首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past, there has been little interest in the trace element characteristics of quartz, and in consequence little activity in the trace element characteristics of reference materials with high silicon content. The main purpose of this paper is to contribute to the characterisation of two international certified reference materials, BCS 313/1 from the Bureau of Analysed Samples, (BAS), UK and SRM 1830 from the National Institute of Standards and Technology (NIST), USA. BCS 313/1 was analysed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), solution ICP-MS and instrumental neutron activation analysis (INAA). NIST SRM 1830 was analysed by LA-ICP-MS and INAA. Analytical results are reported for more than forty elements, most of them for the first time. For most elements, the results obtained by the different methods agree within 15 % relative. The recent, heightened interest in quartz and in particular the precise determination of trace0element contents in natural quartz samples requires the use of well characterised reference materials such as BCS 313/1 and SRM 1830, to which this study is designed to contribute.  相似文献   

2.
Inductively coupled plasma-mass spectrometry is well suited for the precise, accurate and rapid determination of rare earth elements in most geological samples. However, determination of rare earth elements in certain mantle-derived materials, without applying preconcentration techniques, remains problematical due to low natural concentrations (generally < 1 ng g−1). Consequently, USGS reference materials DTS-1 (a dunite) and PCC-1 (a partially serpentinized harzburgite) have only suggested rather than recommended values for the rare earth elements in reference material compilations. We compared results obtained using two ICP-MS instruments: a U-5000AT ultrasonic nebuliser coupled to a PQ2+ quadrupole ICP-MS and an ELEMENT sector field ICP-MS equipped with a MCN-6000 microconcentric desolvating nebuliser, with the suggested literature values for these two reference materials. Precision and accuracy of analytical methods employed by both instruments were demonstrated by excellent relative standard deviations (< 2%) and inter-laboratory agreement (< 5%) for numerous analyses of BHVO-1 and BIR-1, which are well established with rare earth elements contents at the μg g−1 level. Repeat analyses of DTS-1 and PCC-1 at each laboratory indicate that each method is generally precise to better than 5% at sub-g g−1 levels. Furthermore, values from both instruments generally agree to within 10%. Our DTS-1 and PCC-1 values agree reasonably well with selected data reported in the literature (except for Ce and Sm in DTS-1) but exhibit poorer agreement with reported compilation values. With the demonstrated level of precision and accuracy, we contend that these new values for DTS-1 and PCC-1, generated by two different instruments, are the best estimates of the true whole-rock composition of these samples reported to date.  相似文献   

3.
This paper presents data on REE and Y, Nb, Zr, Hf, Ta, Th and U abundances for two candidate reference materials (RMs), spinel lherzolite LSHC-1 and amphibole Amf-1, being currently developed at the Institute of Geochemistry SB RAS, Irkutsk. To determine the contents of these elements inductively coupled plasma-mass spectrometry was applied with: (i) solution nebulisation (solution ICP-MS) and (ii) laser ablation (LA-ICP-MS) of fused glass disks. The precision of results obtained by both techniques was better than 6% RSD for most elements. Accuracy was assessed by using the geochemical RMs JB-2, JGb-1 (GSJ) and MAG-1 (USGS). The trace element results by solution ICP-MS for JGb-1 and JB-2 agree with reference values presented by Imai et al. (1995, this Journal) within 1–10%. Significant differences were found for Nb and Ta determinations. The accuracy of LA-ICP-MS results evaluated by RM MAG-1 was within 4%, except for Eu (about 10%). The analytical results obtained for LSHC-1 and Amf-1 by solution ICP-MS and LA-ICP-MS were in good agreement with each other and with INAA and XRF data presented for the certification of these RMs. They can be considered as the indicative values for assigning certified values to the above-mentioned RMs.  相似文献   

4.
Data on thirty-four minor and trace elements including all rare earth elements (REE) are reported for two kimberlitic international reference materials (SARM-39, MINTEK, RSA and MY-4, IGEM, Russia) by inductively coupled plasma-mass spectrometry (ICP-MS), some of them for the first time. Four digestion techniques (open acid, closed vessel acid, microwave and lithium metaborate fusion digestion) were used for the decomposition of samples for analysis by ICP-MS. Three other reference materials (USGS BHVO-1, CRPG BR-1 and ANRT UB-N) were analysed simultaneously using the same analytical methodology to assess the precision and accuracy of the determinations. The data obtained in this study compare well with working values wherever such values are available for comparison. Though open acid digestion was found to be very rapid, effective and convenient for the determination of several trace elements in kimberlitic samples, recoveries for heavy rare earth elements (HREE) were lower than the respective recoveries obtained by the other decomposition techniques used. The precision obtained was better than ± 6% RSD in the majority of cases with comparable accuracy. Chondrite-normalised plots of each RM for all the digestion techniques were smooth. The new data reported on the two kimberlitic reference materials make these samples useful for future geochemical studies of kimberlitic rocks.  相似文献   

5.
Development of new techniques, enabling simultaneous determination of large numbers of elements in environmental samples, can force analysts to use certified reference materials that do not contain all the elements of interest. In this paper, the mass fractions of forty‐six major and trace elements, including rare earth elements (REE), are presented in one soil (NCS DC 77302 also known as GBW 07410) and five sediment (Metranal‐1, IAEA 405, MESS‐3, NCS DC 73309 also known as GBW 07311 and NCS DC 75301 also known as GBW 07314) certified reference materials determined by high resolution inductively coupled plasma‐mass spectrometry. The selected certified materials represent a spectrum of geological matrices often analysed in environmental studies. Measured elements include certified elements, elements listed with information values as well as new elements absent from certificates, including REEs and some other elements. REE + Y mass fractions in the river sediment reference material Metranal‐1 are reported for the first time. The results obtained are in agreement with available certified or information values.  相似文献   

6.
Data was obtained for the rare earth elements (REE) by instrumental neutron activation analysis (INAA) and inductively coupled plasma-mass spectrometry (ICP-MS) in twenty geological reference materials. In general, the precision obtained by ICP-MS is better for the light REE, decreasing with increasing atomic number. This is partly a result of the occurrence of the heavy REE at low concentrations. The precision of the data obtained by INAA is good (5% RSD). The data obtained also showed that for the elements determined by both methods, the accuracy is similar for the light REE and better for the middle and heavy REEs by INAA. Higher uncertainty is achieved by ICP-MS mainly for elements at very low concentrations, occurring at about ten times the chondritic values.  相似文献   

7.
Results are presented for round one of a new international proficiency testing programme designed for microprobe laboratories involved in the routine analysis of silicate minerals. The sample used for this round was TB-1, a basaltic glass fused and prepared by the USGS. Thirty nine laboratories contributed data to this round, the majority of major element results being undertaken by EPMA and the majority of trace elements by LA-ICP-MS. Assigned values were derived from the median of results produced by nine selected laboratories that analysed powdered material by conventional ICP-MS, INAA and XRF techniques using bulk powders of the sample. Submitted microprobe results were evaluated using a target precision calculated using the Horwitz function, adopting the same criteria as those used for "applied" geochemistry laboratories in the companion GeoPT proficiency testing programme for laboratories involved in the routine bulk analysis of silicate rocks. An evaluation of results from participating microprobe laboratories indicated that overall, data were compatible with this precision function. A comparison between the performance of bulk and microprobe techniques used in the analysis of the basaltic glass showed remarkably good agreement, with significant bias only observed for the major oxide MgO.  相似文献   

8.
The study of Te, As, Bi, Sb and Se (TABS) has increased over the past years due to their use in the development of low‐carbon energy technologies. However, there is a scarcity of mass fraction values of TABS in geological reference materials. This underlines the difficulty in undertaking routine determinations of these elements. The mass fractions of TABS were determined in geological reference materials using hydride generation‐atomic fluorescence spectrometry (HG‐AFS), calibrated with standard solutions. Comparisons with literature values were used to validate the method. Samples from the GeoPT proficiency test were also analysed. For most elements, there are no assigned or even provisional values for many of the GeoPT and reference materials because of the wide range of results reported. For mass fractions above the quantification limit of the method, our results are in good agreement with the median of GeoPT results. Thus, we propose GeoPT median values as informational values for these elements. In contrast, at mass fractions < 0.5 µg g?1 median values of Se from GeoPT are systematically higher than our results. Our Se results are in agreement with the reference materials down to 0.02 µg g?1, which suggest that many of the results for Se reported in GeoPT testing are too high.  相似文献   

9.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

10.
Cerium has been determined in thirty-six international geochemical reference samples using candoluminescence emission analysis. Samples are fused with sodium peroxide in nickel crucibles and interfering elements are removed by an ion exchange technique.
Cerium values obtained in the present work generally lie within ranges reported in the literature or close to the upper or lower ends of these ranges. Candoluminescence values for cerium compare favourably with previously reported INAA values for most of the geochemical reference samples analysed in the present study.  相似文献   

11.
The USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix-matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g-1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA-ICP-MS and two isotope dilution techniques using TIMS and ICP-MS. EPMA and LA-ICP-MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1-2%) and most trace elements (variations 1-4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1-5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty.  相似文献   

12.
Experimental data for eleven rare-earth elements (REE) obtained by inductively coupled plasma spectrometry (ICP) in five French geochemical reference standards (BE-N, BR, DR-N, GS-N and FK-N)are presented. The method is based on acid digestion of the sample and cation-exchange separation from matrix elements.
Together with these new determinations an updated compilation of these reference materials are presented. Good agreement between the present results and previously preferred and published values obtained by various analytical techniques is observed. The values obtained in the present work corroborate the validity of the outlined method.  相似文献   

13.
A consistent pattern has been observed in the results obtained for Au in three soil and two porphyry copper ore samples serving as control reference standards in geochemical analyses. The mean reported by wet chemical methods (regardless of the measurement technique) was less than the mean by fire assay-based methods which, in turn, was less than the mean reported by laboratories using direct instrumental neutron activation analysis (INAA). These data have been obtained from 16 laboratories, some employing more than one method. Compared to INAA, values obtained for Au (at the 30–300 ppb level) using aqua regia (AR) dissolution were low by 24–42%, while those reported by fire assay-based methods were low by 14–26%.Studies of these samples and 32 rocks of widely varying composition revealed that the amount of Au remaining in the residue after AR attack ranged from 4% to 59% of the total. Gold dissolved by AR was determined by graphite furnace atomic absorption spectrometry (GFAAS) after extraction into MIBK (methyl isobutyl ketone), whereas Au remaining in the residue was determined by INAA. The slope of the line obtained by plotting Au by INAA vs. the sum of Au by AR/GFAAS and Au in the residue was not significantly different from 1.0.Modifications to the AR procedure such as prior attack by HCl or HF did not improve the recovery of Au in the three reference soils. However, reduction of sample size from 10 g to 1 g while maintaining the volume of AR at about 30 ml did increase results for Au. Furthermore, addition of HF in the attack on 1-g samples yielded results virtually identical to those obtained by INAA. It is thought that the poor extraction efficiency by AR is due to non-wetting of the larger sized sample, a lack of intimate, prolonged contact between the grains of the sample and the acid mixture and the presence of insoluble gangue surrounding Au particles. Constant agitation of the sample during evaporation with AR is desirable.The mean values obtained for Au in the soils by fire assay methods were not significantly different from the results by INAA (low by 14–19%); this was not the case for the two copper ore samples (low by 26%). This probably reflects the difficulties encountered in fire assay by high concentrations of Cu which hinder effective collection and separation of Au into the Pb button. However, the accuracy of the INAA method has not been established and is dependent upon measurement procedures and the degree of certainty associated with the Au values assumed for the reference materials employed for calibration. While estimation of precision does not present a problem, accuracy is difficult to assess in the absence of certified reference materials for Au at concentrations in the 10–300 ppb range. However, it is concluded that methods based upon AR dissolution can lead to low results, the magnitude being dependent upon the sample matrix and the mineralogical association of the Au present.  相似文献   

14.
Results are presented for 26 to 30 trace elements determined in four rock reference materials of geochemical interest: USGS Basalt BHVO-1, Rhyolite Obsidian NIST 278, Basalt NIST688, and Phosphate Rock NIST694. Determinations were made by inductively coupled plasma mass spectrometry (ICP-MS). Good agreement was obtained among solution standard comparison and standard addition analytical techniques, and among samples prepared with different dissolution methods. Generally good agreement was obtained between determined trace element values and values reported in the literature.  相似文献   

15.
The concentrations of fifty trace elements, including relatively volatile elements and transition metal elements, in fused glasses of Geological Survey of Japan rock reference materials GSJ JR-2, JA-1, JA-2, JB-1a, JB-3, JGb-1 and JF-1 were determined by particle (proton) induced X-ray emission (PIXE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The fused glasses were prepared by rapid fusion and subsequent quenching in welded platinum capsules and were found to be homogeneous for major elements and for trace elements with concentrations of more than 1 μg g-1 within the observed precision (± 10% mean) on a 70 μm sampling scale. The values obtained by PIXE and LA-ICP-MS for the transition elements (Cr, Mn, Fe, Ni and Cu), the relatively volatile elements (Zn, Ga, Rb and Pb) and the refractory elements (Y, Zr, Nb and Th) with concentrations greater than a few μg g-1 showed good agreement (within 10 % relative difference). The values for almost all the elements detected at concentrations higher than 1 μg g-1 as determined by LA-ICP-MS also agreed well with the reference values (mean relative difference < ± 10%), except for B and Cu. The good agreement confirmed the appropriateness of the NIST SRM 600 series glass calibration reference material for LA-ICP-MS analysis of glasses with variable major-element compositions for almost all elements. The concentrations of Cu in all the samples were lower than the reference values, which was attributed to adsorption of the transition metals onto the platinum capsule during preparation.  相似文献   

16.
We present new concentration data for twenty four lithophile trace elements in NIST certified reference material glasses SRM 610-SRM 611 in support of their use in microanalytical techniques. The data were obtained by solution ICP-MS and isotope dilution TIMS analysis of two different sample wafers. An overall assessment of these new results, also taking into account ion probe studies that have been published in the literature, shows that these wafers can be considered to be homogeneous. Therefore, individually analysed wafers are believed to be representative of the entire batch of the SRM 610-611 glasses. Possible exceptions are the alkali metals (and a few volatile or non-lithophile trace elements). The analysed concentrations range between 370 μg g−1 (Cs) and 500 μg g−1 (Sr) and agree well with published values. On the basis of our new data and data recently published in the literature we propose "preferred average" values for the elements studied. These values are, within a few percent, identical to those proposed by other workers.  相似文献   

17.
This paper describes a technique for the preparation of synthetic calibration materials for use in laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) and other microtechniques for mineral analysis. The method is based on direct fusion in high-purity graphite electrodes, and the requisite temperatures for melting are obtained by resistance heating using a welding rectifier as the power source. The technique has been tested on quartz (SiO2) and rutile (TiO2) for a relatively large range of elements, including all the rare earth elements. Different starting materials for preparation of calibration materials were studied, and it is shown that many natural materials form separate phases during fusion, resulting in unusable calibration materials for microanalysis. However, calibration materials prepared fully synthetically from oxides and/or element nitrates in solution were found to be of good homogeneity, and this preparation technique was used throughout in this work. The quality of the calibration materials for quartz and rutile was assessed by LA-ICP-MS, using Si and Ti as internal standard elements respectively. The NIST SRM 612 and 614 glass standards were used to assess the accuracy of the calibration materials for quartz. Calibration curves based on two independently prepared sets of calibration materials and the two NIST glasses are shown for a number of elements, demonstrating excellent agreement between the NIST glasses and the synthetically prepared quartz glasses. Vesicles are shown to form in the SiO2 glasses, but this does not influence their value as calibration materials, provided that a reference element is used as an internal standard. The advantages of fusion in high-purity graphite electrodes are emphasised, particularly the very high sublimation point of graphite, its very high state of purity, the very short melting and quench time, the speed and simplicity of the method, and the low risk of introducing impurities. Extension of the method to other minerals and applications is discussed.  相似文献   

18.
Concentration data obtained by instrumental neutron activation analysis (INAA) are presented for up to 36 chemical elements in 93 geochemical reference samples, including some for which there are little previous data. Because all data are based on at least three independent analyses, and for many of the data the uncertainty associated with counting is an insignificant source of error, the values presented here are considered of higher precision than generally reported by INAA. Information on subsampling error (sample heterogeneity) is also presented.  相似文献   

19.
Seven soil geochemical certified reference materials (CRMs) GSS 10-16 recently prepared by the Institute of Geophysical and Geochemical Exploration (IGGE), are mainly used for sample analysis in geochemical surveys of the overburden region in China. Fifteen Chinese institutes and central laboratories, which operated at a high level of analytical performance analysed these samples. More than ten reliable analytical methods based on different principles of measurement were adopted, of which ICP-MS, ICP-AES and NAA were taken as the primary analytical methods. In total, 23715 determinations were carried out, 5660 average data sets were obtained, seventy two elements and components were determined and certified values of sixty nine elements and components were assigned. Rhenium concentrations were measured by isotope dilution ICP-MS in GSS-10, GSS-13, GSS-15 and GSS-16. Certified values of elements in GSS 10-16 have good precision and for 90% of these values relative uncertainties are less than 10%.  相似文献   

20.
World-wide intercomparison runs has made possible the certification of two new Polish geological-environmental reference materials for multi-element trace analysis: Apatite Concentrate (CTA-AC-1) and Fine Fly Ash (CTA-FFA-1). "Recommended values' are established for 25 (CTA-AC-1) and 40 (CTA-FFA-1) elements respectively. In addition, "information values' are assigned for 12 elements in CTA-AC-1 and 10 elements in CTA-FFA-1. Our method of data evaluation has been further improved and a modified version of criteria for assigning recommended and information values is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号