首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
O. Yagci  M. S. Kabdasli 《水文研究》2008,22(21):4310-4321
In this experimental study, measurements were conducted to explore the impacts of different forms of individual natural vegetative elements within the flow domain on velocity and turbulence characteristics. All the experiments were performed in a flume measuring 26 m in length, 0·98 m in width and 0·85 m in depth, and real tree saplings were utilized to represent the vegetation element. In order to analyse this commonly observed nature phenomenon in floodplains, trees with wide trunks were classified into three groups on the basis of their volume versus height relation. Throughout the velocity measurements three acoustic Doppler velocimeters were employed. Time‐averaged velocity, streamwise and vertical turbulence intensities and turbulent kinetic energy parameters were examined. Additionally, a formulation that gives the velocity profile at a certain distance downstream of vegetation was introduced and the validity of the proposed formulation was checked with experimental data. It is seen that despite their porous structures, the presence of vegetation considerably disturbs the flow field and dissipates a remarkable amount of energy by turbulence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The depth‐integrated momentum and kinetic energy equations contain velocity correlation terms that involve products of local deviations in velocity components about depth‐averaged values. Based on velocity data obtained from North Boulder Creek, Colorado, a simple scaling analysis suggests that certain of these terms, which normally can be neglected in the case of smooth channels, can be significant parts of the momentum and energy balances in steep, rough channels owing to the occurrence of non‐logarithmic velocity profiles. A linearized version of the kinetic energy equation suggests that, for flow accelerations over small‐amplitude bed forms, the energy of the mean motion is spatially partitioned between a form involving the depth‐averaged velocity and a form involving the deviatoric part of the velocity profile; this partitioning is associated with spatial variations in the uniformity of the vertical profile of the streamwise velocity. These points are consistent with published flume measurements involving flow over sand‐roughened dunes, and with published field measurements of flow over a gravel bar. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Characteristics of energy dissipation in hyperconcentrated flows   总被引:1,自引:0,他引:1  
An equilibrium equation for the turbulence energy in of solid-liquid two-phase flow theory. The equation sediment-laden flows was derived on the basis was simplified for two-dimensional, uniform, steady and fully developed turbulent hyperconcentrated flows. An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation, which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows. Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows. A total of 115 experimental runs were carried out, comprising 70 runs with natural sediments and 45 runs with cinder powder. Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data. Furthermore, the characteristics of energy dissipation in hyperconcentrated flows were identified and described. It was found that the high sediment concentration does not increase the energy dissipation; on the contrary, it decreases flow resistance.  相似文献   

4.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Saltmarsh vegetation significantly influences tidal currents and sediment deposition by decelerating the water velocity in the canopy. In order to complement previous field results, detailed profiles of velocity and turbulence were measured in a laboratory flume. Natural Spartina anglica plants were installed in a 3 m length test section in a straight, recirculating flume. Different vegetation densities, water depths and surface velocities were investigated. The logarithmic velocity profile, which existed in front of the vegetation, was altered gradually to a skimming-flow profile, typical for submerged saltmarsh vegetation. The flow reduction in the denser part of the canopy also induced an upward flow (the current was partially deflected by the canopy). The skimming flow was accompanied by a zone of high turbulence co-located with the strongest velocity gradient. This gradient moved upward and the turbulence increased with distance from the edge of the vegetation. Below the skimming flow, the velocity and the turbulence were low. The structure of the flow in the canopy was relatively stable 2 m into the vegetation. The roughness length (z0) of the vegetation depends only on the vegetation characteristics, and is not sensitive to the current velocity or the water depth. Both the reduced turbulence in the dense canopy and the high turbulence at the top of the canopy should increase sediment deposition. On the other hand, the high turbulence zone just beyond the vegetation edge and the oblique upward flow may produce reduced sedimentation; a phenomenon that was observed near the vegetation edge in the field.  相似文献   

6.
Within a wave-exposed mangrove forest, novel field observations are presented, comparing millimeter-scale turbulent water velocity fluctuations with contemporaneous subtidal bed elevation changes. High-resolution velocity and bed level measurements were collected from the unvegetated mudflat, at the mangrove forest fringe, and within the forest interior over multiple tidal cycles (flood–ebb) during a 2-week period. Measurements demonstrated that the spatial variability in vegetation density is a control on sediment transport at sub-meter scales. Scour around single and dense clusters of pneumatophores was predicted by a standard hydraulic engineering equation for wave-induced scour around regular cylinders, when the cylinder diameter in the equations was replaced with the representative diameter of the dense pneumatophore clusters. Waves were dissipated as they propagated into the forest, but dissipation at infragravity periods (> 30 s) was observed to be less than dissipation at shorter periods (< 30 s), consistent with the predictions of a simple model. Cross-wavelet analysis revealed that infragravity-frequency fluctuations in the bed level were occasionally coherent with velocity, possibly indicating scour upstream of dense pneumatophore patches when infragravity waves reinforced tidal currents. Consequently, infragravity waves were a likely driver of sediment transport within the mangrove forest. Near-bed turbulent kinetic energy, estimated from the turbulent dissipation rate, was also correlated with bed level changes. Specifically, within the mangrove forest and over the unvegetated mudflat, high-energy events were associated with erosion or near-zero bed level change, whereas low-energy events were associated with accretion. In contrast, no single relationship between bed level changes and mean current velocity was applicable across both vegetated and unvegetated regions. These observations support the theory that sediment mobilization scales with turbulent energy, rather than mean velocity, a distinction that becomes important when vegetation controls the development of turbulence.  相似文献   

7.
The flow division at an open channel junction is affected by the inflow discharge and the downstream water depths of the junction. The growth of vegetation in a channel system is environmental friendly, but its effect on the flow in an open channel junction can be significant. In this work a 3D RANS (Reynolds Averaged Navier–Stokes equation) model has been implemented to investigate the flow phenomena in channel junctions with or without vegetation. The model is first validated by two cases: flow in an open channel T-junction without vegetation, and flow in a single open channel with vegetation. The model is then applied to simulate flow in an open channel T-junction with varying width ratio and vegetation density of the branch channel. The results quantitatively predict the trend of increasing flow in the branch channel with the increase in branch channel width and/or the decrease in vegetation density. The overall energy loss coefficient of the system, however, decreases with the amount of flow in the branch channel.  相似文献   

8.
Results from a series of numerical simulations of two‐dimensional open‐channel flow, conducted using the computational fluid dynamics (CFD) code FLUENT, are compared with data quantifying the mean and turbulent characteristics of open‐channel flow over two contrasting gravel beds. Boundary roughness effects are represented using both the conventional wall function approach and a random elevation model that simulates the effects of supra‐grid‐scale roughness elements (e.g. particle clusters and small bedforms). Results obtained using the random elevation model are characterized by a peak in turbulent kinetic energy located well above the bed (typically at y/h = 0·1–0·3). This is consistent with the field data and in contrast to the results obtained using the wall function approach for which maximum turbulent kinetic energy levels occur at the bed. Use of the random elevation model to represent supra‐grid‐scale roughness also allows a reduction in the height of the near‐bed mesh cell and therefore offers some potential to overcome problems experienced by the wall function approach in flows characterized by high relative roughness. Despite these benefits, the results of simulations conducted using the random elevation model are sensitive to the horizontal and vertical mesh resolution. Increasing the horizontal mesh resolution results in an increase in the near‐bed velocity gradient and turbulent kinetic energy, effectively roughening the bed. Varying the vertical resolution of the mesh has little effect on simulated mean velocity profiles, but results in substantial changes to the shape of the turbulent kinetic energy profile. These findings have significant implications for the application of CFD within natural gravel‐bed channels, particularly with regard to issues of topographic data collection, roughness parameterization and the derivation of mesh‐independent solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Flow fluctuations inside an anticyclonic eddy in summertime Funka Bay were examined using three moorings and hydrographic data. The flow pattern above a sharp pycnocline with a concave isopycnal structure during the mooring period was characterized by high mean kinetic energy and relatively low eddy kinetic energy. The ratios of eddy to mean kinetic energy were equal to or less than one, and the mean flow field and isopycnal structure indicated the existence of a stable anticyclonic eddy above the sharp pycnocline under approximate geostrophic balance. Larger flow fluctuations with periods longer than 7 days were dominant inside the eddy. The low-frequency flow fluctuations are accompanied by north to northeastward movement of the eddy with deepening of the pycnocline and spin-up of the anticyclonic circulation. The wind field over Funka Bay is characterized by bay-scale wind fluctuations. The bay-scale winds are greatly influenced by the land topography around Funka Bay, resulting in non-uniform structure with significant wind stress curl. The bay-scale wind fluctuations are termed “locally modified wind” in the present study. The locally modified wind has a negative (positive) wind stress curl in the central–northeastern (southwestern) region of Funka Bay. The north to northeastward movement of the eddy is caused by horizontal non-uniform supply of vorticity from the locally modified wind forcing by the Ekman pumping process. Through this process, the anticyclonic circulation is enhanced (weakened) in the central–northeastern (southwestern) part of the eddy, resulting in the eddy moving north to northeastward with the pycnocline deepening and spin-up of the anticyclonic circulation. The locally modified wind forcing induces low-frequency flow fluctuations through the movement of the eddy in summertime Funka Bay.  相似文献   

10.
本文讨论了等离子体湍流对电子加速的两种模型:(1)假定在空间中存在一个空间均匀的等离子体湍流区,当具有一定初始分布的电子束通过此湍流区时,研究湍流场对电子束的加速过程;(2)在某一封闭的区域中,存在着具有一定初始分布和空间均匀的等离子体,当某种类型的等离子体波突然传入此等离子体区,然后考察此区中电子的加速过程。在这两种模型中,可能存在着某种电子消失机制。假定湍谱是幂指数形式,我们给出了不同类型湍流扩散系数的普遍形式。利用较简单的数学方法,求解了包括消失过程的一维准线性动力学方程,对于给定的初始分布,得出了分布函数的解析解,并给出了平均能量时间关系的表达式。另外,对于特定的湍谱指数,解出了当平行电场和湍流同时存在时的分布函数。最后,对所得结果进行了数值分析和讨论。  相似文献   

11.
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one.  相似文献   

12.
Wind erosion is an important soil erosion and hence a soil degradation problem in the Sahelian zone of West Africa. Potentially, the characteristic dryland vegetation with scattered trees and shrubs can provide for soil erosion protection from wind erosion, but so far adequate quantification of vegetation impacts is lacking. The aim of this study was to develop a model of wind‐blown soil erosion and sediment transport around a single shrub‐type vegetation element. Starting with the selection of a suitable transport equation from four possible sediment transport equations, the effects of a single vegetation element on wind speed were parameterized. The modified wind speed was then applied to a sediment transport equation to model the change in sediment mass flux around a shrub. The model was tested with field data on wind speed and sediment transport measured around isolated shrubs in a farmer's field in the north of Burkina Faso. The simple empirical equation of Radok (Journal of Glaciology 19 : 123–129, 1977) performed best in modelling soil erosion and sediment transport, both for the entire event duration and for each minute within an event. Universal values for the empirical constants in the sediment transport equation could not be obtained because of the large variability in soil and roughness characteristics. The pattern of wind speed, soil erosion and sediment transport behind a shrub and on either side of it was modelled. The wind speed changed in the lee of the vegetation element depending on its porosity, height and downwind position. Wind speed was recovered to the upstream speed at a downwind distance of 7·5 times the height of the shrub. The variability in wind direction created a ‘rotating’ area of influence around the shrub. Compared to field measurements the model predicted an 8% larger reduction in sediment transport in the lee of the vegetation element, and a 22% larger increase beside the vegetation element. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Northern rivers experience freeze‐up over the winter, creating asymmetric under‐ice flows. Field and laboratory measurements of under‐ice flows typically exhibit flow asymmetry and its characteristics depend on the presence of roughness elements on the ice cover underside. In this study, flume experiments of flows under a simulated ice cover are presented. Open water conditions and simulated rough ice‐covered flows are discussed. Mean flow and turbulent flow statistics were obtained from an Acoustic Doppler Velocimeter (ADV) above a gravel‐bed surface. A central region of faster flow develops in the middle portion of the flow with the addition of a rough cover. The turbulent flow characteristics are unambiguously different when simulated ice covered conditions are used. Two distinct boundary layers (near the bed and in the vicinity of the ice cover, near the water surface) are clearly identified, each being characterized by high turbulent intensity levels. Detailed profile measurements of Reynolds stresses and turbulent kinetic energy indicate that the turbulence structure is strongly influenced by the presence of an ice cover and its roughness characteristics. In general, for y/d > 0·4 (where y is height above bed and d is local flow depth), the addition of cover and its roughening tends to generate higher turbulent kinetic energy values in comparison to open water flows and Reynolds stresses become increasingly negative due to increased turbulence levels in the vicinity of the rough ice cover. The high negative Reynolds stresses not only indicate high turbulence levels created by the rough ice cover but also coherent flow structures where quadrants one and three dominate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
《国际泥沙研究》2020,35(6):636-650
In meandering rivers, a cross-stream flow, referred to as a secondary current, has important effects on broad spectra of hydraulic/environmental characteristics, running the gamut from river hydrodynamics and geomorphology to stream ecology. The transport equation for vorticity and kinetic energy transfer should be analyzed to specify terms involved in generation of secondary currents. However, there is limited research on scrutinizing these terms in meandering rivers. On the other hand, while rivers are mostly multi-bend, previous studies have been limited to single bends. In the current paper, three physical multi-bend channels representing a strongly curved bend, a mild bend and an elongated symmetrical meander loop are designed in order to unravel mechanisms responsible for forming circulation cells in cross sections. Experiments are carried out in the middle bend of these models. Cross-stream turbulence anisotropy considerably strengthens almost all near bank cells. Moreover, contrary to single sharp bends, multi bend effects hinder the transfer of the kinetic energy in both directions in the entrance section of the strongly curved bend.  相似文献   

15.
Experimental results of the mean flow field and turbulence characteristics for flow in a model channel bend with a mobile sand bed are presented. Acoustic Doppler velocimeters (ADVs) were used to measure the three components of instantaneous velocities at multiple cross sections in a 135° channel bend for two separate experiments at different stages of clear water scour conditions. With measurements at multiple cross sections through the bend it was possible to map the changes in both the spatial distribution of the mean velocity field and the three Reynolds shear stresses. Turbulent stresses are known to contribute to sediment transport and the three‐dimensionality inherent to flow in open channel bends presents a useful case for determining specific relations between three‐dimensional turbulence and sediment entrainment and transport. These measurements will also provide the necessary data for validating numerical simulations of turbulent flow and sediment transport. The results show that the magnitude and distribution of three‐dimensional Reynolds stresses increase through the bend, with streamwise‐cross stream and cross stream‐vertical components exceeding the maximum principal Reynolds stress through the bend. The most intriguing observation is that near‐bed maximum positive streamwise‐cross stream Reynolds stress coincides with the leading edge of the outer bank scour hole (or thalweg), while maximum cross stream‐vertical Reynolds stress (in combination with high negative streamwise‐cross stream Reynolds stress near the bend apex) coincides with the leading edge of the inner bank bar. Maximum Reynolds stress and average turbulent kinetic energy appear to be greater and more localized over the scour hole before final equilibrium scour is reached. This suggests that the turbulent energy in the flow is higher while the channel bed is developing, and both lower turbulent energy and a broader distribution of turbulent stresses near the bed are required for cessation of particle mobilization and transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In wetlands wind-induced turbulence significantly affects the bottom boundary, and the interaction between turbulence and plant canopies is therefore particularly important. The aim of this study is to advance understanding of the impact of this interaction in submerged aquatic vegetation (SAV)1 on vertical mixing in a fluid dominated by turbulence. Wind-generated turbulence was simulated in the laboratory using an oscillating grid. We quantify the vertical distribution of turbulent kinetic energy (TKE)2 above and within different types of vegetation, measured by an acoustic Doppler velocimeter. Experimental conditions are analysed in two canopy models (rigid and semi-rigid) with seven solid plant fractions (SPFs)3, three stem diameters (d)4 and three oscillation grid frequencies (f)5 and four natural SAVs (Cladium mariscus, Potamogeton nodosus, Myriophyllum verticillatum and Ruppia maritima).  相似文献   

17.
Flow disturbances generated by individual patches of submerged, flexible aquatic vegetation were investigated for two naturally growing macrophyte species, Potamogeton crispus L. and Myriophyllum spicatum L., in a sandy lowland river. Through acoustic Doppler velocimetry, 24 vertical profiles of the 3D velocity field were recorded downstream of each of the patches. The morphological features and biomechanical properties of the plants were also evaluated. The experiments showed the relationship between biomechanical characteristics and turbulence statistics. M. spicatum, which was stiffer and therefore less prone to dynamic reconfiguration, showed a greater effect on velocity damping, causing an increase in Reynold stresses, turbulence intensities, and turbulent kinetic energy downstream of the patch. These effects were present in regions both above and below plant height. In contrast for P. crispus, these effects were present only below plant height. The stiffer plant produced a mixing layer in its wake similar to that of dense plant canopies. The patch of less stiff and more streamlined P. crispus with longer leaves presented a much weaker effect on the flow. In contrast to previous studies conducted with rigid plant surrogates, we concluded that reconfiguration of the living flexible plants allows the plants to minimize drag forces, and therefore, their influence on the flow field was weaker than the effects reported for rigid surrogates.  相似文献   

18.
This study numerically investigates effects of cutting riparian vegetation on flow characteristics by using a two-dimensional numerical model. The numerical model is based on depth-averaging the time- and volume-averaged Navier–Stokes equation with turbulent effects determined by the standard kε turbulence model. Drag forces exerted by the flow on vegetation are considered by adding source terms into momentum equations. In a rectangular channel and compound channel with vegetation along one side, numerical predictions show are in good agreement with those of previous studies. Five cutting scenarios, including the original, cutting along the main channel side, cutting along the bank side, alternative cutting, and reducing vegetative density, are analyzed in this study. The influences of the cutting scenarios on hydrodynamic behaviors are evaluated via numerical simulations. Simulation results suggest that cutting along the main channel side is the most effective scenario for reducing water depth and flow velocities.  相似文献   

19.
ABSTRACT

The presence of aquatic vegetation in riverine and lacustrine environments alters the mean and turbulent flow structure and thus impacts the fate and transport of sediment and contaminants. Turbulent flows through Vallisneria natans (V. natans) and Potamogeton malaianus (P. malaianus) were investigated in a laboratory flume. The impact of plant morphology on mean velocity profile and turbulence distribution was analysed and discrepancies in flow alteration caused by different types of macrophyte were highlighted. Results show that a dense canopy of submerged macrophyte leads to a velocity profile featuring a counter velocity gradient in the lower part of the canopy. Negative Reynolds stress and its local maximum were observed there. Discrepancies in flow structure caused by different morphologies of both tested plants were further identified. With smaller frontal area in the lower part of the canopy, P. malaianus causes a much bigger gradient and local maximum in the velocity profile, and thus a larger local stress maximum than V. natans. The mean velocity gradient around the top of canopy, the Reynolds stress and the turbulence kinetic energy at the canopy interface are smaller than for the flow through the V. natans canopy. Larger reduction of the mean velocity within the V. natans canopy makes the suspended sediment of fine particles more easily deposited than in the P. malaianus canopy.  相似文献   

20.
《国际泥沙研究》2020,35(1):42-56
Submerged vanes are hydrofoils utilized to manage the sediment transport through the river by generating the turbulence in the flow in the form of helical currents.The vanes are placed in the flow with respect to its direction at angle of 10°to 40°.In the current study,an attempt has been made to study the effect of the introduction of vanes in form of rows on parameters like turbulence intensities,Reynolds stresses,turbulent kinetic energy,anisotropy index,and the velocity profile of the flow.It is observed that the profile of variation of turbulence intensities,turbulent kinetic energy,vertical Reynolds stress and velocity over three different marked verticals on a transect are nearly identical whereas a large scatter is observed in the variation of transverse Reynolds stress over the vertical of the aforementioned vertical locations.This observation suggests that flow turbulence is homogeneous over the vertical while scattering in the variation of the transverse Reynolds stress component may be attributed to the presence of secondary currents in the flow.After introducing rows of submerged vanes,the bed turbulence is reduced,hence,helping reduce many scour related phenomenon.It is also observed that a vortex occurred at 0.85 times the height of the vane and the variation of turbulence quantities in the presence of vanes shows the existence of a peak in these quantities.It is observed that as flow moves away from the vane rows,due to the interaction of vortices and the action of vorticity,vortices dampens down and the flow regains homogeneity.After the introduction of submerged vane rows,bed shear stress reduces as fluid from the surface replaces the slow-moving fluid near the bed due to the secondary currents generated by the vanes leading to reduction in the magnitude of turbulence intensities,Reynolds stresses,and turbulent kinetic energy near the bed.The anisotropy index is observed to increase near the bed as induced secondary currents enhanced the turbulence production in the near bed region.All the profiles of parameters obtained in the current study show the existence of a peak or inflexions at a height of 0.85 H from bed(Where,H is the height of the submerged vane).Profiles of parameters obtained in the current study suggest that as the vorticity dampens the vane-generated secondary currents,the scattering in the profiles along the vertical reduces and profiles are observed to regain the variation which they had before the introduction of vane rows,suggesting that flow turbulence has regained its homogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号