首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waves propagating from deep water into shallow coastal areas produce oscillatory currents near the sea bottom. The magnitude of these currents depend upon the period and amplitude of the incoming waves, and the dissipation mechanism such as wave breaking and bottom friction. Field experiments in a gently shoaling bay, i.e. Cleveland Bay, Northern Australia, showed that there is a broad band of water at around 6 m depth, where the benthic surge velocities are maximum. Both further inshore and offshore, the bottom velocities were less than at 6 m depth, contrary to the normal expectation that the velocities should increase as the water becomes shallower. A new and computationally efficient wave model was developed and was able to reproduce experimental results for waves above 50 cm wave height, but not for small waves (wave height about 30 cm). One implication of this higher band of benthic surge velocities may be to produce high water turbidities in this region. Turbidity data from Cleveland Bay is consistent with this hypothesis.  相似文献   

2.
Zonally propagating wave solutions of the linearized shallow water equations (LSWE) in a zonal channel on the rotating spherical earth are constructed from numerical solutions of eigenvalue equations that yield the meridional variation of the waves' amplitudes and the phase speeds of these waves. An approximate Schrödinger equation, whose potential depends on one parameter only, is derived, and this equation yields analytic expressions for the dispersion relations and for the meridional structure of the waves' amplitudes in two asymptotic cases. These analytic solutions validate the accuracy of the numerical solutions of the exact eigenvalue equation. Our results show the existence of Kelvin, Poincaré and Rossby waves that are harmonic for large radius of deformation. For small radius of deformation, the latter two waves vary as Hermite functions. In addition, our results show that the mixed mode of the planar theory (a meridional wavenumber zero mode that behaves as a Rossby wave for large zonal wavenumbers and as a Poincaré wave for small ones) does not exist on a sphere; instead, the first Rossby mode and the first westward propagating Poincaré mode are separated by the anti-Kelvin mode for all values of the zonal wavenumber.  相似文献   

3.
Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green‘s scond identity. This theory can be reduced to a number of the most typical mild-slope equations curreutly in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.  相似文献   

4.
It is well known that wave induced bottom oscillations become more and more negligible when the water depth exceeds half the wavelength of the surface gravity wave. However, it was experimentally demonstrated for regular waves that the bottom pressure oscillations at both first and second wave harmonic frequencies could be significant even for incoming waves propagating in deep water condition in the presence of a submerged plate [16]. For a water depth h of about the wavelength of the wave, measurements under the plate (depth immersion of top of plate h/6, length h/2) have shown bottom pressure variations at the wave frequency, up to thirty times larger than the pressure expected in the absence of the plate. In this paper, not only regular but also irregular wave are studied together with wave following current conditions. This behavior is numerically verified by use of a classical linear theory of waves. The wave bottom effect is explained through the role of evanescent modes and horizontally oscillating water column under the plate which still exist whatever the water depth. Such a model, which allows the calculation of the velocity fields, has shown that not only the bottom pressure but also the near bed fluid velocity are enhanced. Two maxima are observed on both sides of the location of the plate, at a distance of the plate increasing with the water depth. The possible impact of such near bed dynamics is then discussed for field conditions thanks to a scaling based on a Froude similarity. It is demonstrated that these structures may have a significant impact at the sea bed even in very deep water conditions, possibly enhanced in the presence of current.  相似文献   

5.
An exact second order theory has been formulated in this paper to calculate the wave forces on offshore structures. Lighthill's method for deep water waves has been extended to shallow water waves. Exact expression for linear velocity potential applicable to the circular cylindrical strcutures for shallow water waves have been used in these calculations. These results have been verified with those obtained by direct perturbation technique reported recently by Rahman and Heaps. It is interesting to note that both the methods yield identical results.  相似文献   

6.
A Modified Form of Mild-Slope Equation with Weakly Nonlinear Effect   总被引:6,自引:0,他引:6  
Nonlinear effect is of importance to waves propagating from deep water to shallow water.Thenon-linearity of waves is widely discussed due to its high precision in application.But there are still someproblems in dealing with the nonlinear waves in practice.In this paper,a modified form of mild-slope equa-tion with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation.The modified form of mild-slope equation is convenient to solvenonlinear effect of waves.The model is tested against the laboratory measurement for the case of a submergedelliptical shoal on a slope beach given by Berkhoff et al,The present numerical results are also comparedwith those obtained through linear wave theory.Better agreement is obtained as the modified mild-slope e-quation is employed.And the modified mild-slope equation can reasonably simulate the weakly nonlinear ef-fect of wave propagation from deep water to coast.  相似文献   

7.
A numerical model is developed that can predict the interaction of regular waves normally incident upon a curtainwall-pile breakwater; the upper part of which is a vertical wall and the lower part consists of an array of vertical piles. The numerical model is based on an eigenfunction expansion method, and utilizes a boundary condition nearby the vertical piles that accounts for wave energy dissipation. Numerical solution comprises a finite number of terms, which is a superposition of propagating waves and a series of evanescent waves. The modeling is validated by comparison with previous experimental studies and overall agreement between measurement and calculation is fairly good. The numerical results are related to reflection, transmission, and dissipation coefficient; wave run-up, wave force, and wave overturning moment are also presented. Effect of porosity, relative draft, and relative water depth are discussed; the choice of suitable range of them is described. The relative draft is more effective for shallow water waves. Model shows decrease in relative draft and leads to reduction of relative wave force, overturning moment, and runup. It is shown that curtainwall-pile breakwaters can operate both effectively and efficiently in the range of relative draft between 0.15 and 0.75. The range 0.5 to 0.2 is also recommended for porosity.  相似文献   

8.
Recent field measurements on beaches of different slopes have established that wave motion at periods substantially longer than the incident waves dominates the velocity field close to the shore. Analysis of a number of extensive data sets shows that much of this long wave motion is in the form of progessive edge waves, though forced wave motion, standing edge waves and free waves propagating away from the shore may also contribute to the energy.Theoretically, the drift velocities in bottom boundary layers due to edge waves show spatial patterns of convergence and divergence which may move sediment to form either regular crescentic or cuspate features when only one edge wave mode dominates, or a bewildering array of bars, bumps and holes when several phase-locked modes exist together.Convincing field demonstration of the link between nearshore topography and edge waves only exists for the special case of small-scale beach cusps on steep beaches, formed by edge waves at the subharmonic (twice the period) of the incident waves. At longer periods the link is proving more difficult to establish, due to the longer time-scales of topographic changes, the interaction between pre-existing topography and the water motion, and the observation of broad-banded edge wave motion which is not readily linked to topography with a well-defined scale.These ideas are, however, central to the study of nearshore processes, as most of the plausible alternate hypotheses do not seem to lead to quantitative predictions. Clearly, further theoretical and observational work is essential.  相似文献   

9.
海上石油水文勘探调查涉及海浪、海流等多种水文要素,S4 ADW浪潮仪作为为数不多的能同时测量海浪、海流要素的设备,在浅海观测中灵活度高,应用广泛,采用坐底式观测,不易受海上恶劣环境的破坏,能够持续得到石油水文勘探调查所需要的海浪、海流的同步观测数据.但是在实际操作和后期数据处理过程中该仪器尚存在一些自身问题,限制了该仪器的观测能力.本研究就S4仪器自身及其波浪处理软件方面所存在的典型问题进行了讨论,并提供了一套实用的解决方案,填补了该仪器使用经验方面的空白,可供国内外S4用户参考.  相似文献   

10.
Longitudinal and transverse oscillations within a harbor of constant slope are analyzed. Based on the linear shallow water approximation, longitudinal oscillations are described with Bessel equations. Ignoring friction, oscillations are forced using the period of the incident perpendicular wave field by the method of matched asymptotics. The analytic results show that the varying depth shifts the resonant wave numbers to lower values than those for the same geometric harbor with constant depth. Furthermore, we extend the shallow water equations to a linear, weakly dispersive, Boussinesq-type equation by modifying the offshore velocity component, and then use it to investigate possible existing transverse oscillations in the harbor of constant slope. These oscillations are types of standing edge waves. Their character is quite sensitive to the boundary condition at the backwall of the harbor.  相似文献   

11.
This paper considers the nonlinear transformation of irregular waves propagating over a mild slope (1?40). Two cases of irregular waves, which are mechanically generated based on JONSWAP spectra, are used for this purpose. The results indicate that the wave heights obey the Rayleigh distribution at the offshore location; however, in the shoaling region, the heights of the largest waves are underestimated by the theoretical distributions. In the surf zone, the wave heights can be approximated by the composite Weibull distribution. In addition, the nonlinear phase coupling within the irregular waves is investigated by the wavelet-based bicoherence. The bicoherence spectra reflect that the number of frequency modes participating in the phase coupling increases with the decreasing water depth, as does the degree of phase coupling. After the incipient breaking, even though the degree of phase coupling decreases, a great number of higher harmonic wave modes are also involved in nonlinear interactions. Moreover, the summed bicoherence indicates that the frequency mode related to the strongest local nonlinear interactions shifts to higher harmonics with the decreasing water depth.  相似文献   

12.
This paper considers the nonlinear transformation of irregular waves propagating over a mild slope (1:40). Two cases of irregular waves, which are mechanically generated based on JONSWAP spectra, are used for this purpose. The results indicate that the wave heights obey the Rayleigh distribution at the offshore location; however, in the shoaling region, the heights of the largest waves are underestimated by the theoretical distributions. In the surf zone, the wave heights can be approximated by the composite Weibull distribution. In addition, the nonlinear phase coupling within the irregular waves is investigated by the wavelet-based bicoherence. The bicoherence spectra reflect that the number of frequency modes participating in the phase coupling increases with the decreasing water depth, as does the degree of phase coupling. After the incipient breaking, even though the degree of phase coupling decreases, a great number of higher harmonic wave modes are also involved in nonlinear interactions. Moreover, the summed bicoherence indicates that the frequency mode related to the strongest local nonlinear interactions shifts to higher harmonics with the decreasing water depth.  相似文献   

13.
When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calcula...  相似文献   

14.
A non-linear coupled-mode system of horizontal equations is presented, modelling the evolution of nonlinear water waves in finite depth over a general bottom topography. The vertical structure of the wave field is represented by means of a local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional terms, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The present coupled-mode system fully accounts for the effects of non-linearity and dispersion, and the local-mode series exhibits fast convergence. Thus, a small number of modes (up to 5–6) are usually enough for precise numerical solution. In the present work, the coupled-mode system is applied to the numerical investigation of families of steady travelling wave solutions in constant depth, corresponding to a wide range of water depths, ranging from intermediate depth to shallow-water wave conditions, and its results are compared vs. Stokes and cnoidal wave theories, as well as with fully nonlinear Fourier methods. Furthermore, numerical results are presented for waves propagating over variable bathymetry regions and compared with nonlinear methods based on boundary integral formulation and experimental data, showing good agreement.  相似文献   

15.
The problem of locating very low frequency sound sources in shallow water is made difficult by the interaction of propagating acoustic waves with the sea floor. Slow wave speeds and the attendant short wavelengths suggest that low frequency beamforming and source localization with sea floor geophones can be accomplished with relatively small arrays when compared with hydrophone arrays in the water column. To test the feasibility of this approach, experiments were carried out in the shallow water of the Malta Channel of the Straits of Sicily where the Scholte wave speed was some 10 to 20 times slower that the speed of sound in water. A linear array of ten vertically gimballed geophones was deployed and measurements were made on propagating seismic wave fields generated by explosive shots. The resulting directivities, beam patterns, and sidelobe characteristics are in excellent agreement with array theory, which suggests that coherent processing is a viable technique on which to base new applications for seismic arrays on the sea floor. Supporting materials on the geophysics of Scholte waves and calculations of the wave field at the site are presented  相似文献   

16.
It is a good test for a numerical model to simulate progressive waves propagating over a submerged bar with a relatively high ratio of slopes. In this paper, the combined IB–VOF model is used to predict nonlinear dispersive waves propagating over a submerged bar with both slopes of 1:2. The predicted free surface elevations are compared with the experimental data and numerical results presented by other researchers. The comparison shows that the IB–VOF model is able to provide satisfactory wave profiles in the shallow water with strong nonlinear effects and in the wave transmitted region with strong wave dispersion in particular. Moreover, the wave evolution behind the submerged bar is described in detail, including the spatial wave profile modulation, spectral analysis of the time-series waves, flow velocity and pressure fields, and kinetic energy distribution. The effect of fluid viscosity on the numerical simulations is also studied, and it is found that the effect on the wave evolution considered in this paper is not significant. Finally, the hydrodynamic force acting on the bar is calculated using the IB–VOF model.  相似文献   

17.
A coupled-mode model is developed for treating the wave–current–seabed interaction problem, with application to wave scattering by non-homogeneous, steady current over general bottom topography. The vertical distribution of the scattered wave potential is represented by a series of local vertical modes containing the propagating mode and all evanescent modes, plus additional terms accounting for the satisfaction of the free-surface and bottom boundary conditions. Using the above representation, in conjunction with unconstrained variational principle, an improved coupled system of differential equations on the horizontal plane, with respect to the modal amplitudes, is derived. In the case of small-amplitude waves, a linearised version of the above coupled-mode system is obtained, generalizing previous results by Athanassoulis and Belibassakis [J Fluid Mech 1999;389:275–301] for the propagation of small-amplitude water waves over variable bathymetry regions. Keeping only the propagating mode in the vertical expansion of the wave potential, the present system reduces to an one-equation model, that is shown to be compatible with mild-slope model concerning wave–current interaction over slowly varying topography, and in the case of no current it exactly reduces to the modified mild-slope equation. The present coupled-mode system is discretized on the horizontal plane by using second-order finite differences and numerically solved by iterations. Results are presented for various representative test cases demonstrating the usefulness of the model, as well as the importance of the first evanescent modes and the additional sloping-bottom mode when the bottom slope is not negligible. The analytical structure of the present model facilitates its extension to fully non-linear waves, and to wave scattering by currents with more general structure.  相似文献   

18.
Wind and wave induced behaviour of offshore guyed tower platforms   总被引:1,自引:0,他引:1  
Offshore guyed tower platforms belong to the group of compliant offshore platforms which are most suited for deep water exploration. The basic feature of compliant offshore platforms is that they are designed to move with the waves, in at least some degrees-of-freedom. As far as excitation of wave frequencies is concerned, the system opposes wave forces by inertial effects. The offshore guyed tower derives its stability against lateral movement from its mooring system.In this study, the response of offshore guyed towers to random forces generated by wind and wave is investigated. The exposed portion of the tower is subjected to the action of turbulent wind, while the submerged portion is acted upon by random wave forces. The analysis includes the nonlinearities due to the Morison equation of drag force, the variable submergence effect due to waves, the instantaneous position of the tower and force excursion relation of the mooring lines. A parametric study is conducted to investigate the behaviour of the tower under waves, and the combined effect of wind and wave forces.  相似文献   

19.
浅水方程被广泛应用于海啸预警报业务及研究,而针对线性浅水方程与非线性浅水方程在不同海区水深地形条件下的适用范围、计算效率问题是海啸研究人员急需了解的。本文应用基于浅水方程的海啸数值预报模型就海啸波在南海、东海传播的线性、非线性特征以及陆架对其传播之影响进行了数值分析研究。海啸波在深水的传播表征为强线性特征,此时线性系统对海啸波幅的模拟计算具有较高的精度和效率,而弱的非线性特征及弱的色散特征对海啸波幅的预报影响甚微,可以忽略不计。海啸波传播至浅水大陆架后受海底坡度变化、海底粗糙度等因素影响,波动的非线性效应迅速传播、积累,与线性浅水方程计算的海啸波相比表现出较大差异,主要表现为:在南海区,水深小于100m时,海啸波首波以后的系列波动非线性特征比较明显,两者波幅差别较大,但首波波幅的区别不大,因此对于该区域在不考虑海啸爬高的情况下,应用线性系统计算得到的海啸波幅也可满足海啸预警报的要求;在东海区由于陆架影响,海啸波非线性特征明显增强,水深小于100m区域,首波及其后系列波波幅均差异较大,故在该区域必须考虑海啸波非线性作用。本文就底摩擦项对海啸波首波波幅的影响进行了数值对比分析,结果表明:底摩擦作用对海啸波首波波幅影响仅作用于小于100m水深。最后,该文通过敏感性试验,初步分析了陆架宽度及陆架边缘深度对海啸波波幅的影响,得出海啸波经陆架传播共振、变形后,海啸波幅的放大或减小与陆架的宽度及陆架边缘水深有关。  相似文献   

20.
浅水极限波浪几何特征的实验研究   总被引:1,自引:0,他引:1  
该文通过物理模型实验,对浅水区域内的波浪在破碎前极限状态下的几何特征进行了研究。实验基于JONSWAP谱对不规则波浪进行模拟,通过对波群中出现的单体极限波浪进行捕捉并对波形进行测量而得到研究样本。为了考察底坡因素对极限波浪几何特征的影响,实验共考虑了3组大小分别为β=1/15、1/30以及1/45的地形坡度。统计结果表明,在实验所采用的坡度范围内,当地波高与水深对近岸极限波浪的影响最为显著,随着水深与波高因素变化,极限波浪的几何特征也出现明显的改变。坡度因素对极限波陡和偏度的影响很小,可以被忽略,但是对不对称度参数的影响相对比较明显,坡度越陡,不对称程度越剧烈。最后,通过参数化,本文给出了极限波浪几何特征变化的经验公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号