首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Lascar Volcano (5592 m; 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor. Received: 12 December 1996 / Accepted: 6 May 1997  相似文献   

2.
3.
The gas permeability of volcanic rocks may influence various eruptive processes. The transition from a quiescent degassing dome to rock failure (fragmentation) may, for example, be controlled by the rocks permeability, in as much as it affects the speed by which a gas overpressure in vesicles is reduced in response to decompression. Using a modified shock-tube-based fragmentation bomb (Alidibirov and Dingwell 1996a,b; Spieler et al. 2003a), we have measured unsteady-state permeability at a high initial pressure differential. Following sudden decompression above the rock cylinder, pressurized gas flows through the sample. Two pressure transducers record the pressure signals above and below the sample. A transient 1D filtration code has been developed to calculate permeability using the experimental decay curve of the lower pressure transducer. Additionally an analytical steady-state method to achieve permeability is presented as an alternative to swiftly predict the sample permeability in a sufficiently precise manner. Over 100 permeability measurements have been performed on samples covering a wide range of porosity. The results show a general positive relationship between porosity and permeability with a high data scatter. Our preferred interpretation of the results is a combination of two different, but overlapping effects. We propose that at low porosities, gas escape occurs predominantly through microcracks or elongated micropores and therefore could be described by simplified forms of Kozeny–Carman relations (Carman 1956) and fracture flow models. At higher porosities, the influence of vesicles becomes progressively stronger as they form an increasingly connected network. Therefore, a model based on the percolation theory of fully penetrable spheres is used, as a first approximation, to describe the permeability-porosity trend. In the data acquired to date it is evident, that in addition to the porosity control, the samples bubble size, shape and distribution strongly influence the permeability. This leads to a range of permeability values up to 2.5 orders of magnitude at a given porosity.  相似文献   

4.
Cristobalite in a rhyolitic lava dome: evolution of ash hazard   总被引:1,自引:1,他引:0  
Prolonged and heavy exposure to particles of respirable, crystalline silica-rich volcanic ash could potentially cause chronic, fibrotic disease, such as silicosis, in individuals living in areas of frequent ash fall. Here, we show that the rhyolitic ash erupted from Chaitén volcano, Chile, in its dome-forming phase, contains increased levels of the silica polymorph cristobalite, compared to its initial plinian eruption. Ash erupted during the initial, explosive phase (2–5 May 2008) contained approximately 2 wt.% cristobalite, whereas ash generated after dome growth began (from 21 May 2008) contains 13–19 wt.%. The work suggests that active obsidian domes crystallise substantial quantities of cristobalite on time-scales of days to months, probably through vapour-phase crystallisation on the walls of degassing pathways, rather than through spherulitic growth in glassy obsidian. The ash is fine-grained (9.7–17.7 vol.% <4 μm in diameter, the respirable range) and the particles are mostly angular. Sparse, fibre-like particles were confirmed to be feldspar or glass.  相似文献   

5.
In July–August 2003, the andesitic lava dome at Volcán de Colima, México, was destroyed by a sequence of explosions that replaced the 2×106 m3 dome with a crater 200 m across and 30 m deep. The two strongest explosions occurred on July 17 and August 28. The initial low-frequency impulses that they produced, which were recorded on broadband seismic records, allowed an estimation of the counter forces of the initiating process as being equal to 0.3×1011 N and 1×1011 N for the July and August events, respectively. The seismic characteristics follow the Nishimura-Hamaguchi scaling law for volcanic explosions, reflecting self-similarity in the processes initiating explosive events. The results also show that counter forces can discriminate between the sizes of explosive eruptions that are assigned the same magnitude by conventional methods of classification such as the Volcanic Explosivity Index. The increasing use of broadband seismometers may therefore provide the basis for using counter forces to determine the magnitude of explosive eruptions.  相似文献   

6.
Transitions in eruptive style—explosive to effusive, sustained to pulsatory—are a common aspect of volcanic activity and present a major challenge to volcano monitoring efforts. A classic example of such transitions is provided by the activity of Mount St. Helens, WA, during 1980, where a climactic Plinian event on May 18 was followed by subplinian and vulcanian eruptions that became increasing pulsatory with time throughout the summer, finally progressing to episodic growth of a lava dome. Here we use variations in the textures, glass compositions and volatile contents of melt inclusions preserved in pyroclasts produced by the summer 1980 eruptions to determine conditions of magma ascent and storage that may have led to observed changes in eruptive activity. Five different pyroclast types identified in pyroclastic flow and fall deposits produced by eruptions in June 12, July 22 and August 7, 1980, provide evidence for multiple levels of magma storage prior to each event. Highly vesicular clasts have H2O-rich (4.5–5.5 wt%) melt inclusions and lack groundmass microlites or hornblende reaction rims, characteristics that require magma storage at P≥160 MPa until shortly prior to eruption. All other clast types have groundmass microlites; PH20 estimated from both H2O-bearing melt inclusions and textural constraints provided by decompression experiments suggest pre-eruptive storage pressures of ∼75, 40, and 10 MPa. The distribution of pyroclast types within and between eruptive deposits can be used to place important constraints on eruption mechanisms. Fall and flow deposits from June 12, 1980, lack highly vesicular, microlite-free pyroclasts. This eruption was also preceded by a shallow intrusion on June 3, as evidenced by a seismic crisis and enhanced SO2 emissions. Our constraints suggest that magma intruded to a depth of ≤4 km beneath the crater floor fed the June eruption. In contrast, eruptions of July and August, although shorter in duration and smaller in volume, erupted deep volatile-rich magma. If modeled as a simple cylinder, these data require a step-wise decrease in effective conduit diameter from 40–50 m in May and June to 8–12 m in July and August. The abundance of vesicular (intermediate to deep) clast types in July and August further suggests that this change was effected by narrowing the shallower part of the conduit, perhaps in response to solidification of intruded magma remaining in the shallow system after the June eruption. Eruptions from July to October were distinctly pulsatory, transitioning between subplinian and vulcanian in character. As originally suggested by Scandone and Malone (1985), a growing mismatch between the rate of magma ascent and magma disruption explains the increasingly pulsatory nature of the eruptions through time. Recent fragmentation experiments Spieler et al. (2004) suggest this mismatch may have been aided by the multiple levels at which magma was stored (and degassed) prior to these events.Editorial responsibility: J Stix  相似文献   

7.
 Lascar Volcano (22°22'S, 67°44'W) is the most active volcano of the central Andes of northern Chile. Activity since 1984 has been characterised by periods of lava dome growth and decay within the active crater, punctuated by explosive eruptions. We present herein a technique for monitoring the high-temperature activity within the active crater using frequent measurements of emitted shortwave infrared (SWIR) radiation made by the spaceborne along-track scanning radiometer (ATSR). The ATSR is an instrument of low spatial resolution (pixels 1 km across) that shares certain characteristics with the MODIS instrument, planned for use as a volcano monitoring tool in the NASA EOS Volcanology Project. We present a comprehensive time series of over 60 cloud- and plume-free nighttime ATSR observations for 1992–1995, a period during which Lascar experienced its largest historical eruption. Variations in short wavelength infrared flux relate directly to changes in high-temperature surfaces within the active crater. From these data, interpretations can be made that supplement published field reports and that can document the presence and status of the lava dome during periods where direct, ground-based, observations are lacking. Our data agree with less frequent information collected from sensors with high spatial resolution, such as the Landsat thematic mapper (Oppenheimer et al. 1993) and are consistent with field observations and models that relate subsidence of the dome to subsequent explosive eruptions (Matthews et al., 1997). Most obviously, Lascar's major April 1993 eruption follows a period in which the magnitude of emitted shortwave infrared radiation fell by 90%. At this time subsidence of the 1991–1992 lava dome was reported by field observers and this subsidence is believed to have impeded the escape of hot volatiles and ultimately triggered the eruption (Smithsonian Institution 1993a). Extrapolating beyond the period for which field observations of the summit are available, our data show that the vulcanian eruption of 20 July 1995 occurred after a period of gradual increase in short wavelength infrared flux throughout 1994 and a more rapid flux decline during 1995. We attribute this additional, otherwise undocumented, cycle of increasing and decreasing SWIR radiance as most likely representing variations in degassing through fumaroles contained within the summit crater. Alternatively, it may reflect a cycle of dome growth and decay. The explosive eruption of 17 December 1993 appears to have followed a similar, but shorter, variation in SWIR flux, and we conclude that large explosive eruptions are more likely when the 1.6-μm signal has fallen from a high to a low level. The ATSR instrument offers low-cost data at high temporal resolution. Despite the low spatial detail of the measurements, ATSR-type instruments can provide data that relate directly to the status of Lascar's lava dome and other high-temperature surfaces. We suggest that such data can therefore assist with predictions of eruptive behaviour, deduced from application of physical models of lava dome development at this and similar volcanoes. Received: 1 October 1996 / Accepted: 13 January 1997  相似文献   

8.
El Chichón volcano is an andesite stratovolcano in southern México. It erupted in March 1982, after about 550 years of quiescence. The 1982 eruption of El Chichón has not been followed by the growth of a lava dome within the newly formed crater. This is rather anomalous since the construction of a new dome after the destruction of an old one is a common process during the eruptions at andesite and dacite volcanoes. To discuss this anomalous aspect of the El Chichón eruption, some regularity in the process of re-awakening of dormant (here defined as a period of quiescence of more than 100 years) andesite and dacite volcanoes are studied based on the seismic activity recorded at the volcanoes Bezymianny, Mount St. Helens, El Chichón, Unzen, Pinatubo and Soufrière Hills. Three stages were identified in the re-awakening activity of these volcanoes: (1) preliminary seismic activity, leading up to the first phreatic explosion; (2) activity between the first and the largest explosions; (3) post-explosion dome-building process. The eruptions were divided into two groups: low-VEI (Volcanic Explosivity Index) and the long duration stage-1 events (Unzen, 1991 and Soufrière Hills volcano, 1995) and high-VEI and the short duration stage-1 events (Bezymianny, 1956; Mount St. Helens, 1980; El Chichón, 1982 and Pinatubo, 1992). The comparative analysis of the seismo-eruptive activity of two eruptions of the second group, the 1980 of Mt. St. Helens and the 1982 of El Chichón, produced an explanation the absence of new dome building during the 1982 eruption of El Chichón volcano. It may be explained in terms of the unusually rapid emission of gas and water from the magmatic and hydrothermal system beneath the volcano during a relatively short sequence of large explosions that could have sharply increased the viscosity of the magma making impossible its exit to the surface.  相似文献   

9.
 Experiments were conducted on the fragmentation of analogue low-strength porous material (plastiprin) by rapid decompression in a shock-tube-type apparatus. The porous samples (length=365 mm, cross-section dimensions 40×40 mm) pressurized by air to pressures up to 0.9 MPa, were rapidly decompressed to 0.1 MPa. Rapid decompression of samples caused fragmentation and ejection of the fragmentation products into a large volume tank. The process of analogue material fragmentation was documented using high-speed cinematography and dynamic pressure measurements. The duration of the fragmentation event is significantly shorter than that of the ejection event. The fragmentation of material precedes the acceleration of fragments. As a result of fragmentation, sub-parallel fractures are generated. The characteristic fragment size decreases as the initial pressure differential increases. The ejected fragments obtain velocities of 60 m/s. The mechanisms of material fragmentation during unloading and fragmentation wave propagation are discussed. The experimental results provide insight into the fragmentation dynamics of highly viscous magmas in which brittle failure at high strain rate is possible. Received: 23 July 1997 / Accepted: 23 November 1997  相似文献   

10.
On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al. 2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.  相似文献   

11.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

12.
Usu volcano has erupted nine times since 1663. Most eruptive events started with an explosive eruption, which was followed by the formation of lava domes. However, the ages of several summit lava domes and craters remain uncertain. The petrological features of tephra deposits erupted from 1663 to 1853 are known to change systematically. In this study, we correlated lavas with tephras under the assumption that lava and tephra samples from the same event would have similar petrological features. Although the initial explosive eruption in 1663 was not accompanied by lava effusion, lava dome or cryptodome formation was associated with subsequent explosive eruptions. We inferred the location of the vent associated with each event from the location of the associated lava dome and the pyroclastic flow deposit distribution and found that the position of the active vent within the summit caldera differed for each eruption from the late 17th through the 19th century. Moreover, we identified a previously unrecognized lava dome produced by a late 17th century eruption; this dome was largely destroyed by an explosive eruption in 1822 and was replaced by a new lava dome during a later stage of the 1822 event at nearly the same place as the destroyed dome. This new interpretation of the sequence of events is consistent with historical sketches and documents. Our results show that petrological correlation, together with geological evidence, is useful not only for reconstructing volcanic eruption sequences but also for gaining insight into future potential disasters.  相似文献   

13.
The Senyama volcanic products of the late Pliocene to early Pleistocene O’e Takayama volcano overlie a 100-m-thick, late Pliocene coastal quartz-sandstone and are intruded by an early Pleistocene dacite dome. The Senyama volcanic products are the remains of a cone that retains a basal part 1.5 km across and 150–250 m high from the substrate. The cone comprises dacite block-and-ash flow deposits and minor base-surge deposits occur at the base. Single beds of the block-and-ash flow deposits are 1–16 m thick and dip inward 20–40° at the base of the cone and inward or outward 10–20° at the summit. Juvenile fragments in the block-and-ash flow deposits are non- to poorly vesicular and commonly have curviplanar surfaces and prismatic joints extending inward from the surfaces, which imply quenching and brittle fracturing of dacite lava. They are variably hydrothermally altered. Nevertheless, juvenile blocks appear to retain a uniform direction of the magnetization vector residual during thermal demagnetization between 280°C and 625°C. At the time of the eruption, the well-sorted sand of the substrate was at the coast and a good aquifer that facilitated explosive interaction of water and the ascending dacite lava. The mechanism of the explosion perhaps involved thermal contraction cracking of the dacite lava, water-inflow into the interior of the lava, and explosive expansion of the water. Initial phreatomagmatic explosions opened the vent. Succeeding phreatomagmatic or phreatomagmatic–vulcanian explosions produced block-and-ash flow deposits around the vent. Hydrothermal silver-ore deposits and manganese-oxide deposits occur in the Senyama volcanic products and the underlying sandstone, respectively. They could represent post-eruptive activity of the hydrothermal system developed in and around the cone.  相似文献   

14.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

15.
Fugen-dake, the main peak of Unzen Volcano, began a new eruption sequence on November 17, 1990. On May 20, 1991, a new lava dome appeared near the eastern edge of the Fugen-dake summit. Small-scale, 104–106 m3 in volume, Merapi-type block and ash flows were frequently generated from the growing lava dome during May–June, 1991. These pyroclastic flows were accompanied by co-ignimbrite ash plumes that deposited ash-fall deposits downwind of the volcano. Three examples of co-ignimbrite ash-fall deposits from Unzen pyroclastic flows are described. The volume of fall deposits was estimated to be about 30% by volume of the collapsed portions of the dome that formed pyroclastic flows. This proportion is smaller than that described for other larger co-ignimbrite ash-fall deposits from other volcanoes. Grain size distributions of the Unzen co-ignimbrite ash-fall deposits are bi-modal or tri-modal. Most ashes are finer than 4 phi and two modes were observed at around 4–7 phi and 9 phi. They are composed mainly of groundmass fragments. Fractions of another mode at around 2 phi are rich in crystals derived from dome lava. Some of the fine ash component fell as accretionary lapilli from the co-ignimbrite ash cloud indicating either moisture or electrostatic aggregation. We believe that the co-ignimbrite ash of Unzen block and ash flows were formed by the mechanical fracturing of the cooling lava blocks as they collapsed and moved down the slope. These ashes were entrained into the convective plumes generated off the tops of the moving flows.  相似文献   

16.
Pyroclastic density currents (PDCs) generated during the Plinian eruption of the Pomici di Avellino (PdA) of Somma–Vesuvius were investigated through field and laboratory studies, which allowed the detailed reconstruction of their eruptive and transportation dynamics and the calculation of key physical parameters of the currents. PDCs were generated during all the three phases that characterised the eruption, with eruptive dynamics driven by both magmatic and phreatomagmatic fragmentation. Flows generated during phases 1 and 2 (EU1 and EU3pf, magmatic fragmentation) have small dispersal areas and affected only part of the volcano slopes. Lithofacies analysis demonstrates that the flow-boundary zones were dominated by granular-flow regimes, which sometimes show transitions to traction regimes. PDCs generated during eruptive phase 3 (EU5, phreatomagmatic fragmentation) were the most voluminous and widespread in the whole of Somma–Vesuvius’ eruptive history, and affected a wide area around the volcano with deposit thicknesses of a few centimetres up to more than 25 km from source. Lithofacies analysis shows that the flow-boundary zones of EU5 PDCs were dominated by granular flows and traction regimes. Deposits of EU5 PDC show strong lithofacies variation northwards, from proximally thick, massive to stratified beds towards dominantly alternating beds of coarse and fine ash in distal reaches. The EU5 lithofacies also show strong lateral variability in proximal areas, passing from the western and northern to the eastern and southern volcano slopes, where the deposits are stacked beds of massive, accretionary lapilli-bearing fine ash. The sedimentological model developed for the PDCs of the PdA eruption explains these strong lithofacies variations in the light of the volcano’s morphology at the time of the eruption. In particular, the EU5 PDCs survived to pass over the break in slope between the volcano sides and the surrounding volcaniclastic apron–alluvial plain, with development of new flows from the previously suspended load. Pulses were developed within individual currents, leading to stepwise deposition on both the volcano slopes and the surrounding volcaniclastic apron and alluvial plain. Physical parameters including velocity, density and concentration profile with height were calculated for a flow of the phreatomagmatic phase of the eruption by applying a sedimentological method, and the values of the dynamic pressure were derived. Some hazard considerations are summarised on the assumption that, although not very probable, similar PDCs could develop during future eruptions of Somma–Vesuvius.  相似文献   

17.
Maar volcanoes represent a common volcano type which is produced by the explosive interaction of magma with external water. Here, we provide information on a number of maars in the ultrapotassic Sabatini Volcanic District (SVD, Roman Province) as young as ∼90 ka. The SVD maars are characterised in terms of crater and ejecta ring morphologies, eruptive successions and magma compositions, in light of the local substrate settings, with the aim of assessing magma–water interaction conditions, eruption energetics and genetic mechanisms. Feeder magmas spanned the whole SVD differentiation trend from trachybasalts–shoshonites to phonolites. From the ejected lithic fragments from aquifer rocks, the range of depth of magma–water explosive interaction is estimated to have been mostly at ∼400–600 m below ground level, with a single occurrence of surficial interaction in palustrine–lacustrine environment. In particular, the interaction with external water may have triggered the explosive behaviour of poorly differentiated magmas, whereas it may have acted only as a late controlling factor of the degree of fragmentation and eruption style for the most differentiated magma batches during low-flux ascent in an incipiently fragmented state. Crater sizes, ejecta volumes and ballistic data allow a reconstruction of the energy budget of SVD maar-forming eruptions. Erupted tephra volumes from either monogenetic or polygenetic maars ranged 0.004–0.07 km3 during individual maar-forming eruptions, with corresponding total magma thermal energies of 8 × 1015–4 × 1017 J. Based on energy partitioning and volume balance of erupted magmas and lithic fractions vs. crater holes, we consider the different contributions of explosive excavation of the substrate vs. subsidence in forming the SVD maar craters. Following available models based on crater sizes, highly variable fractions (5–50%) of the magma thermal energies would have been required for crater excavation. It appears that subsidence may have played a major role in some SVD maars characterised by low lithic contents, whilst substrate excavation became increasingly significant with increasing degrees of aquifer fragmentation.  相似文献   

18.
Fieldwork, radiometric (40Ar/39Ar and 14C) ages and whole-rock geochemistry allow a reconstruction of eruptive stages at the active, mainly dacitic, Pichincha Volcanic Complex (PVC), whose eruptions have repeatedly threatened Quito, most recently from 1999 to 2001. After the emplacement of basal lavas dated at ∼1100 to 900 ka, the eruptive activity of the old Rucu Pichincha volcano lasted from ∼850 ka to ∼150 ka before present (BP) and resulted in a 15 × 20 km-wide edifice, which comprises three main building stages: (1) A lower stratocone (Lower Rucu, ∼160 km3 in volume) developed from ∼850 to 600 ka; (2) This edifice was capped by a steeper-sided and less voluminous cone (the Upper Rucu, 40–50 km3), the history of which started 450–430 ka ago and ended around 250 ka with a sector collapse; (3) A smaller (8–10 km3) but more explosive edifice grew in the avalanche amphitheatre and ended Rucu Pichincha's history about 150 ka ago. The Guagua Pichincha volcano (GGP) was developed from 60 ka on the western flank of Rucu with four growth stages separated by major catastrophic events. (1) From ∼60 to 47 ka, a basal effusive stratocone developed, terminating with a large ash-and-pumice flow event. (2) This basal volcano was followed by a long-lasting dome building stage and related explosive episodes, the latter occurring between 28–30 and 22–23 ka. These first two stages formed the main GGP (∼30 km3), a large part of which was removed by a major collapse 11 ka BP. (3) Sustained explosive activity and viscous lava extrusions gave rise to a new edifice, Toaza (4–5 km3 in volume), which in turn collapsed around 4 ka BP. (4) The ensuing amphitheatre was partly filled by the ∼1-km3 Cristal dome, which is the historically active centre of the Pichincha complex. The average output rate for the whole PVC is 0.29 km3/ka. Nevertheless, the chronostratigraphic resolution we obtained for Lower Rucu Pichincha and for the two main edifices of Guagua Pichincha (main GGP and Toaza), leads to eruptive rates of 0.60–0.65 km3/ka during these construction stages. These output rates are compared to those of other mainly dacitic volcanoes from continental arcs. Our study also supports an overall SiO2 and large-ion lithophile elements enrichment as the PVC develops. In particular, distinctive geochemical signatures indicate the involvement of a new magma batch at the transition between Rucu and Guagua. At the GGP, the same phenomenon occurs at each major collapse event marking the onset of the ensuing magmatic stage. Since the 11-ka-BP collapse event, this magmatic behaviour has led to increasingly explosive activity. Four explosive cycles of between 100 and 200 years long have taken place at the Cristal dome in the past 3.7 ka, and repose intervals between these cycles have tended to decrease with time. As a consequence, we suggest that the 1999–2001 eruptive period may have initiated a new eruptive cycle that might pose a future hazard to Quito (∼2 million inhabitants).  相似文献   

19.
Iwate volcano, Japan, showed significant volcanic activity including earthquake swarms and volcano inflation from the beginning of 1998. A large earthquake of magnitude 6.1 hit the south-west of the volcano on September 3. Although a 1 km2 fumarole field formed, blighting plants on the ridge in the western part of the volcano in the spring of 1999, no magmatic eruptions occurred. We reconcile the spatio-temporal distributions of volcanic pressure sources determined by previously reported studies in which GPS, strain and tilt data from dense geodetic station networks are analyzed (Miura et al. Earth Planet Space 52:1003–1008, 2000; Sato and Hamaguchi J Volcanol Geotherm Res 155:244–262, 2006). We calculate the magma supply rates from their results and compare them with the occurrence rates of volcanic earthquakes. The results show that the magma supply rates are almost constant or even decrease with time while the earthquake occurrence rate increases with time. This contrast in their temporal changes is interpreted to result from stress accumulation in the volcanic edifice caused by constant magma supply without effusion of magma to the surface. We further show that data showing slight acceleration in strain can be best explained by magma ascent at a constant velocity, and that there is no evidence for increased magma buoyancy resulting from gas bubble growth. This consideration supports the interpretation that the magma stayed at 2 km depth and horizontally migrated. These findings relating magma supply rate and seismicity to magma ascent process are clues to understanding why no magmatic eruption occurred at Iwate volcano in 1998.  相似文献   

20.
Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatépetl (Mexico) volcanoes.Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition.The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号