatic response between the two hemispheres rather than synchronicity.  相似文献   


13.
孟加拉湾西南季风与南海热带季风的气候特征比较   总被引:8,自引:2,他引:6       下载免费PDF全文
本文运用NCAR/NCEP再分析数据和APHRO_MA_V1003R1降水数据,对比分析了孟加拉湾西南季风和南海热带季风的气候特征异同以及对降水分布的影响,得到如下结论:(1)孟加拉湾西南季风比南海热带季风爆发更早、强度更强、持续时间更久、向北推进更北.(2)孟加拉湾西南季风建立过程缓慢,主要是索马里越赤道西南气流的逐渐加强和热带印度洋ITCZ(赤道辐合带)的逐渐北移;而南海热带季风建立过程迅速,主要是东亚大槽的一次替换过程伴随西太平洋副热带高压的突然东撤和热带西太平洋ITCZ的突然北跳.(3)孟加拉湾西南风纬向分量较强,季风建立前后主要变化在于偏西风的强度;而南海西南风经向分量较强,季风建立后风向突然逆转,东南风由于副高东撤而迅速被西南风取代.(4)孟加拉湾西南季风撤退较快,而南海季风则撤退较慢.(5)根据季风进程将夏季风期划分为季风发展期(5月)、强盛期(6-8月)和减退期(9-10月).其间对流活跃区的发展和推进、季风槽的位置以及对应降水区域均有明显差异.(6)在夏季风期,孟加拉湾和南海经度上分别存在着由ITCZ北抬引起的、在季风槽对流活跃区上升而在南北两侧下沉的、南北对称分布的季风经向次级环流.由于孟加拉湾和青藏高原强大热源的存在,孟加拉湾上升区南北跨度比南海的更大;孟加拉湾经圈环流更加稳定,而南海经圈环流的南北摆动更明显;孟加拉湾上升中心区比南海的偏北;在季风减退期,由于南海ITCZ撤退较慢,其上升区比孟加拉湾上升区偏北.  相似文献   

14.
Although the identification of the moisture sources of a region is of prominent importance to characterize precipitation, the origin and amount of moisture towards the Indian Subcontinent and its relationship with the occurrence of precipitation are still not completely understood. In this article, the origin of the atmospheric water arriving to the Western and Southern India during a period of 5 years (1 January 2000–31 December 2004) is investigated by using a Lagrangian diagnosis method. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity of thousands of air particles aimed to the study area following the observed winds. During the summer monsoon, the main supply of moisture is the Somali Jet, which crosses the equator by the West Indian Ocean. The recycling process is the main water vapour source in winter. Two additional moisture sources located over northwestern India and the Bay of Bengal are identified. A 30% increase in the moisture flux from the Indian Ocean has been related to the occurrence of strong precipitation in the area, and at the end of the monsoon, the recycling became a significant contribution to the last part of the wet season of Western and Southern India. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
--Atmospheric aerosols were sampled from aircraft at various levels over Rihand in northern India during the monsoon season of 1974 and at surface levels at Calcutta, Delhi, Varanasi and Jodhpur during different seasons of 1970 and 1971. Millipore filter assembly was used for this purpose. Chloride nuclei, total aerosol and ice nuclei concentrations were evaluated from millipore filters. At Rihand/Varanasi, during the monsoon, the chloride size spectrum was broader and the distribution bimodal at cloud base level while the spectra were narrower and the distributions unimodal at other levels. At Rihand, chloride mass and larger giant chloride number were considerably higher, total aerosol higher while ice nuclei concentrations were lower on the days with moderate rain as compared to those with light rain. Calcutta (maritime) showed maximum while Varanasi (well-inland) showed minimum chloride number concentrations. As compared with Calcutta, Delhi (continental) had lower chloride and total aerosol, and markedly higher ice nuclei concentrations. Varanasi (high rainfall region) showed all the values, except for small-sized chlorides, notably higher with respect to Jodhpur (low rainfall region). Ice nuclei concentration was lowest in winter and highest in summer at Delhi. Variations of the aerosols during different parts of the day/night are also discussed.  相似文献   

16.
The 2010 boreal summer marked a worldwide abnormal climate. An unprecedented heat wave struck East Asia in July and August 2010. In addition to this, the tropical Indian Ocean was abnormally warm during the summer of 2010. Several heavy rainfall events and associated floods were also reported in the Indian monsoon region. During the season, the monsoon trough (an east–west elongated area of low pressure) was mostly located south of its normal position and monsoon low pressure systems moved south of their normal tracks. This resulted in an uneven spatial distribution with above-normal rainfall over peninsular and Northwest India, and deficient rainfall over central and northeastern parts of India, thus prediction (and simulation) of such anomalous climatic summer season is important. In this context, evolution of vertical moist thermodynamic structure associated with Indian summer monsoon 2010 is studied using regional climate model, reanalysis and satellite observations. This synergised approach is the first of its kind to the best of our knowledge. The model-simulated fields (pressure, temperature, winds and precipitation) are comparable with the respective in situ and reanalysis fields, both in intensity and geographical distribution. The correlation coefficient between model and observed precipitation is 0.5 and the root-mean-square error (RMSE) is 4.8 mm day?1. Inter-comparison of model-simulated fields with satellite observations reveals that the midtropospheric temperature [Water vapour mixing ratio (WVMR)] has RMSE of 0.5 K (1.6 g kg?1), whereas the surface temperature (WVMR) has RMSE of 3.4 K (2.2 g kg?1). Similarly, temporal evolution of vertical structure of temperature with rainfall over central Indian region reveals that the baroclinic nature of monsoon is simulated by the model. The midtropospheric warming associated with rainfall is captured by the model, whereas the model failed to capture the surface response to high and low rainfall events. The model has strong water vapour loading in the whole troposphere, but weaker coherent response with rainfall compared to observations. Thus, strong water vapour loading and overestimation of rainfall are reported in the model. This study put forward that the discrepancy in the model-simulated structure may be reduced by assimilation of satellite observations.  相似文献   

17.
The role of barotropic processes in the development of a monsoon depression, formed on 5 July 1979 during MONEX observational period, is studied by considering it as a quasi-geostrophic divergent barotropic instability problem of zonal flow of 3 July 1979 at 700 mb level. Numerical solutions are obtained by initial value approach. The preferred wave has a wavelength of 2750 km, an e-folding time of 4.3 days, a period of 6.5 days and an eastward phase speed of 4.9 ms–1. Structure of preferred wave is found to be in good agreement with the observed horizontal structure of the depression at 700 mb. Poleward momentum transports are found to predominate over equatorward transports.Parts of this paper were presented at the National Symposium on Early Results of MONEX-1979. 9–12 March 1981, in New Delhi, India.  相似文献   

18.
A continuing goal in the diagnostic studies of the atmospheric general circulation is to estimate various quantities that cannot be directly observed. Evaluation of all the dynamical terms in the budget equations for kinetic energy, vorticity, heat and moisture provide estimates of kinetic energy and vorticity generation, diabatic heating and source/sinks of moisture. All these are important forcing factors to the climate system. In this paper, diagnostic aspects of the dynamics and energetics of the Asian summer monsoon and its spatial variability in terms of contrasting features of surplus and deficient summer monsoon seasons over India are studied with reanalysis data sets. The daily reanalysis data sets from the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) are used for a fifty-two year (1948–1999) period to investigate the large-scale budget of kinetic energy, vorticity, heat and moisture. The primary objectives of the study are to comprehend the climate diagnostics of the Asian summer monsoon and the role of equatorial convection of the summer monsoon activity over India.It is observed that the entrance/exit regions of the Tropical Easterly Jet (TEJ) are characterized by the production/destruction of the kinetic energy, which is essential to maintain outflow/inflow prevailing at the respective location of the TEJ. Both zonal and meridional components contribute to the production of kinetic energy over the monsoon domain, though the significant contribution to the adiabatic generation of kinetic energy originates from the meridional component over the Bay of Bengal in the upper level and over the Somali Coast in the low level. The results indicate that the entire Indian peninsula including the Bay of Bengal is quite unstable during the summer monsoon associated with the production of vorticity within the domain itself and maintain the circulation. The summer monsoon evinces strong convergence of heat and moisture over the monsoon domain. Also, considerable heat energy is generated through the action of the adiabatic process. The combined effect of these processes leads to the formation of a strong diabatic heat source in the region to maintain the monsoon circulation. The interesting aspect noted in this study is that the large-scale budgets of heat and moisture indicate excess magnitudes over the Arabian Sea and the western equatorial Indian Ocean during surplus monsoon. On the other hand, the east equatorial Indian Ocean and the Bay of Bengal region show stronger activity during deficient monsoon. This is reflected in various budget terms considered in this study.  相似文献   

19.
Based on the observational data in summer, the variations of intraseasonal oscillation (ISO) of the daily rainfall over the lower reaches of the Yangtze River valley (LYRV) were studied by using the non-integer spectrum analysis. The NCEP/NCAR reanalysis data for the period of 1979–2005 were analyzed by principal oscillation pattern analysis (POP) to investigate the spatial and temporal characteristics of principal ISO patterns of the global circulation. The relationships of these ISO patterns to the rainfall ISO and the heavy precipitation process over LYRV were also discussed. It is found that the rainfall over LYRV in May–August is mainly of periodic oscillations of 10–20, 20–30 and 60–70 days, and the interannual variation of the intensity of its 20–30-day oscillation has a strongly positive correlation with the number of the heavy precipitation process. Two modes (POP1, POP2) are revealed by POP for the 20–30-day oscillation of the global 850 hPa geopotential height. One is a circumglobal teleconnection wave train in the middle latitude of the Southern Hemisphere (SCGT) with an eastward propagation, and the other is the southward propagation pattern in the tropical western Pacific (TWP). The POP modes explain 7.72% and 7.66% of the variance, respectively. These two principal ISO patterns are closely linked to the low frequency rainfall and heavy precipitation process over LYRV, in which the probability for the heavy precipitation process over LYRV is 54.9% and 60.4% for the positive phase of the imaginary part of POP1 and real part of POP2, respectively. Furthermore, the models of the global atmospheric circulation for the 20–30-day oscillation in association with or without the heavy precipitation process over LYRV during the Northern Hemisphere summer are set up by means of the composite analysis method. Most of the heavy precipitation processes over LYRV appear in Phase 4 of SCGT or Phase 6 of TWP. When the positive phases of 20–30-day oscillations for the rainfall over LYRV are associated with (without) the heavy precipitation process, a strong westerly stream appears (disappears) from the Arabian Sea via India and Bay of Bengal (BOB) to southern China and LYRV for the global 850 hPa filtered wind field during Phase 4 of SCGT. This situation is favorable (unfavorable) for the forming of the heavy precipitation process over LYRV. Similarly, a strong (weak) western wind belt forms from India through BOB to southern China and LYRV and the subtropical northwestern Pacific and central and eastern equatorial Pacific during Phase 6 of TWP for the cases with (without) the heavy precipitation process. The evolutions of these ISO patterns related to the 20–30-day oscillation are excited by either the interaction of extratropical circulation in both hemispheres or the heat source forcing in Asia monsoon domain and internal interaction of circulation in East Asia. These two global circulation models might therefore provide valuable information for the extended-range forecastof the heavy precipitation process over LYRV during the 10–30 days.  相似文献   

20.
Orissa State, a meteorological subdivision of India, lies on the east coast of India close to north Bay of Bengal and to the south of the normal position of the monsoon trough. The monsoon disturbances such as depressions and cyclonic storms mostly develop to the north of 15° N over the Bay of Bengal and move along the monsoon trough. As Orissa lies in the southwest sector of such disturbances, it experiences very heavy rainfall due to the interaction of these systems with mesoscale convection sometimes leading to flood. The orography due to the Eastern Ghat and other hill peaks in Orissa and environs play a significant role in this interaction. The objective of this study is to develop an objective statistical model to predict the occurrence and quantity of precipitation during the next 24 hours over specific locations of Orissa, due to monsoon disturbances over north Bay and adjoining west central Bay of Bengal based on observations to up 0300 UTC of the day. A probability of precipitation (PoP) model has been developed by applying forward stepwise regression with available surface and upper air meteorological parameters observed in and around Orissa in association with monsoon disturbances during the summer monsoon season (June-September). The PoP forecast has been converted into the deterministic occurrence/non-occurrence of precipitation forecast using the critical value of PoP. The parameters selected through stepwise regression have been considered to develop quantitative precipitation forecast (QPF) model using multiple discriminant analysis (MDA) for categorical prediction of precipitation in different ranges such as 0.1–10, 11–25, 26–50, 51–100 and >100 mm if the occurrence of precipitation is predicted by PoP model. All the above models have been developed based on data of summer monsoon seasons of 1980–1994, and data during 1995–1998 have been used for testing the skill of the models. Considering six representative stations for six homogeneous regions in Orissa, the PoP model performs very well with percentages of correct forecast for occurrence/non-occurrence of precipitation being about 96% and 88%, respectively for developmental and independent data. The skill of the QPF model, though relatively less, is reasonable for lower ranges of precipitation. The skill of the model is limited for higher ranges of precipitation. accepted September 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号