首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The microstructure and texture in cordierites of a moldanubian gneiss from the Bohemian Massif has been analysed by transmission electron microscopy (TEM) and universal stage in order to get information on the deformation mechanisms and textural development of this rock-forming mineral. Deformation may have taken place at temperatures between about 500° C and 630° C and pressures smaller than about 3 kb. The elongated cordierite xenoblasts show a typical dislocation creep microstructure consisting of subgrain boundaries and free dislocations. The dislocations have [001], [010] and 1/2<110> Burgers vectors. [001] dislocations often have pure screw and edge character the latter type being climb-dissociated on (001). Among the dislocations reactions are common. The main subgrain boundaries observed are (010)[001], {110}[001] and (001)[010] tilt boundaries. Burgers vectors and dislocation line directions reveal (100)[001], (010)[001], (100)[010], {110} 1/2<110> and (001)1/2<110> as activated slip systems. The crystallographic preferred orientation (here referred to as texture) consists of a [001] maximum in the foliation parallel to the mineral lineation. [100] and [010] maxima are perpendicular to it within and normal to the foliation, respectively, with a girdle tendency normal to the lineation. The texture may be explained by simple shear deformation on the {hkO}[001] slip systems with preference of (010)[001].  相似文献   

2.
东秦岭松树沟超镁铁岩侵位机制及其构造演化   总被引:3,自引:0,他引:3  
 东秦岭松树沟蛇绿岩主要由镁铁质-超镁铁质岩石组成。镁铁质岩类的Sm-Nd全岩等时年龄为1030±46(2δ)Ma,εNd(t)=+5.7±0.2,代表了蛇绿岩的形成时代。超镁铁质岩石由不同成因的橄榄质糜棱岩和中粗粒橄榄岩组成,橄榄质糜棱岩是地幔橄榄岩经历复杂变形并多次部分熔融的残余体,具LREE亏损特征,其中发育橄榄石高温位错构造和高温组构以及低温位错构造和低温组构。中粗粒橄榄岩具LREE略富集的分布特征,是地幔橄榄岩残余体再次部分熔融熔体分离结晶的产物。野外地质、地球化学、构造变形特征均表明超镁铁岩块是因洋壳俯冲而底辟侵位于上覆玄武岩中的地幔橄榄岩残余体。综合分析认为,松树沟蛇绿岩经历了古陆块裂解或洋脊扩张(1271-1440Ma)-洋壳形成(1030-1271Ma)-洋壳俯冲消减-橄榄岩块底辟侵位(983Ma)-蛇绿岩构造侵位及其后构造变形叠加改造的复杂演化过程。  相似文献   

3.
角闪岩作为中下地壳的重要物质组成,其岩石和矿物的变形行为及力学强度表现直接制约着中下地壳力学属性与状态,因此开展对其中重要组成矿物角闪石的变形行为和地震波各向异性研究,具有重要地质意义.以红河-哀牢山剪切带中出露的变形角闪岩中角闪石为研究对象,其中显微构造分析表明,变形角闪岩分别呈现出粗、中粒条带状糜棱岩和细粒条带状超糜棱岩.分别对这3种变形岩石中的角闪石矿物颗粒进行了EBSD晶格优选定向分析和地震波各向异性计算,结果表明3种变形角闪岩中的角闪石呈现出不同取向及典型晶质塑性变形特征,(100)[001]主要滑移系发育,同时发育不同程度的(010)[001]和(110)[001]次级滑移系.我们认为在剪切变形过程中,角闪石双晶滑移和解理面滑移共同作用致使角闪石细粒化.从粗粒到细粒条带状角闪石,随着角闪石颗粒粒度减小,角闪石中AV_p也有逐渐变小的趋势,表明角闪石变形行为、形态优选定向及晶格优选定向共同影响着地震波各向异性.  相似文献   

4.
A set of sanidine single crystals were previously deformed at 700° C in a Griggs triaxial press with different crystallographic orientations of the core so as to induce dislocation glide of different slip systems respectively. Deformed crystals have been studied by transmission electron microscopy (TEM) and the activated slip systems have been characterized for two orientations. (010)[001] and (001)1/2[ \(\overline 1 \) 10] systems expected for one orientation (main stress nearly parallel to [012]) are observed, whereas the (001)[100] system expected for the other orientation (main stress nearly parallel to [101]) is never observed. In the latter specimen the deformation is rather difficult and occurs through unexpected systems characterized as (110)1/2[1 \(\overline 1 \) 2] and (1 \(\overline 1 \) 1)1/2[110]. In all the samples studied the deformation is heterogeneous, exhibiting dislocation configurations related to temperature variations.  相似文献   

5.
 We have studied the plastic deformation of Mg2SiO4 wadsleyite polycrystals. Wadsleyite was synthesized from a forsterite powder in a multianvil apparatus. It was then recovered and placed in a second multianvil assembly designed to induce plastic deformation by compression between two hard alumina pistons. After the deformation experiment, the microstructures are characterized by transmission electron microscopy (TEM) and large-angle convergent beam electron diffraction (LACBED). Deformation experiments have been carried out at 15–19 GPa and at temperatures ranging from room temperature to 1800–2000 °C. Five different dislocation types have been identified by LACBED: [100], 1/2〈111〉, [010], 〈101〉 and [001]. The [001] dislocations result from dislocation reactions and not from activation of a slip system. The [010] dislocations are activated under high stresses at the beginning of the experiments and further relax by decomposition into 1/2〈111〉 dislocations or by dissociation into four 1/4[010] partial dislocations. The following slip systems have been identified: 1/2〈111〉{101}, [100](010), [100](001), [100]{011}, [100]{021}, [010](001), [010]{101} and 〈101〉(010). Received: 15 July 2002 / Accepted: 14 February 2003 Acknowledgements High-pressure experiments were performed at the Bayerisches Geoinstitut under the EU IHP – Access to Research Infrastructures Programme (Contract no. HPRI-1999-CT-00004 to D.C. Rubie). P.C. has benefited from a Congé thématique pour recherche from the University of Lille, and would like to thank warmly all the people in Bayreuth who contributed to this work by daily assistance and discussions: Nathalie Bolfan-Casanova, Daniel Frost, Jed L. Mosenfelder and Brent Poe. The quality of the preparation of the TEM specimens by H. Schultze is greatly appreciated.  相似文献   

6.
Previous experiments by Raleigh et al. (1971) have shown that at strain rates of 10−2.sec−1 to 10−7.sec−1 only slip occurs in dry enstatite at temperatures above 1300°C and 1000°C, respectively.The present experiments have been conducted on polycrystalline enstatite under wet conditions in this regime where enstatite only slips, polygonizes and recrystallizes. Slip occurs throughout the whole regime on the system (100)[001] and at strains greater than 40% the system (010)[001] is observed. Polygonization and intragranular recrystallization begin at about 1300°C and 10−4.sec−1 and the orientation of these neoblasts is host-controlled. At lower strain rates intergranular neoblasts develop and their fabric is one of [100] maximum parallel with σ1 and [010] and [001] girdles in the σ2 = σ3 plane, similar to those in natural enstatite tectonites.Dislocation substructures of experimentally deformed enstatite have been examined by transmission electron microscopy. The samples were deformed within the field in which slip polygonization and recrystallization are the dominant deformation mechanisms. Samples within this regime have microstructures that are characterized by stacking faults and partial dislocations. Under the conditions of steady-state flow in olivine, these microstructures inhibit the operation of recovery mechanisms in enstatite.Other samples deformed within the polygonization and recrystallization field have microstructures that confirm the optical observations of intragranular and intergranular growth of neoblasts. It is suggested that the former result from strain-induced tilt of subrains, whereas the latter may result from bulge nucleation into adjacent subgrains.Mechanical data from constant strain-rate experiments at steady state, stress relaxation and temperature-differential creep tests are best fit to a power-law creep equation with the stress exponent, n~3 and the apparent activation energy for creep, Q~65 kcal/mole. Extrapolation of this equation to a representative natural geologic strain rate of 10−4. sec−1, over the temperature interval 1000–2000°C, gives an effective viscosity range of 1020–1018 poise and stresses in the range of 7-0.1 bar, respectively. Comparison with corrected wet-olivine mechanical data (Carter, 1976) over the same environment indicates that olivine is consistently the weaker of the two minerals and will recrystallize whilst enstatite will only slip and kink, thus accounting for the different habits of olivine and enstatite in ultramafic tectonites.  相似文献   

7.
The effect of alumina and water solubility on the development of fabric in orthopyroxene in response to simple shear deformation has been investigated at a pressure of 1.5 GPa and a temperature of 1,100 °C using the D-DIA apparatus. The microstructure observations at these conditions indicate that dislocation glide is the dominant deformation mechanism. In MgSiO3 enstatite and hydrous aluminous enstatite, partial dislocations bounding the stacking faults in [001] glide parallel to the (100) (or) the (100) [001] slip system. Electron backscattered diffraction analysis of anhydrous aluminous enstatite, however, indicates operation of the (010) [001] slip system, and microstructure analysis indicates dislocation movement involving [001] on both (100) and {210} planes. The strong covalent bonding induced by the occupation of M1 and T2 sites by Al could have restricted the glide on (100), activating slip on {210}. The resulting seismic anisotropies (~2 %) in orthopyroxene are weaker compared to olivine (~9.5 %), and reduced anisotropy can be expected if orthopyroxene coexists with olivine. Weak anisotropy observed in stable cratonic regions can be explained by the relatively high abundance of orthopyroxene in these rocks.  相似文献   

8.
This paper reports the results of optical and electron microscopic investigations of mantle olivine samples with H2O contents of tens-hundreds ppm weight. Samples were obtained from the xenoliths and xenocrysts of the Udachnaya pipe. At the scale of optical microscope magnification, a peculiar banded microstructure was observed in thin sections prepared parallel to the olivine (010) plane. It is formed by cross-hatched bands parallel to four crystallographic directions of the olivine structure: [100], [001], [101], and [−101]. At the scale of electron optical magnifications, the banded microstructure is observed as nanometer-sized heterogeneities of various types which are related to olivine deformation: (a) planar defects parallel to (100) and (001) corresponding to the (100)[010] and (001)[100] dislocation glide systems, respectively; they are occasionally transformed into lamellae or decorated by nanoinclusions; and (b) nanometer-sized heterogeneities formed by nanoinclusion arrays not related to planar defects and oriented along the same directions of the olivine structure as the optically visible bands. The deformation structures are decorated by coupled point OH-bearing defects, which were initially present in the olivine. The crystallographically oriented arrays of nanoinclusions of high-pressure hydrous silicates are considered as a result of olivine deprotonization (elimination of OH-bearing defects from the olivine structure) in the zones of previous deformation compression in the crystal. Light refraction effects on the nanoinclusions make these zones optically visible and produce the banded microstructure, which is a consequence of previous deformation.  相似文献   

9.
The Kalininsky ultramafic massif is a fragment of lower structural zone of the Kurtushiba ophiolitic belt in the extreme northeastern part of the Western Sayan. The massif is composed largely of rocks making up the dunite-garzburgite banded complex. The northeastern part of the massif is composed mainly of dunite with linear NW-trending chromite-bearing zones, the localization of which is controlled by banding of the dunite-harzburgite complex. Harzburgite and dunite are characterized by inhomogeneous structures and textures caused by nonuniform ductile deformation, which is expressed as heterogeneous extinction, kink bands, and syntectonic and annealing recrystallization. The petrostructural patterns of olivine in harzburgite and dunite provide evidence for three stages of ductile deformation. At the first stage under deep mantle-crustal conditions, the ductile flow of ultramafic rocks developed mainly in a regime of axial compression, high temperature (>1000°C), and low strain rate (? < 10?6 s?1), which resulted in translational gliding along the (010)[100] and (100)[001] systems in olivine and enstatite, respectively, in combination with a subordinate role of syntectonic recrystallization. Consequently, the rocks acquired a medium-grained (mesogranular) microstructure. At the second stage, related to the thermal effect on ultramafics, the ductile flow developed under the settings of low strain rate (? < 10?6 s?1) and rising temperature (>1000°C). The translational gliding in olivine proceeded largely along (010)[100] and was accompanied by diffusion creep. As the temperature rose, ductile deformation gave way to secondary recrystallization of annealing, which facilitated the growth of olivine grains free of dislocations owing to absorption of individual grains oriented adversely relative to the compression axis and deformed grains saturated with dislocations. As a result, dunite and harzburgite with a coarse-grained porphyroblastic microstructure have been formed. The third stage of ductile flow was apparently related to their transport along deep-seated thrust faults under settings of intense shear deformations at a high temperature (~1000°C) and strain rate (? >10?4 s?1). The ductile flow in olivine resulted in heterogeneous translational gliding along (010)[100] and accompanied by intense syntectonic recrystallization with the formation of a porphyroblastic microstructure. Chromite mineralization in dunite is controlled by internal banding. Intense ductile flow facilitated the metamorphic separation of linearbanded Cr-spinel segregations. Thus, the results of a petrostructural study show that ultramafic rocks of the Kalninsky massif, ascending to the upper lithosphere, underwent both axial and shear ductile deformations in the mantle and lower crust, and these deformations controlled chromite mineralization.  相似文献   

10.
Dislocations in K-feldspars were studied by high resolution transmission electron microscopy (HRTEM) and HRTEM images were further submitted to a filtering in order to improve their interpretation. (010)[101] dislocations appear to be dissociated with (001)[001]/2 planar defect, whereas (001)[110]/2 dislocations are perfect. Structural models of planar defects in (010) and (001) planes were investigated. The energy estimation of these models was performed using the Keating potential. The structural analysis agreed with the experimental result in that dislocations can be dissociated in the (010) plane, whereas they cannot be dissociated in the (001) plane.  相似文献   

11.
The D′′ region that lies just above the core mantle boundary exhibits complex anisotropy that this is likely due to preferred orientation (texturing) of the constituent minerals. (Mg,Fe)SiO3 post-perovskite is widely thought to be the major mineral phase of the D′′. Texture development has been studied in various post-perovskite phases (MgSiO3, MgGeO3, and CaIrO3), and different results were obtained. To clarify this controversy, we report on transformation and deformation textures in MgGeO3 post-perovskite synthesized and deformed at room temperature in the diamond anvil cell. Transformed from the enstatite phase, MgGeO3 post-perovskite exhibits a transformation texture characterized by (100) planes at high angles to the direction of compression. Upon subsequent deformation, this texture changes and (001) lattice planes become oriented nearly perpendicular to compression, consistent with dominant (001)[100] slip. When MgGeO3 post-perovskite is synthesized from the perovskite phase, a different transformation texture is observed. This texture has (001) planes at high angle to compression and becomes slightly stronger upon compression. We also find that the yield strength of MgGeO3 post-perovskite is dependent on grain size and texture. Finer-grained samples exhibit higher yield strength and are harder to induce plastic deformation. Strong textures also affect the yield strength and can result in higher differential stresses. The inferred dominant (001) slip for pPv is significant for geophysics, because, when applied to geodynamic convection models, it predicts the observed anisotropies of S-waves as well as an anti-correlation between P- and S-waves.  相似文献   

12.
Microstructures in minerals from ultrahigh‐pressure metamorphic (UHPM) terranes are keys to understanding the rheological properties and the exhumation mechanisms of rocks from subduction zones. Kyanite‐bearing whiteschist, associated with eclogite lenses, is part of UHPM unit II located south‐west of Lake Zheltau in the Kulet region of the Kokchetav Massif. The equilibrium assemblage is kyanite + garnet + talc + phengite + coesite/quartz. Previously reported peak pressure–temperature (P–T) conditions are ~3.5 GPa at 750 °C. A strong foliation is defined by the talc and phengite, with a corresponding weak shape preferred alignment of kyanite. Crystallographic orientation maps and analysis of kyanite blades were performed using electron backscatter diffraction methods. The data are consistent with a (100)[001] slip system for the formation of undulose extinction and kink bands in kyanite. Rotations measured across individual kink bands are 10–50° about <010>, and rotations along kyanite with undulose extinction are up to 50° about <010> with variations between adjacent points typically <2°. The undulose extinction is interpreted to have developed through crystal plastic deformation by dislocation creep. Kink bands mark the development of high‐angle grain boundaries by dislocation climb. The deformation of kyanite occurred in the fault‐bounded terrane during the exhumation of the Kokchetav Massif.  相似文献   

13.
Cordierite — (Mg,Fe)2Al4Si5O18 — occurs as porphyroclasts within metapelitic and metavolcanic rocks from the Kemiö-Orijärvi belt, SW Finland. After crystallisation the cordierites have been deformed at temperatures between 550–825° C and pressures of 3–5 kbar. Optical microscopy reveals the following deformation-induced microstructures: a bimodal size distribution between host, 0.3 to 4.0 mm, and recrystallised (new) grains, 0.1 to 0.5 mm; the intracrystalline defect-structures of host grains yield undulatory extinction, subgrains and some twinning. Recrystallised grains are optically strain free. Grain and subgrain boundaries are generally straight and parallel to crystallographic low-index planes. Orientation distribution diagrams for host and recrystallised grains yield similar fabric diagrams, i.e. [010] perpendicular to foliation -S-, [001] and [100] parallel to S and [001] parallel to lineation -L-. The fabric diagrams indicate that [001] (010) is the dominant slip system. Transmission electron microscopy reveals straight free dislocations, glide and climb loops, minor {130} and {110} microtwins, isolated nodal points and dislocation walls. Contrast analyses yield Burgers vector b = [001] being dominant and b = [100] subordinate. Climb loops consist of 〈c〉-dislocations that are dissociated in (001) planes, glide loops are defined by [100] [010] and [001] (100). The cordierite microstructures have been interpreted to be generated by dislocation creep. The dominant recrystallisation mechanism is thought to be subgrain rotation subsequently followed by minor grain or twin-band boundary migration.  相似文献   

14.
Dislocations in intermediate plagioclase feldspars, which were deformed under granulite facies conditions, have been analysed. The study reveals extensive ductile deformation by intracrystalline slip and by twinning. Six out of the seven possible Burgers vectors were identified: \(b = \left[ {001} \right],\tfrac{1}{2}\left[ {110} \right],\tfrac{1}{2}\left[ {1\bar 10} \right],\left[ {101} \right],\tfrac{1}{2}\left[ {112} \right]and\tfrac{1}{2}\left[ {1\bar 12} \right]\) . Most, perhaps all, dislocations are dissociated by up to 200 Å. The microstructure is dominated by [001] screw dislocations, most of which appear to be dissociated in (010). The dominant slip system appears to be (010) [001]. Large grain-to-grain variations in the density of free dislocations indicate that the plastic strain in individual grains depended upon the Schmid factor for (010) [001]. The microstructure suggests that the rate-controlling step for high-temperature creep of plagioclase is cross-slip of extended [001] screw dislocations. The rheological contrast between feldspar and quartz is partly due to a difference in stacking fault energy.  相似文献   

15.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010), and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100). [001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned.  相似文献   

16.
Detailed electron microscope and microstructural analysis of two ultrahigh temperature felsic granulites from Tonagh Island, Napier Complex, Antarctica show deformation microstructures produced at  1000 °C at 8–10 kbar. High temperature orthopyroxene (Al 7 wt.% and  11 wt.%), exhibits crystallographic preferred orientation (CPO) and frequent subgrain boundaries which point to dislocation creep as the dominating deformation mechanism within opx. Two different main slip systems are observed: in opx bands with exclusively opx grains containing subgrain boundaries with traces parallel to [010] and a strong coupling of low angle misorientations (2.5°–5°) with rotation axes parallel to [010] the dominating slip system is (100)[001]. Isolated opx grains and grain clusters of 2–5 grains embedded in a qtz–fsp matrix show an additional slip system of (010)[001]. The latter slip system is harder to activate. We suggest that differences in the activation of these slip systems is a result of higher differential stresses imposed onto the isolated opx grains and grain clusters. In contrast to opx, large qtz grains (up to 200 μm) show random crystallographic orientation. This together with their elongate and cuspate shape and the lack of systematic in the rotation axes associated with the subgrain boundaries is consistent with diffusion creep as the primary deformation mechanism in quartz.Our first time detailed microstructural observations of ultrahigh temperature and medium to high pressure granulites and their interpretation in terms of active deformation mechanisms give some insight into the type of rheology that can be expect at lower crustal conditions. If qtz is the mineral phase governing the rock rheology, Newtonian flow behaviour is expected and only low differential stress can be supported. However, if the stress supporting mineral phase is opx, the flow law resulting from dislocation creep will govern the rheology of the rock unit; hence, an exponential relationship between stress and strain rate is to be expected.  相似文献   

17.
Lattice preferred orientations (LPO) developed in perovskite and post-perovskite structured CaIrO3 were studied using the radial X-ray diffraction technique combined with a diamond anvil cell. Starting materials of each phase were deformed from 0.1 MPa to 6 GPa at room temperature. Only weak LPO was formed in the perovskite phase, whereas strong LPO was formed in the post-perovskite phase with an alignment of the (010) plane perpendicular to the compression axis. The present result suggests that the (010) is a dominant slip plane in the post-perovskite phase and it is in good agreement with the crystallographic prediction, dislocation observations via transmission electron microscopy, and a recent result of simple shear deformation experiment at 1 GPa–1,173 K. However, the present result contrasts markedly from the results on MgGeO3 and (Mg,Fe)SiO3, which suggested that the (100) or (110) is a dominant slip plane with respect to the post-perovskite structure. Therefore it is difficult to discuss the behavior of the post-perovskite phase in the Earth’s deep interior based on existing data of MgGeO3, (Mg,Fe)SiO3 and CaIrO3. The possible sources of the differences between MgGeO3, (Mg,Fe)SiO3 and CaIrO3 are discussed.  相似文献   

18.
Structural and fabric analysis of the well-exposed Hilti mantlesection, Oman ophiolite, suggests that shear zone development,which may have resulted from oceanic plate fragmentation, wasinfluenced by pre-existing mantle fabric present at the paleo-ridge.Detailed structural mapping in the mantle section revealed agently undulating structure with an east–west flow direction.A NW–SE strike-slip shear zone cuts across this horizontalstructure. The crystal preferred orientation (CPO) of olivinewithin the foliation is dominated by (010) axial patterns ratherthan more commonly observed (010)[100] patterns, suggestingthat the horizontal flow close to the Moho involved non-coaxialflow. Olivine CPO within the shear zone formed at low temperatureis characterized by (001)[100] patterns and a sinistral senseof shear. The olivine CPO becomes weaker with progressive mylonitizationand accompanying grain size reduction, and ultimately developsinto an ultra-mylonite with a random CPO pattern. The olivine[010]-axis is consistently sub-vertical, even where the horizontalfoliation has been rotated to a sub-vertical orientation withinthe shear zone. These observations suggest that the primarymechanical anisotropy (mantle fabric) has been readily transformedinto a secondary structure (shear zone) with minimum modification.This occurred as a result of a change of the olivine slip systemsduring oceanic detachment and related tectonics during cooling.We propose that primary olivine CPO fabrics may play a significantrole in the subsequent structural development of the mantle.Thus, the structural behavior of oceanic mantle lithosphereduring subduction and obduction may be strongly influenced byinitial mechanical anisotropy developed at an oceanic spreadingcenter. KEY WORDS: mantle lithosphere; anisotropy; shear zone; olivine CPO; Oman ophiolite  相似文献   

19.
We report results from axisymmetric deformation experiments carried out on forsterite aggregates in the deformation-DIA apparatus, at upper mantle pressures and temperatures (3.1–8.1 GPa, 1373–1673 K). We quantified the resulting lattice preferred orientations (LPO) and compare experimental observations with results from micromechanical modeling (viscoplastic second-order self-consistent model—SO). Up to 6 GPa (~185-km depth in the Earth), we observe a marked LPO consistent with a dominant slip in the (010) plane with one observation of a dominant [100] direction, suggesting that [100](010) slip system was strongly activated. At higher pressures (deeper depth), the LPO becomes less marked and more complex with no evidence of a dominant slip system, which we attribute to the activation of several concurrent slip systems. These results are consistent with the pressure-induced transition in the dominant slip system previously reported for olivine and forsterite. They are also consistent with the decrease in the seismic anisotropy amplitude observed in the Earth’s mantle at depth greater than ~200 km.  相似文献   

20.
超高压变质岩提供了研究大陆俯冲隧道中岩石的变形机制和流变差异性的窗口。文章使用电子背散射衍射技术分析了大别山超高压变质带的榴辉岩和长英质片麻岩的显微构造。榴辉岩中的石榴子石基本呈无序分布,绿辉石发育较强烈的晶格优选定向,[001]轴的极密平行或近平行于拉伸线理,(100)面的法线近垂直于面理,退变榴辉岩中角闪石的(100)[001]组构可能继承了绿辉石的晶格优选定向。退变榴辉岩和长英质片麻岩中的石英记录了(0001)低温底面滑移和{1010}中温 柱面滑移,反映了超高压变质岩折返到中地壳的韧性变形;而斜长石的(001)<110>和(010)[100]组构形成于折返到下地壳的角闪岩相变质条件(>600℃)。根据主要矿物的流变律计算了俯冲与折返过程中无水矿物的有效黏度变化。俯冲过程中,钠长石=硬玉+石英的分解反应以及石英-柯石英相变导致长英质片麻岩的有效黏度和密度都显著增高,有利于陆壳深俯冲。但是折返过程中由于温度较高,这两个反应带来的有效黏度变化较小。>80 km深度,石榴子石的流变强度>硬玉>绿辉 石>柯石英,俯冲上地壳的流变由柯石英和硬玉控制,下地壳的流变由绿辉石和石榴子石控制。超高压变质岩流变强度的差异有助于上—下地壳力学解耦,使相对低密度、低黏度的上地壳物质在俯冲隧道内快速折返。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号