首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
《Gondwana Research》2013,24(4):1656-1658
The abundant and diverse assemblage of filamentous microbial fossils permineralized in the ~ 3465 Ma Apex chert of northwestern Australia — among the oldest records of life — are arguably the “best studied,” by the most workers using the most advanced techniques, in the history of science. Despite the extensive body of data establishing the biogenicity of the demonstrably cellular carbonaceous Apex fossils, Pinti et al. (2013) and Marshall and Marshall (2013) have raised issues regarding the interpretation of their studies of the Apex chert presented in our recent review article (Schopf and Kudryavtsev, 2012). We agree with the assessment of both of the relevant papers by Pinti et al. (2009, 2013): the observations they report do not apply to the bona fide microscopic fossils of the Apex chert. Similarly, like the minute objects reported by Pinti et al. (2009, 2013), the “quartz and haematite-filled fractures” discussed by Marshall and Marshall (2013) are mineralic pseudofossils that are not relevant to interpretation of the Apex fossil microbes and their suggestion that “multiple populations of carbonaceous material may be a wide-spread issue through out the Precambrian” is without merit.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
A paper recently published by Bartelt and Buser (hereafter identified as “the authors”) aims to clarify relationships between granular dilatancy and dispersive pressure and to question the effective stress principle and its application to shallow granular avalanches (Bartelt and Buser in Act Geotech 11:549–557, 2). The paper also criticizes our own recent work, which utilizes the concepts of evolving dilatancy and effective stress to model the initiation and dynamics of water-saturated landslides and debris flows. Here we first explain why we largely agree with the authors’ views of dilatancy and dispersive pressure as they apply to depth-integrated granular avalanche models, and why we disagree with their views of effective stress and pore-fluid pressure. We conclude by explaining why the authors’ characterization of our recently developed D-Claw model is inaccurate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号