首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Existing numerical investigations of dam-break flows rarely consider the effects of vegetation.This paper presents a depth-averaged two-dimensional model for dam-break flows over mobile and vegetated beds.In the model,both the consequences of reducing space for storing mass and momentum by the existence of vegetation and dragging the flow are considered:the former is considered by introducing a factor (1-c) to the flow depth,where c is the vegetation density;the later is considered by including an additional sink term in the momentum equations.The new governing equations are discretized by the finite volume method;and an existing second-order central-upwind scheme embedded with the hydrostatic reconstruction method for water depth,is used to estimate the fluxes;the source terms are estimated by either explicit or semi-explicit methods fulfilling the stability requirement.Laboratory experiments of dam-break flows or quasi-steady flows with/without vegetation effects/sediment transport are simulated.The good agreements between the measurements and the numerical simulations demonstrate a satisfactory performance of the model in reproducing the flow depth,velocity and bed deformation depth.Numerical case studies of six scenarios of dam-break flows over a mobile and vegetated bed are conducted.It is shown that when the area of the vegetation zone,the vegetation density,and the pattern of the vegetation distribution are varied,the resulted bed morphological change differs greatly,suggesting a great influence of vegetation on the dam-break flow evolution.Specifically,the vegetation may divert the direction of the main flow,hindering the flow and thus result in increased deposition upstream of the vegetation.  相似文献   

2.
This paper presents the application of the multi-stage first-order centered scheme GMUSTA to solve a two-phase flow model with four equations for simulating dam-break floods without and with sediment transport.Computation of generalized Riemann invariants can be particularly complex and costly in simulating dam-break floods with sediment transport.GMUSTA numerical scheme,which does not require complete knowledge of the eigenstructure of the hyperbolic mathematical model,offers a suitable and attractive option.The quality of the dam-break flood simulations with GMUSTA scheme is verified by comparing the results against laboratory tests and some experimental data available in the literature,on fixed and mobile bed conditions,with different bed materials and flush or stepped bottoms.The numerical results reproduce quite well the experimental evidence,proving that the model is capable of predicting the temporal evolution of the free-surface and the bed.The GMUSTA scheme,which is not only simple to implement but also both accurate and computationally efficient,is proposed as an appropriate tool for integrating non-equilibrium sediment-transport models.  相似文献   

3.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

4.
Herein a simplified quasi-two dimensional horizontal hydro-morphological mathematical model is presented. The governing equations for the quasi-2D horizontal time-depending flow field are represented by the well-known approach of interconnected cells. New discharge laws between cells are incorporated. The model is capable of predicting temporal changes in water depth, velocity distribution,sediment transport, bed elevation, as well as water and suspended sediment exchanges between main stream and flood plains. An application of the model to the middle reach of the Argentinean Parana River is presented. Satisfactory results were obtained during model calibration, validation and application.  相似文献   

5.
1 INTRODUCTION Mathematical models to analyze the one-dimensional morphological evolution of alluvial rivers, induced either by natural events or anthropic actions, have been commonly applied since the original work of de Vries (1957, 1965, 1969). In the last decades much effort was made in developing suitable 2D horizontal and 3D time-depending mathematical models to study riverbed changes. In fact, full 2D-H hydro-morphological models (Olesen, 1987; Spasojevic and Holly, 1988) as w…  相似文献   

6.
Based on the common approach,the adaptation length in sediment transport is normally estimated astemporally independent.However,this approach might not be theoretically justified as the process of reaching the sediment transport equilibrium stage is affected by the flow conditions in time,especially for fast moving flows,such as scour-hole developing flows.In this study,the two-dimensional(2D) shallow water formulation together with a sediment continuity-concentration(SCC) model were applied to flow with mobile sediment boundary.A timevarying approach was proposed to determine the sediment transport adaptation length to simulate the sediment erosion-deposition rate.The proposed computational model was based on the Finite Volume(FV) method.The Monotone Upwind Scheme of Conservative Laws(MUSCL)-Hancock scheme was used with the Harten Lax van Leer-contact(HLLC) approximate Riemann solver to discretize the FV model.In the flow applications of this paper,a highly discontinuous dam-break,fast sediment transport flow was used to calibrate the proposed timevarying sediment adaptation length model.Then the calibrated model was further applied to two separate experimental sediment transport flow applications documented in the literature,i.e.a highly concentrated sediment transport flow in a wide alluvial channel and a sediment aggradation flow.Good agreement with the experimental data were obtained with the proposed model simulations.The tests prove that the proposed model,which was calibrated by the discontinuous dam-break bed scouring flow,also performed well to represent rapid bed change and steady sediment mobility conditions.  相似文献   

7.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

8.
Flow, sediment transport and bed deformation in alluvial rivers normally exhibit multiple time scales. Enhanced knowledge of the time scales can facilitate better approaches to the understanding of the fluvial processes. Yet prior studies of the time scales are based upon the concept of sediment transport capacity at low concentrations, which however is not generally applicable. This paper presents new formulations of the time scales of fluvial flow, suspended sediment transport and bed deformation, under the framework of shallow water hydrodynamics, non-capacity sediment transport and the theory of characteristics for the hyperbolic governing equations. The time scale of bed deformation in relation to that of flow depth is demonstrated to delimit the applicability region of mathematical river models, and the time scale of suspended sediment transport relative to that of the pertinent flow information is analyzed to address if the concept of sediment transport capacity is applicable. For shallow flows with high sediment concentrations, bed deformation may considerably affect the flow and a fully coupled model is normally required. In contrast, for deep flows at low sediment concentrations, a decoupled model is mostly justified. This pilot study of the time scales delivers a new theoretical basis, on which the interaction between flow, suspended sediment transport and bed deformation can be potentially better characterized.  相似文献   

9.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In a compound meandering channel, patterns of flow structures and bed variations change with increasing water depth owing to complex momentum exchange between high-velocity flow in a main channel and low-velocity flows in flood plains. We have developed a new quasi-three-dimensional model without the shallow water assumption, i.e., hydrostatic pressure distribution; our method is known as the general bottom velocity computation (BVC) method. In this method, a set of depth-integrated equations, including depth-integrated momentum and vorticity equations, are prepared for evaluating bottom velocity and vertical velocity distributions. The objective of this study is to develop a bed variation calculation method for both single and compound meandering channels by using the BVC method coupled with a sediment transport model. This paper shows that the BVC method can reproduce the pattern change of bed variation in a compound meandering channel flow with increasing relative depth. The variation in sediment transport rate due to overbank flow is explained by experimental and computational results.  相似文献   

11.
LINTRODUCTIONThesimulationofmorphodynamicsinestUariesandcoastalareasisbecauseofitSeconomicalmeritageononehandandofitSscientificcomplexityontheOtheranoutStalldingfieldofresearchanddeVelopment.TheFederalWaterwaysEngineeringandResearchinstitote(BAW)isthecentraladvisoryinstitutefortheGermanwaterwayauthority.ItisthereforereSPonsibletoprovidethescientificsuPPOrtforoptimalsedimentmanagemelltproceduresforWatCrwaymaill~ce.ThehydredynndcSystemanalysisisthemainaPProachtosupportengineeringd…  相似文献   

12.
A simple two-dimensional dam-break model is developed for flood plain study purposes. Both a finite difference grid and an irregular triangle element integrated finite difference formulation are presented. The governing flow equations are approximately solved as a diffusion model coupled to the equation of continuity. Application of the model to a hypothetical dam-break study indicates that the approach can be used to predict a two-dimensional dam-break flood plain over a broad, flat plain more accurately than a one-dimensional model, especially when the flow can break-out of the main channel and then return to the channel at other downstream reaches.  相似文献   

13.
A depth-averaged two-phase model is proposed for debris flows over fixed beds, explicitly incorporating interphase and particle-particle interactions, fluid and solid fluctuations and multi grain sizes. A first-order model based on the kinetic theory of granular flows is employed to determine the stresses due to solid fluctuations, while the turbulent kinetic energy - dissipation rate model is used to determine the stresses from fluid fluctuations. A well-balanced numerical algorithm is applied to solve the governing equations. The present model is benchmarked against USGS experimental debris flows over fixed beds. Incorporating the stresses due to fluid and solid fluctuations and properly estimating the bed shear stresses are shown to be crucial for reproducing the debris flows. Longitudinal particle segregation is resolved, demonstrating coarser sediments around the fronts and finer grains trailing the head. Based on extended modeling exercises, debris flow efficiency is shown to increase with initial volume, which is underpinned by observed datasets.  相似文献   

14.
小浪底水库于1999年运用以后,该河道经历了长时间持续冲刷过程.为掌握小浪底水库运用后黄河尾闾段洪水演进特点及河床冲淤规律,采用一维水沙数学模型研究是一条重要的途径.本研究首先采用浑水控制方程,建立了一维耦合水沙数学模型,并利用2003年利津-西河口段汛期实测水沙及汛前断面地形资料对该模型进行率定,计算的流量、水位及含沙量等过程与实测值吻合较好;然后采用2015年利津—汊3段汛期实测资料对该模型进行验证,结果显示水位与冲淤量计算值与实测值较为符合;最后基于2015年实测洪水过程,计算了若干组不同断面间距下的洪水演进及冲淤过程,分析了不同断面间距对沿程水位及河段冲淤量等计算结果的影响,结果表明:采用不同断面间距对水位计算结果影响较小,而对冲淤量计算结果会产生一定影响;在河段水沙及冲淤特性复杂的情况下,采用一维数学水沙模型计算时应考虑断面间距的选择.  相似文献   

15.
Abstract

In dealing with the transient sediment transport problem, the commonly used uncoupled model may not be suitable. The uncoupling technique is intended to separate the physical coupling phenomenon of water flow and sediment transport into two independent processes. Very often, as a result, severe numerical oscillation and solution instability problems appear in the simulation of transient sediment transport in alluvial channels. The coupled model, which simultaneously solves water flow continuity, momentum and sediment continuity equations, gives fewer numerical oscillation and solution instability problems. In this article, a coupled model using a matrix double-sweep method to solve the system of nonlinear algebraic equations has been developed. Several test runs designed on the basis of a schematic model have been performed. The numerical oscillation and solution instability problems have been investigated through a comparison with those obtained from an uncoupled model. Based on the proposed case studies, it can be concluded that, for transient bed evolution, the performance of the coupled model is much better than that of the uncoupled model. The numerical oscillation is reduced and the solution is more stable. This newly developed coupled model was also applied to the Cho-Shui River in Taiwan. This application study implied that the effect of the peaky flood wave propagation on the bed evolution could be simulated better by the coupled model than by the uncoupled model.  相似文献   

16.
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near‐bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water‐worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double‐averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three‐fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near‐bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse‐grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
1 INTRODUCTION In recent years, due to the increase in population and industrial developments, mankind has faced manyproblems associated with rivers, coastal waters and reservoirs. Some of these problems are flood control,water supply, power generation, and irrigation. In addition, making new hydraulic structures changesnatural conditions. Prediction of these changes is necessary for designing such constructions. For solutionof these problems usually an assessment of flow pattern, sedim…  相似文献   

18.
When sediment grains are transported as bed load in overland flow, there is a net transfer of momentum from the flow to the grains. When these grains collide with other grains, whether on the bed or in the flow, streamwise flow velocity decreases and resistance to flow increases. Resistance to flow generated in this manner is termed bed‐load transport resistance. Resistance to flow f over a plane bed may be partitioned into grain resistance fg and bed‐load transport resistance fbt. We use the symbols fbtf and fbtm to denote fbt for flows over fixed beds and over mobile beds, respectively, and we compute the effect of bed mobility on flow resistance fmob by subtracting fbtf from fbtm. The data for this study come from 54 flume experiments with fixed beds and 38 with mobile beds. On average fmob is approximately equal to half of fbtm, which is about one‐quarter of f. Hence, fmob is about one‐tenth of f. Predictive equations are developed for fbtf, fbtm and fmob using dimensional analysis to identify the relevant independent variables and regression analysis to evaluate the coefficients associated with these variables. Values of fmob are always positive which implies that mobile beds offer greater resistance to flow than do fixed beds. Evidently bed‐load grains colliding with mobile beds lose more momentum to the bed than do grains colliding with fixed beds. In other words, grain collisions with mobile beds are less elastic than those with fixed beds. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
《国际泥沙研究》2020,35(4):386-394
Sediment transport simulations are important in practical engineering. In this study, a graphics processing unit (GPU)-based numerical model coupling hydrodynamical and morphological processes was developed to simulate water flow, sediment transport, and morphological changes. Aiming at accurately predicting the sediment transport and sediment scouring processes, the model resolved the realistic features of sediment transport and used a GPU-based parallel computing technique to the accelerate calculation. This model was created in the framework of a Godunov-type finite volume scheme to solve the shallow water equations (SWEs). The SWEs were discretized into algebraic equations by the finite volume method. The fluxes of mass and momentum were computed by the Harten, Lax, and van Leer Contact (HLLC) approximate Riemann solver, and the friction source terms were calculated by the proposed a splitting point-implicit method. These values were evaluated using a novel 2D edge-based MUSCL scheme. The code was programmed using C++ and CUDA, which could run on GPUs to substantially accelerate the computation. The aim of the work was to develop a GPU-based numerical model to simulate hydrodynamical and morphological processes. The novelty is the application of the GPU techniques in the numerical model, making it possible to simulate the sediment transport and bed evolution in a high-resolution but efficient manner. The model was applied to two cases to evaluate bed evolution and the effects of the morphological changes on the flood patterns with high resolution. This indicated that the GPU-based high-resolution hydro-geomorphological model was capable of reproducing morphological processes. The computational times for this test case on the GPU and CPU were 298.1 and 4531.2 s, respectively, indicating that the GPU could accelerate the computation 15.2 times. Compared with the traditional CPU high-grid resolution, the proposed GPU-based high-resolution numerical model improved the reconstruction speed more than 2.0–12.83 times for different grid resolutions while remaining computationally efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号