首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
青藏高原分布有羌塘—囊谦—滇西和冈底斯两条新生代钾质-超钾质火山岩带。羌塘—囊谦—滇西超钾质岩浆活动的峰值时间为40~30Ma,主体岩石具有Ⅰ型超钾质岩的高MgO和低CaO、Al2O3含量特征;30~24Ma期间羌塘中、西部出现Ⅲ型钾质-超钾质岩浆活动,主体岩石以贫SiO2、高CaO、Al2O3和低MgO/CaO为特征。冈底斯新生代超钾质火山岩也显示I型超钾质岩的高MgO和低CaO、Al2O3含量特征,其形成时间为25~12Ma。综合超钾质岩石的实验资料,可知区内I型超钾质岩的源区以富硅、富钾流(熔)体交代形成的金云母方辉橄榄岩为主;Ⅲ型钾质-超钾质岩浆源区则以斜辉橄榄岩地幔为主。囊谦—滇西Ⅰ型超钾质岩带空间上严格受红河走滑构造带所控制,40~28Ma出现I型超钾质岩浆活动,16Ma转变为OIB型钾质火山岩。岩浆源区从岩石圈地幔向软流圈演变,暗示大型走滑断裂引起的岩石圈地幔减薄和软流圈上涌是导致交代岩石圈地幔金云母分解熔融产生区内I型超钾质岩浆的主控因素。羌塘中部35~34Ma有软流圈来源为主的钠质碱性玄武岩岩浆的喷发,30~24Ma转变为以岩石圈地幔为主要来源的Ⅲ型钾质-超钾质岩浆活动,岩浆源区从软流圈向岩石圈迁移,指示软流圈上涌伴随的富CO2流(熔)体活动是导致古交代岩石圈地幔升温熔融产生Ⅲ型钾质-超钾质岩浆的主控因素,软流圈上涌可能是俯冲板片断离或岩石圈地幔拆沉作用的结果。  相似文献   

2.
AngeloPeccerillo 《《幕》》2003,26(3):222-226
Plio-Quaternary magmatism in Italy exhibits an extremely variable composition, which spans almost entirely the spectrum of magmatic rocks occurring worldwide. Petrological and geochemical data pro-vide a basis for distinguishing various magmatic provinces, which show different maior element and/or trace element and/or isotopic compositions. The Tus-cany province (14-0.2 Ma) consists of silicic magmas generated through crustal anatexis, and of mantle-derived calcalkaline to ultrapotassic mafic rocks. The Roman, Umbria, Ernici-Roccamonfina and Neapolitan provinces (0.8 Ma to present) are formed by mantle-derived potassic to ultrapotassic rocks having variable trace element and isotopic compositions. The Aeolian arc (?1 Ma to present) mainly consists of calcalkaline to shoshonitic rocks. The Sicily province contains young to active centers (notably Etna) with a tholeiitic to Na-alkaline affinity. Finally, volcanoes of variable composition occur in Sardinia and, as seamounts, on the Tyrrhenian Sea floor. Magmas in the Aeolian arcand along the Italian peninsula have a subduction-related geochemical character, whereas the Sicily and Sardinia provinces display intraplate signatures.Intraplate and orogenic volcanics coexist on theTvrrhenian Sea floor.The geochemical and isotopic complexities of Plio-Quaternary magmatism reveal that the upper mantle beneath Italy consists of various domains, spanning both orogenic and anorogenic compositions. Isotopic data suggest that compositional heterogeneity originated from mixing between various mantle reservoirs, and between these and subduction-related crustal material.This probably occurred during the Cenozoic-Quaternary geodynamic evolution of the western Mediterranean.  相似文献   

3.
The late- to post-collisional stage in orogenic systems is characterized by the coeval existence of bimodal potassic to ultrapotassic magmatic activity related to partial melting of an enriched lithospheric mantle together with crustal derived melts. In this paper, we present new whole rock geochemical analyses combined with zircon and titanite U–Pb and zircon Hf isotopic data from potassic to ultrapotassic rocks from six plutons that occur within the Archean Itacambira-Monte Azul block (BIMA), to discuss their petrogenesis and the tectonic implications for the São Francisco paleocontinent. The new U–Pb ages range from ca. 2.06 Ga to 1.98 Ga and reveal long-lasting potassic magmatism within the BIMA, which is within the late- to- post-collisional stage of the São Francisco paleocontinent evolution. The ultrapotassic rocks are compatible with a fluid-related metasomatized mantle source enriched by previous subduction events, whereas the potassic rocks are bimodal and have a transitional shoshonitic to A-type affinity. These rocks have a hybrid nature, possible related to the mixing between the mafic potassic/ultrapotassic rocks and high temperature crustal melts of the Archean continental crust. Our results also show an increase of within-plate signature towards the younger potassic magmas. The participation of an important Archean crustal component in the genesis of these rocks is highlighted by the common and occasionally abundant occurrence of Archean inherited zircons. The Hf isotopic record shows that most of the zircon inheritance has dominantly subchondritic εHf(t) values, which fits a crustal reworking derivation from a similar Eo- to Paleoarchean precursor crust. However, the presence of juvenile 2.36 Ga zircon inheritance in an ultrapotassic sample reveal the existence of a hidden reservoir that is somewhat similar to the described for the Mineiro Belt in southern São Francisco paleocontinent.  相似文献   

4.
This paper reports the results of an investigation of the geochemical and isotopic compositions of rocks formed during the Eocene suprasubduction magmatism in the Olyutorsky tectonic block. The contribution of various suprasubduction components to the formation of magmatic melts was estimated; the characteristics of the Eocene and Miocene-Quaternary suprasubduction magmatism of the Olyutorsky tectonic block were compared; and relations of the Cenozoic magmatism to the tectonic development of the block were evaluated. The Eocene-early Oligocene suprasubduction magmas were derived from geochemically and isotopically heterogeneous garnet lherzolites in a mantle wedge. The initially depleted lherzolites of the mantle wedge were probably locally and variably enriched by OIB-type mantle melts before the generation of island-arc magmas and then again depleted below the MORB level by the extraction of magmatic materials from them. In the Eocene, a considerable amount of quartz-feldspar sediments enriched in radiogenic Nd was consumed in the subduction zone, which resulted in a strong contamination of magmas derived from the garnet lherzolites of the mantle wedge. The later stages of subduction were accompanied by active generation of adakite magmas with depleted Nd isotope signatures and HFSE-rich melts showing no evidence for their contamination by sialic sediments. It was supposed that the Late Cenozoic subduction zone plunged northward beneath the Olyutorsky tectonic block. It was shown that the established characteristics of the suprasubduction magmatism of the Olyutorsky tectonic block could be related to Cenozoic spreading processes in the proto-Komandorsky basin of the Bering Sea.  相似文献   

5.
唐杰  许文良  李宇  孙晨阳 《地球科学》2019,44(4):1096-1112
近年来,东北地区地幔热演化过程的相关研究相对较少,而揭示东北地区地幔热演化过程的有效手段就是研究东北地区玄武岩的成分变异特征.系统总结并对比了大兴安岭北段早白垩世玄武质岩石和新生代玄武质岩石的化学成分变异,以便揭示研究区中生代晚期-新生代的地幔热演化过程.大兴安岭北段早白垩世玄武岩在化学上属于拉斑玄武岩系列,以亏损Nb、Ta、Ti等高场强元素为特征,它们的La/Nb和La/Ta比值分别介于1.8~5.6和30~87,暗示岩浆起源于岩石圈地幔;它们的初始87Sr/86Sr值、εNd(t)和εHf(t)值分别介于0.704 5~0.706 9、-1.52~+3.60和+1.74~+7.77,表明岩浆源区属于弱亏损-弱富集的岩石圈地幔;早白垩世玄武质岩石的Sr-Nd-Pb同位素成分指示岩浆源区是由DM和EMⅡ型地幔端元混合而成,并经历了俯冲流体的交代.表明大兴安岭北段早白垩世玄武质岩浆源区为受早期俯冲流体交代的岩石圈地幔.新生代超钾质和钾质玄武岩具有Nb-Ta的弱负异常,87Sr/86Sr值为0.704 7~0.705 7、εNd(t)值为-6.3~-0.8,而地幔捕掳体具有Sr-Nd同位素亏损特征;钠质玄武岩具有Nb-Ta的正异常,较超钾质和钾质玄武岩具有低的87Sr/86Sr(0.703 5~0.704 2)以及高的εNd(t)值(+3.4~+6.6),类似MORB的同位素组成,这些特征说明大兴安岭北段新生代玄武质岩石起源于软流圈地幔.综上所述,大兴安岭北段早白垩世和新生代玄武质岩石成分的差异不仅指示其岩浆源区从岩石圈地幔转变为软流圈地幔,更为重要的是它揭示了研究区地幔的热演化过程——从早白垩世高的地温梯度到新生代低的地温梯度的转变.这一过程也是岩石圈从中生代晚期到新生代逐渐增厚的过程.结合区域构造演化,可以得出大兴安岭北段早白垩世的玄武质岩浆作用与岩石圈伸展、减薄形成的裂陷作用相关,而新生代玄武质岩浆作用则与陆内裂谷作用相关.   相似文献   

6.
Ultrapotassic rocks are a common, but volumetrically minor, hallmark of post‐collisional magmatism along the Alpine–Himalayan orogenic belt. Here, we document the occurrence of ultrapotassic volcanic rocks from the Eslamy peninsula, NW Iran in the Arabia–Eurasia collision zone. Our results indicate that magma genesis involved melting of phlogopite‐ and apatite‐bearing peridotites in the sub‐continental lithospheric mantle at ~11 Ma. These peridotites likely formed by metasomatism involving components derived from subducted sediments during Neotethyan subduction. The ~11 Ma ultrapotassic volcanism was preceded by a magmatic gap of ~11 Ma after the cessation of arc magmatism in NW Iran and Armenia, thus likely representing the initiation of post‐collisional magmatism. The age coincides with the onset of collision‐related magmatic activity and topographic uplift in the Caucasus–Iran–Anatolia region, and also with other regional geological events including the closure of the eastern Tethys gateway, the end of Arabian underthrusting and the start of escape tectonics in Anatolia.  相似文献   

7.
Dirk Küster  Ulrich Harms 《Lithos》1998,45(1-4):177-195
Potassic metaluminous granitoids with enrichments of HFS elements constitute part of widespread post-collisional magmatism related to the Late Neoproterozoic Pan-African orogeny in northeastern Africa (Sudan, Ethiopia, Somalia) and Madagascar. The plutons were emplaced between 580 and 470 Ma and comprise both subsolvus and hypersolvus biotite–granite, biotite–hornblende–granite, quartz–monzonite and quartz–syenite. Pyroxene-bearing granitoids are subordinate. Basic dikes and enclaves of monzodioritic composition are locally associated with the granitoid plutons. Granitoids emplaced in pre-Neoproterozoic crust have Sri-ratios between 0.7060 and 0.7236 and Nd(t) values between −15.8 and −5.6 while those emplaced in, or close to the contact with, juvenile Neoproterozoic crust have lower Sri-ratios (0.7036–0.7075) and positive Nd(t) values (4.6). However, it is unlikely that the potassic granitoids represent products of crustal melting alone. The association with basic magmas derived from subduction-modified enriched mantle sources strongly suggests that the granitoids represent hybrid magmas produced by interaction and mixing of mantle and crust derived melts in the lower crust. The most intense period of this potassic granitoid magmatism occurred between 585 and 540 Ma, largely coeval with HT granulite facies metamorphism in Madagascar and with amphibolite facies retrogression in northeastern Africa (Somalia, Sudan). Granitoid magmatism and high-grade metamorphism are probably both related to post-collisional lithospheric thinning, magmatic underplating and crustal relaxation. However, the emplacement of potassic granites continued until about 470 Ma and implies several magmatic pulses associated with different phases of crustal uplift and cooling. The potassic metaluminous granites are temporally and spatially associated with post-collisional high-K calc-alkaline granites with which they share many petrographical, geochemical and isotopical similarities, except the incompatible element enrichments. The resemblance indicates a strongly related petrogenesis of both granite associations.  相似文献   

8.
报道了滇东南个旧超大型锡多金属矿区西区北部白云山碱性岩新的锆石U-Pb年龄、全岩地球化学和Sr-Nd同位素数据。LA-ICP-MS锆石U-Pb定年结果表明,白云山碱性正长岩形成于晚白垩世(80.0±0.6 Ma),与个旧地区的中基性岩及花岗岩均为同一次构造岩浆事件的产物;碱性正长岩与霞石正长岩具有相似的主微量元素地球化学特征及Sr-Nd同位素组成,暗示二者很可能是源于同一富集地幔源区并经历了不同程度演化的产物。结合已有的元素和同位素组成结果,认为碱性岩、中基性岩和成矿花岗岩很可能分别源自富集的岩石圈地幔、正常的岩石圈地幔和地壳源区。在晚白垩世伸展构造背景控制下,源于不均一岩石圈地幔的碱性和中基性的岩浆底侵,促使中下地壳岩石部分熔融形成花岗质熔体,在上升至近地表过程中引起构造活动带成矿物质的富集,从而形成个旧超大型锡多金属矿床的矿化格局。可以说,源于富集地幔的碱性岩浆在含矿花岗质岩浆的成岩成矿过程中,应不只是提供热量的贡献。  相似文献   

9.
Geochronological data (~1800 dates) have been analyzed by the probabilistic statistical analysis of samplings of different subalkaline and alkaline rocks through the whole of geological time. The distribution of five groups of subalkaline and alkaline rocks within the Late Archean-Phanerozoic are strictly controlled by mantle cycles, which were distinguished from data on the upper mantle magmatic rocks. Since high alkali rocks are plume related, their universal participation in each of the revealed mantle cycles emphasizes the importance of this magmatism in the evolution of the crustal-mantle system. The initial Sr and Nd isotope ratios are subdivided into two groups: with mantle and crustal signatures. Mantle isotope ratios are typically observed throughout the entire geological interval of dated rocks, while the role of crustal isotope signatures increases from the Archean to Phanerozoic, reflecting the increasing the role of fluids and crustal rocks in the magmatic processes during the generation of mantle magmas and their consolidation in the crust. Since alkaline magmatic sources are formed during mantle metasomatism, which enriched the magma generation zones in incompatible elements, the repeated occurrence of this process in separate mantle zones may have lead to the anomalous accumulation of these elements, which should be reflected in the alkaline magmas.  相似文献   

10.
张喜  王信水  江拓  高俊 《地球科学》2022,47(3):1038-1058
位于中亚造山带西段和塔里木克拉通之间的天山造山带的古生代构造演化历史目前还存在很大争议,其广泛发育的古生代岩浆岩则是揭示俯冲增生过程和构造体制转换的重要岩石探针.本文对我国西天山巴仑台地区的7个古生代岩浆岩进行了系统的年代学和地球化学研究.LA-ICP-MS锆石U-Pb定年限定它们的结晶年龄在319~307 Ma之间,...  相似文献   

11.
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈的长期俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,已经成为研究汇聚板块边缘岩浆作用和大陆地壳生长与再造的天然实验室。基于对现有研究成果的总结,我们将冈底斯岩浆弧的岩浆构造演化划分为5个阶段:第1阶段发生在晚白垩世之前,以新特提斯洋岩石圈长期正常俯冲和钙碱性弧岩浆岩的发育为特征;第2阶段发生在晚白垩世时期,以活动的新特提斯洋中脊发生俯冲和强烈的岩浆作用与显著的新生地壳生长为特征;第3阶段发生在晚白垩世晚期,以残余的新特提斯大洋岩石圈俯冲和正常弧型岩浆作用为特征;第4阶段发生在古新世至中始新世,以印度与亚洲大陆碰撞、俯冲的新特提斯洋岩石圈回转和断离,及其诱发的幔源岩浆作用、新生和古老地壳的强烈再造为特征;第5阶段为发生在晚渐新世到中中新世的后碰撞阶段,深俯冲印度岩石圈的回转和断离,或加厚岩石圈地幔的对流移去导致了加厚下地壳的部分熔融和埃达克质岩石的广泛发育,同时伴随幔源钾质超钾质岩浆作用。冈底斯弧岩浆作用与岩浆成分的系统时空变化很好地记录了从新特提斯洋俯冲到印度亚洲大陆碰撞的完整构造演化过程。  相似文献   

12.
Early Paleozoic granitoids of autochthonous and allochthonous facies in the Baikal area (Ol’khon Island, Khamar-Daban Ridge) are in close spatial association with gneisses, migmatites, and plagiogranites and are usually confined to granite–gneiss domes. They are virtually not subjected to magmatic differentiation. Formation of granitoids of the Solzan massif and Sharanur complex lasted 26–28 Myr, which might be considered an indicator of collisional granitoid magmatism. Collisional granitoids of different provinces have a series of indicative features: They are peraluminous and highly potassic and are enriched in crustal elements (Rb, Pb, and Th) but sometimes have low contents of volatiles. In contrast to collisional magmatism, petrogenesis of intraplate granitoids does not depend on the composition and age of the enclosing rocks. The geochemical evolution of intraplate granitoid magmatism in the Baikal area is expressed as an increase in contents of F, Li, Rb, Cs, Sn, Be, Ta, Zr, and Pb and a decrease in contents of Ba, Sr, Zn, Th, and U during the differentiation of multiphase intrusions. The geochemical diversity of these granitoids formed both from crustal and from mantle sources and as a result of the mantle–crust interaction, might be due to the effect of plume on the geologic evolution of intraplate magmatism. The wide range of compositions and geochemical types of igneous rocks (from alkali and subalkalic to rare-metal granitoids) within the Late Paleozoic Baikal magmatism area suggests its high ore potential.  相似文献   

13.
对近几十年来岩墙群在构造环境、侵位模式、形成机制、岩相学、地球化学、同位素地质年代学、几何学和比较行星学等方面的研究成果进行了总结,为岩墙群的深入研究提供重要信息。岩墙群主要与伸展构造环境有关,是岩浆侵位事件(如地幔柱)造成上覆地壳形成裂隙系统,岩浆随后灌入而形成的。岩墙群的侵位模式主要有垂向和侧向两种,也可能是两种模式共同作用的结果。岩墙群的岩性多样,但主要是超基性-基性岩,说明其与深部岩浆作用密切相关。对岩墙群的地球化学研究可揭示岩浆事件的构造环境、岩浆演化过程以及源区特征。放射性岩墙群的几何学特征有重要的指示意义,其收敛中心被认为是地幔柱的中心位置。岩墙群是古陆重建十分重要的"契合点",对古陆重建研究十分有帮助。类地行星(金星)巨型放射状系统很可能是岩墙群系统,暗示了地球上也存在过这种完整的巨型放射状岩墙群系统。岩墙群对于古陆重建、地幔柱中心的指示、地幔源区示踪、火山机构以及区域岩浆演化的研究都有十分重要的意义,并将对地球科学的发展产生重要影响。  相似文献   

14.
In the Yangbajing area, southern Tibet, several monogenic volcanoes were conformably superimposed on the Linzizong calc-alkaline volcanic successions. According to their petrologic and geochemical characteristics, these monogenic volcanoes are composed of three rock varieties: tephritic phonolitic plugs and shoshonitic and trachytic lavas. Their geochemical systematics reveals that low-pressure evolutionary processes in the large voluminous Linzizong calc-alkaline magmas were not responsible for the generation of these potassic–ultrapotassic rocks, but the significant change in petrologic and geochemical characteristics from the Linzizong calc-alkaline to potassic–ultrapotassic magma is likely accounted for the change of metasomatic agents in the southern Tibetan lithospheric mantle source during the Paleocene to Eocene. The tephritic phonolites containing both leucite and plagioclase show primary ultrapotassic character similar to that of Mediterranean plagioleucititic magmas. Radiogenic Sr increases with SiO2 in the xenolith-bearing trachytes strongly suggesting significant crustal assimilation in the shoshonitic magmas. The Yangbajing ultrapotassic rocks have high K2O and Al2O3, and show depletion of high field strength elements (HFSEs) with respect to large ion lithophile elements. In primitive mantle-normalized element diagrams, all samples are characterized by positive spikes at Th (U) and Pb with negative anomalies at Ba, Nb–Ta and Ti, reflecting the orogenic nature of the ultrapotassic rocks. They are characterized by highly radiogenic 87Sr/86Sr(i) ratios (0.7061–0.7063) and unradiogenic 143Nd/144Nd(i) (0.5125), and Pb isotopic compositions (206Pb/204Pb = 18.688–18.733, 207Pb/204Pb = 15.613–15.637, and 208Pb/204Pb = 38.861–38.930) similar to the global subducting sediment. Strong enrichment of incompatible trace elements and high Th fractionation from the other HFSEs (such as Nb and U) clearly indicate that the Th-enriched sedimentary component in a network veined mantle source was mainly introduced by sediment-derived melts. In addition, the ultrapotassic rocks have significant Ce (Ce/Ce* = 0.77–0.84) and Eu (Eu/Eu* = 0.72–0.75) anomalies, suggesting a subduction sediment input into the southern Tibetan lithospheric mantle source. In contrast, high U/Th (> 0.20) and Ba/Th (> 32) and low Th/La (< 0.3) in the shoshonites indicate that the Eocene potassic magma originated from partial melting of the surrounding peridotite mantle pervasively affected by slab-related fluid addition from the dehydration of either the subducting oceanic crust or the sediment. Thus, at least two different subduction-related metasomatic agents re-fertilized the upper mantle. According to the radiometric ages and spatial distribution, the Gangdese magmatic association shows a temporal succession from the Linzizong calc-alkaline to ultrapotassic magmas. This indicates a late arrival of recycled sediments within the Tibetan lithospheric mantle wedge. The most diagnostic signatures for the involvement of continent-derived materials are the super-chondritic Zr/Hf (45.5–49.2) and elevated Hf/Sm values (0.81–0.91) in the ultrapotassic rocks. Therefore, the occurrence of orogenic magmatism in the Gangdese belt likely represents the volcanic expression of the onset of the India–Asia collision, preceding the 10 Ma Neo-Tethyan slab break-off process at 42–40 Ma. The absence of residual garnet in the mantle source for the ultrapotassic volcanism seems to imply that the southern Tibetan lithosphere was not been remarkably thickened until the Eocene (~ 50 Ma).  相似文献   

15.
Zircon crystals precipitated from granitoid magmas contain a robust record of the age and chemistry of continental magmatism spanning some 4.375 Ga of Earth history, a record that charts initiation of plate tectonics. However, constraining when exactly plate tectonics began to dominate crustal growth processes is challenging as the geochemical signatures of individual rocks may reflect local subduction processes rather than global plate tectonics. Here we apply counting statistics to a global database of coupled U–Pb and Hf isotope analyses on magmatic zircon grains from continental igneous and sedimentary rocks to quantify changes in the compositions of their source rocks. The analysis reveals a globally significant change in the sources of granitoid magmas between 3.2 and 2.7 Ga. These secular changes in zircon chemistry are driven by a coupling of the deep (depleted mantle) and shallow (crustal) Earth reservoirs, consistent with a geodynamic regime dominated by Wilson cycle style plate tectonics.  相似文献   

16.
一般认为青藏高原拉萨地块后碰撞钾质-超钾质岩浆活动由西向东逐渐喷发,然而本文在拉萨地块中部麻江地区识别出一套钾质火山岩,利用单矿物金云母的40Ar-39Ar方法确定其形成于21.3Ma.这套火山岩具有高镁(>3%)和高钾( K2O/Na2O >2)等的超钾质火山岩成分特征,但其高的MgO含量是因岩石中含有后期蚀变矿物白...  相似文献   

17.
扬子块体西缘新元古代岩浆活动非常强烈 ,其成因对研究Rodinia超级大陆的演化有重要意义。目前对这些岩浆岩的成因和形成的构造背景存在地幔柱和岛弧两种截然不同的观点。文中对康定地区的冷碛辉长岩进行了SHRIMP锆石UPb、元素和Nd同位素研究 ,结果表明辉长岩结晶年龄为 (80 8± 12 )Ma ,与康定花岗质杂岩在时空上密切共生。虽然辉长岩浆在上升过程中受到富集岩石圈地幔和 /或基性下地壳物质的混染 ,但其元素和Nd同位素特征总体上与苏雄碱性玄武岩 (典型的板内型玄武岩 )相似 ,形成于板内裂谷环境。与玄武质岩石相反 ,扬子西缘新元古代花岗质岩石地球化学特征没有明确的构造岩石组合关系。目前的研究资料表明扬子块体西北缘在约 95 0~ 90 0Ma期间可能存在一个近东西向的俯冲带和火山弧 ,但在 86 0~ 75 0Ma期间不存在火山弧 ,这个时期的大规模岩浆活动很可能与Rodinia超级大陆下的一个超级地幔柱活动有关。  相似文献   

18.
作为一种“非传统稳定同位素”,锂同位素地球化学研究已经成为近年来国际上研究的热点之一.文章成功应用锂同位素对青藏高原西南部赛利普超钾质火山岩进行了示范研究.研究表明,赛利普超钾质火出岩的w(Li)为11.2×10-6~22.9× 10-6,同位素组成δ7Li为1.2‰~+3.5‰,平均值为0 2‰,与平均上地壳的相当.超钾质火山岩的锂同位素组成与岩浆结晶分异程度参数之间不存在任何相关性,这表明在超钾质火山岩结晶分异过程中没有发生明显的锂同位素分馏,锂同位素组成特征反映了其形成时的源区特征.超钾质火山岩的锂同位素组成变化范围达4.7‰,并且与pb-Sr-Nd同位素和岩浆结晶分异参数之间亦无任何相关性,表明锂同位素异常可能反映了不均匀源区岩石特征.通过计算模拟以及与前人的类似研究成果进行对比,笔者认为俯冲印度地壳而不是特提斯洋壳(包括沉积物)的流体/熔体参与了超钾质火山岩的源区富集,并在此基础上提出了超钾质火山岩成因模式.  相似文献   

19.
The widespread late Carboniferous calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain provide crucial constraints on the tectonic evolution of the western Tianshan. Here, we perform detailed petrological investigations as well as zircon U-Pb chronological, whole-rock geochemical and Sr-Nd isotopic analyses on these magmatic rocks from two geological sections along the Duku road. Magmatic rocks in the section I with zircon SHRIMP U-Pb ages of 306.8 Ma and 306.4 Ma are composed of medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte, while those in the section II consist of shoshonitic trachy-andesite, trachyte with a U-Pb age of 308.1 Ma, and monzonite with a U-Pb age of 309.6 Ma. All these magmatic rocks are characterized by strong enrichments in large iron lithophile elements with depletions of Nb, Ta and Ti, indicating the origination from subduction-modified lithospheric mantle. The εNd(t) values of the rock samples collected from the section I (2.80–5.45) and section II (3.34–5.37) are generally higher than those of the Devonian to early Carboniferous arc-type magmatic rocks in the Yili-central Tianshan, suggesting that depleted asthenosphere might also be involved in their generation. Based on these geochemical data and petrological observations, we suggest that the early-stage (308.1–309.6 Ma) shoshonitic monzonite, trachy-andesite and trachyte in the section II were generated by mixing between mafic magmas and trachytic melts, while the late-stage (306.4–306.8 Ma) medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte in the section I were produced by partial melting of depleted asthenospheric and metasomatized lithospheric mantle, followed by the processes of fractional crystallization and crustal contamination. Taking into account the available regional geological data, the subduction of south Tianshan ocean was probably ceased at ∼310 Ma, and these calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain formed in a post-collisional setting subsequent to slab break-off.  相似文献   

20.
ABSTRACT

Appinite complexes preserve evidence of mantle processes that produce voluminous granitoid batholiths. These plutonic complexes range from ultramafic to felsic in composition, deep to shallow emplacement, and from Neo-Archean to Recent in age. Appinites are a textural family characterized by idiomorphic hornblende in all lithologies, and spectacular textures including coarse-grained mafic pegmatites, fine-grained ‘salt-and-pepper’ gabbros, as well as planar and linear fabrics. Magmas are bimodal (mafic-felsic) in composition; ultramafic rocks are cumulates, intermediate rocks are hybrids. Their geochemistry is profoundly influenced by a mantle wedge extensively metasomatized by fluids/magmas produced by subduction. Melting of spinel peridotite sub-continental lithospheric mantle (SCLM) produces appinites whose geochemistry is indistinguishable from coeval low-K calc-alkalic arc magmatism. Coeval felsic rocks within appinite complexes and adjacent granitoid batholiths are crustal magmas. When subduction terminates, asthenospheric upwelling (e.g. in a slab window, or in the aftermath of slab failure) induces melting of metasomatized garnet SCLM to produce K-rich sho shonitic magmas enriched in large ionic lithophile and light relative to heavy rare earth elements, whose asthenospheric component can be identified by Sm-Nd isotopic signatures. Coeval late-stage Ba-Sr granitoid magmas have a ‘slab failure’ geochemistry, resemble TTG and adakitic suites, and are formed either by fractionation of an enriched (shoshonitic) mafic magma, or high pressure melting of a meta-basaltic protolith either at the base of the crust or along the upper portion of the subducted slab. Appinite complexes may be the crustal representation of mafic magma that underplated the crust for the duration of arc magmatism. They were preferentially emplaced along fault zones around the periphery of the granitoid batholiths (where their ascent is not blocked by overlying felsic magma), and as enclaves within granitoid batholiths. When subduction ceases, appinite complexes with a more pronounced asthenospheric component are preferentially emplaced along active faults that bound the periphery of the batholiths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号