首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of cratering data and available semi-empirical calculations suggests that the variation of ejecta thickness,t, with increasing range from lunar craters may be approximately modelled by the expression: t=0.14R0.74(r/R?3.0 wherer is range from the center of the crater andR, the crater radius, all in meters. This equation has been used to estimate the thickness of ejecta deposits at each of the Apollo sites contributed from the large multi-ringed frontside lunar basins. Predicted average thickness of Imbrium ejecta at Apollo 15 is 812 m; at Apollo 14, 130 m; at Apollo 17, 102 m; and at Apollo 16, 50 m. Since the sequence of formation of these basins is known, the stratigraphic column resulting from superimposed ejecta blankets can be calculated. Results suggest that pre-Nubium crustal material at upland Apollo sites lies at depths greater than 280 (Apollo 14) to 1940 m (Apollo 17). Predicted stratigraphic sections for the Apollo sites are tabulated.  相似文献   

2.
Oxygen isotope measurements of phosphate from fish teeth and bones   总被引:2,自引:0,他引:2  
In situ measurements of lunar surface brightness temperatures made as a part of the Apollo Lunar Surface Experiments Package at the Apollo 15 Hadley Rille landing site are reported. Data derived from 5 thermocouples of the Heat Flow Experiment, which are lying on or just above the surface, are used to examine the thermal properties of the upper 15 cm of the lunar regolith using eclipse and nighttime cool-down temperatures. Application of finite-difference techniques in modeling the lunar soil shows the thermocouple data are best fit by a model consisting of a low-density and low-thermal conductivity surface layer approximately 2 cm thick overlying a region increasing in conductivity and density with depth. Conductivities on the order of 1 × 10?5 W/cm-°K are postulated for the upper layer, with conductivity increasing to the order of 1 × 10?4 W/cm-°K at depths exceeding 20 cm. An increase in mean temperature with depth indicates that the ratio of radiative to conductive transfer at 350°K is 2.7 for at least the upper few centimeters of lunar soil; this value is nearly twice that measured for returned lunar fines. The thermal properties model deduced from Apollo 15 surface temperatures is consistent with earth-based microwave observations if electrical properties measured on returned lunar fines are assumed.  相似文献   

3.
The lunar crust at the Apollo 16 landing site contains substantial amounts of a “primitive component” in which the ferromagnesian group of elements is concentrated. The composition of this component can be retrieved via an analysis of mixing relationships displayed by lunar breccias. It is found to be a komatiite which is compositionally similar to terrestrial komatiites both in major and minor elements. The komatiite component of the lunar crust is believed to have formed by extensive degrees of melting of the lunar interior at depths greater than were involved in the formation of the lunar magma ocean which was parental to the crust. After formation of the anorthositic crust, it was invaded by extensive flows and intrusions of komatiite magma from these deeper source regions. The komatiites became intimately mixed with the anorthosite by intensive meteoroid impacts about 4.5 b.y. ago, thereby accounting for the observed mixing relationships displayed by the crust. The compositional similarity between lunar and terrestrial komatiites strongly implies a corresponding similarity between the compositions of their source regions in the lunar interior and the Earth's upper mantle. The composition of the lunar interior can be modelled more specifically by combining the komatiite composition with its liquidus olivine composition (as determined experimentally) in proportions chosen so as to produce a cosmochemically acceptable range of Mg/Si ratios for the bulk Moon. Except for higher FeO and lower Na2O, the range of compositions thereby obtained for the bulk moon is very similar to the composition of the Earth's upper mantle.The effects of meteoritic contamination on the abundances of cobalt and nickel in lunar highland breccias were subtracted on the assumption that the contaminating projectiles were chondritic. The cobalt and nickel residuals thereby obtained were found to correlate strongly with the (Mg + Fe) content of the breccias, demonstrating that the Co and Ni are associated with the ferromagnesian component of the breccias and are genuinely indigenous to the Moon. The lunar highland Co and Ni residuals also display striking Ni/Co versus Ni correlations which follow a similar trend to those displayed by terrestrial basalts, picrites and komatiites. The lunar trends provide further decisive evidence of the indigenous nature of the Co and Ni residuals and suggest the operation of extensive fractionation controlled by olivine-liquid equilibria in producing the primitive component of the lunar breccias. Indigenous nickel abundances at the Apollo 14, 15 and 17 sites are much lower than at the Apollo 16 site, although rocks from all sites follow the same Ni/Co versus Ni trends. It is suggested that the primitive component at the Apollo 14, 15 and 17 sites was generally of basaltic composition, in contrast to the komatiitic nature of the Apollo 16 primitive component.  相似文献   

4.
Polymict samples can be used to establish mass-balance constraints regarding the bulk composition of the lunar crust, and to gauge the degree of regional heterogeneity in the composition of the lunar crust. The most ideally polymict type of sample is finely-mixed regolith (lunar soil), or its lithified equivalent, regolith breccia. Fortunately, lunar regolith breccias can occasionally be found at great distances from their points of origin — most of the known lunar meteorites are regolith breccias. We are searching for examples of exotic regolith samples among the Apollo regolith breccia collection. Most of the 21 Apollo regolith breccias analyzed for this study strongly resemble the local soils over which they were collected. Nine regolith breccias from Apollo 16 are surprisingly mature compared to previously-analyzed Apollo 16 regolith breccias, and six of the seven from Apollo 16 Station 5 have lower, more local-soil-like,mg ratios than previously analyzed regolith breccias from this station. Several of the Apollo 14 regolith breccias investigated show significantly highermg, and lower Al, than the local soils.The most interesting sample we have investigated is 14076,1, from a lithology that constitutes roughly half of a 2.0-g pebble. The presence of spherules indicates a regolith derivation for 14076,1, yet its highly aluminous (30 wt.% Al2O3) composition is clearly exotic to the 1.6-km traverse surface over which the Apollo 14 samples were collected. This sample resembles soils from the Descartes (Apollo 16) highlands far more than it does any other polymict sample from the Fra Mauro (Apollo 14) region. The I/sFeO maturity index is extremely low, but this may be a result of thermal annealing. A variety of siderophile elements occur in 14076,1 at typical regolith concentrations. The chemistry of the second most aluminous regolith sample from Apollo 14, 14315, can only be roughly approximated as a mixture of local regolith and 14076,1-like material. However, the low a priori statistical probability for long-distance horizontal transport by impact cratering, along with the relatively high contents of incompatible elements in 14076,1 (despite its high Al content), suggest that this regolith breccia probably originated within a few hundred kilometers of the Appollo 14 site. If so, its compositional resemblance to ferroan anorthosite tends to suggest that the regional crust is, or originally was, far richer in ferroan anorthosite than implied by the meager statistics for pristine rocks from this site. Thus, 14076,1 tends to strengthen the hypothesis that ferroan anorthosite originated as the flotation crust of a global magmasphere.  相似文献   

5.
Lunar Laser Ranging: Glorious Past And A Bright Future   总被引:1,自引:0,他引:1  
Lunar Laser Ranging (LLR), a part of the NASA Apollo program, has beenon-going for more than 30 years. It provides the grist for a multi-disciplinarydata analysis mill. Results exist for solid Earth sciences, geodesy and geodynamics,solar system ephemerides, terrestrial and celestial reference frames, lunar physics,general relativity and gravitational theory. Combined with other data, it treatsprecession of the Earth's spin axis, lunar induced nutation, polar motion/Earthrotation, Earth orbit obliquity to the ecliptic, intersection of the celestial equatorwith the ecliptic, luni-solar solid body tides, lunar tidal deceleration, lunar physicaland free librations, structure of the moon and energy dissipation in the lunar interior.LLR provides input to lunar surface cartography and surveying, Earth station and lunar retroreflector location and motion, mass of the Earth-moon system, lunar and terrestrial gravity harmonics and Love numbers, relativistic geodesic precession, and the equivalence principle of general relativity. With the passive nature of the reflectors and steady improvement in observing equipment and data analysis, LLR continues to provide state-of-the-art results. Gains are steady as the data-base expands. After more than 30 years, LLR remains the only active Apollo experiment. It is important to recognize examples of efficient and cost effective progress of research. LLR is just such an example.  相似文献   

6.
Explorations for the interior structure of the Moon mainly involve three technologies: the early gravitational observations via circumlunar satellites, the moonquake observations during the Apollo period, and the recent high-resolution remote sensing observations. Based on these technologies, we divided the development of the moon’s interior structure into three stages. The first stage is the discovery of high-density anomalous masses (mascons) on the lunar surface with the low-order gravitational field models, which were obtained by observing perturbations of the early lunar orbital satellites. The second stage is the preliminary understanding of the layer structure with the help of moonquake observations during the Apollo period. The third stage is the deep understanding of the structure of the lunar crust, mantle, and core, with the use of high-resolution remote sensing data and the reassessment of moonquake data from the Apollo’s mission. This paper gave detailed introduction and comments on different observation technologies, gathered data, and data processing techniques used at the three stages. In addition, this paper analyzed the current issues in the researches on the Moon’s internal structure and discussed the prospects for future explorations.  相似文献   

7.
Three Apollo 15 crystalline rocks were used for determining lunar paleointensity at 3.3 AE using a new ARM-method of paleointensity determination. The values were found to be 4900 γ, 2200 γ, and 7600 γ. Thus an average lunar paleointensity of 4900 γ is concluded for this period.  相似文献   

8.
On the basis of the4He/20Ne ratios in feldspathic particles from Apollo 11, basaltic fragments from Apollo 11, and magnetic separates from Apollo 12 fines, one expects the former to have the highest, and the Apollo 12 material to have the lowest84Kr/132Xe ratios. This is not the case; the84Kr/132Xe ratios from sample 12070 are substantially greater than those from the feldspathic and basaltic fragments in 10084. The trend-reversal in the feldspathic particles could be due to the trapping of genuine primordial lunar Kr and Xe. The reversal in the Apollo 11 basaltic fragments might be due to periodicnear-quantitative loss of the lighter gases by impact heating, with the Apollo 11 fines containing a relatively large proportion of strongly heated fragments.  相似文献   

9.
Lunar transient phenomena have been attributed to the release of gases from within the moon. The failure of the Apollo surface experiments to detect significant atmospheric enhancements can be used to establish upper limits to the amount of gases now being released from the various sites associated with lunar transient phenomena. An analysis of the sensitivity of the network of Apollo Suprathermal Ion Detector Experiments (deployed initially in 1969 and still operating) indicates that they would have detected any contemporary gas release greater than 6,500 kg from Alphonsus, 28,000 kg from Aristarchus, and similar quantities from other craters. The quantity of gas required to cause such phenomena as obscurations or glow discharge is probably much greater than these values. Consequently, if transient phenomena are real lunar surface events, they must originate from a mechanism other than simple gas emission.  相似文献   

10.
A comparison of lunar ilmenites (Apollo 11, 10047, 13) with terrestrial ilmenites by means of electron microprobe analysis, X-ray and Mössbauer spectrometry showed that the lunar samples contained no Fe3+ but excess Ti3+. This causes an increase of thec-axis as compared with stoichiometric ilmenite.  相似文献   

11.
Apollo 15 and 16 subsatellite measurements of lunar surface magnetic fields by the electron reflection method are summarized. Patches of strong surface fields ranging from less than 14° to tens of degrees in size are found distributed over the lunar surface, but in general no obvious correlation is observed between field anomalies and surface geology. In lunar mare regions a positive statistical correlation is found between the surface field strength and the geologic age of the surface as determined from crater erosion studies. However, there is a lack of correlation of surface field with impact craters in the mare, implying that mare do not have a strong large-scale uniform magnetization as might be expected from an ancient lunar dynamo. This lack of correlation also indicates that mare impact processes do not generate strong magnetization coherent over ~ 10 km scale size. In the lunar highlands fields of >100 nT are found in a region of order 10 km wide and >300 km long centered on and paralleling the long linear rille, Rima Sirsalis. These fields imply that the rille has a strong magnetization (>5 × 10?6 gauss cm3 gm?1 associated with it, either in the form of intrusive, magnetized rock or as a gap in a uniformly magnetic layer of rock. However, a survey of seven lunar farside magnetic anomalies observed by the Apollo 16 subsatellite suggests a correlation with inner ejecta material from large impact basins. The implications of these results for the origin of lunar magnetism are discussed.  相似文献   

12.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

13.
Eight of eleven Apollo 16 rake-sample anorthosites are very similar to each other, to hand-specimen Apollo 16 anorthosites, and to Apollo 15 anorthosites. They have feldspar An96.6, both high- and low-Ca pyroxene with a restricted range of (low-magnesium) composition, minor olivine (~ Fo60), traces of ilmenite and chromite, and originally coarse-grained, but now cataclastic texture. Such ferroan anorthosite is evidently a coherent, distinctive and widespread lunar rock type of cumulate origin which may not necessarily be very closely related genetically to other highland rock types.  相似文献   

14.
Apollo 12 lunar fines sample 12070,403 was annealed at 1000°C and subsequently irradiated with a beam of 130 MeV Fe9+ ions. Adsorptions of nitrogen and water were measured before and after the irradiation. Prior to the irradiation, the fines were non-porous and water had no effect on the physical characteristics of the lunar fines. In contrast, after the irradiation, the interaction with water caused an increase in the specific surface area and created a pore system. These results are definitive evidence that the interaction of water with damage tracks is the prime factor involved in the alteration of lunar fines by adsorbed water.  相似文献   

15.
Recent measurements have shown that the magnetic coercive forces of some Apollo lunar samples show an un-expected decrease with decreasing temperature at cryogenic temperatures. This behavior can be explained quantitatively in terms of a model which considers additive contributions from a soft, reversible magnetic phase and from a harder, hysteretic magnetic phase.  相似文献   

16.
The concentrations of the rare earth elements (REE), K, Rb, Sr, Ba, U, Zr and Cr for the Luna 20 soil and four different Apollo 16 soils are reported. These trace element abundances imply: (1) that the lunar highlands consist of a mixture of rocks rich in large ion lithophile (LIL) elements and LIL-element impoverished anorthosites; or (2) that the bulk of the aluminum-rich crust did not originate by upward segregation of plagioclase in a primitive liquid shell. The Luna 20 soil is distinguished from the Apollo 16 soil by lower aluminum and LIL element abundances.  相似文献   

17.
Apollo 15 breccia 15427 and soils 15101, 15261 and 15301 contain abundant spheres and fragments of a green glass that is remarkably constant in composition. The glass is rich in Fe and Mg, and low in Ti, unlike any known lunar basalt, and may be derived from material of pyroxenitic composition in the Apennine Front.  相似文献   

18.
在阿波罗月震记录中普遍存在着强烈持久的尾波信号,这样的波形特征无法用均匀分层月球模型解释.一个普遍被接受的解释是月震尾波由月球浅层结构对月震波的散射引起.我们采用基于交错网格的伪谱和有限差分混合方法模拟研究非均匀上月壳对月震波的散射效应,在此基础上解释月震尾波的形成机制,并估计出上月壳速度扰动的强度.我们发现,在均匀分层模型基础上,进一步考虑上月壳中的非均匀结构对月震波的散射效应,能有效地解释月震信号中强烈持久的尾波.我们认为月震尾波可能是由上月壳中的低波速、低衰减和散射这三个因素的共同作用所引起.采用不同的扰动标准差模拟上月壳的非均匀性,并比较模拟波形与真实月震图的相似程度,我们发现上月壳中速度扰动的标准差应该在3%到5%之间,很可能接近于3%.  相似文献   

19.
Thermal diffusivity, k, of three lunar rocks (10049 and 10069; Type A, Apollo 11 and 14311; Apollo 14) and a terrestrial basalt (alkaline olivine basalt, Oki-do?go, Japan) was measured under one atmosphere and in vacuum conditions (10?3 ~ 10?5 mmHg) in the temperature range from 85 to 850°K. The semi-empirical curve of k =A + B/T +CT3 is fitted to the data in each condition. The porosity of rocks strongly affects the thermal diffusivity at low temperature ( T ? 500°K) in vacuum condition. At 150°K, thermal diffusivity of lunar rocks with porosity of 5.5% (10049) and 11% (10069) at one atmosphere is about 1.7 and 3.2 times of that in vacuum, respectively. The difference between the values at one atmosphere and those in vacuum decreases as the temperature increases. Measurements of k should be made at gas pressures at least lower than 10?3 mmHg to estimate the value under lunar surface conditions.  相似文献   

20.
Sample 10071, 33 is a thin section of Apollo 11 ferrobasalt showing an unusual dual texture. The major portion of the sample is very similar to other fine grained Apollo 11 basalts, but the thin section also includes material with a distinct variolitic texture. The two areas are separated by a sharp boundary and the mineralogy and composition of the two textural types are quite distinct. The mineralogy and chemistry of the variolitic portion show it to be the product of rapid cooling of a liquid, intermediate between the typical Apollo 11 ferrobasalt and the associated Si and K-rich mesostasis. This liquid is the result of fractional crystallization of a magma of composition closely corresponding to the major portion of the 10071 system, followed by crystal-liquid separation. The sample provides strong and direct evidence for igneous differentiation on the lunar surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号