首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The movement of resource subsidies across natural systems can have important effects on recipient communities and has emerged as a key research area in ecology. Detrital subsidies are critical in marine ecosystems where communities are reliant on external sources of primary production, yet few studies have quantified the spatial extent of drift algae at coastal scales. Using observations of the seafloor (up to 140 m depth) from tow-camera surveys along 145 km of Nova Scotia coast, and bathymetric data of this region, we created the first predictive map of drift subsidy in a marine ecosystem. We used a random forest model to generate our predictions, which correctly classified 95 % of observations into a presence or absence of drift. Distance from source, slope, and bathymetric position index (elevation relative to surrounding landscape) was the main predictor variables of the occurrence of drift. Drift algae occurred across a range of benthic habitats within our study area, but most frequently within 1.4 km of the coast on flat bottoms or in regions with zero or negative bathymetric position index. Such areas were coincident with seafloor depressions and flat low-energy habitats. Repeated observations at some locations indicated that areas with steep slopes or large curvature tended to have variable patterns of drift compared to areas with little or no slope or curvature. We predict that deep subtidal environments receiving drift subsidy will be impacted by the declines in kelp biomass projected for this region (and others) due to changes in ocean climate.  相似文献   

2.
Hydraulic fracturing is increasingly being used to produce gas from unconventional resource sites for energy supply. Therefore, concerns about risks of this technology related to human health and the environment have to be addressed. Among the major issues is the potential contamination of surrounding water systems by chemical additives used in fracturing fluids. In this study, the ecotoxicological hazards of fracturing fluids, both, their individual components (chemicals) as well as their mixtures (product) were assessed using a component-based mixture approach. For five exemplary fracturing fluids, 40–90 wt% of the contained substances could unambiguously be defined in their chemical identity. The concentrations used in the applied fluid mixture were considered as (maximum) exposure concentrations. For components with mass fractions between 10 and 74 wt%, the effect concentrations for acute and chronic toxicity of fish, daphnia and algae were retrieved from experimental databases and through predictive modeling. The hazard indices calculated from the ratio of exposure to effect concentration were >1 for all fracturing fluids, using different scenarios. This indicated a hazard from the undiluted fracturing fluids. The assessment framework presented in this study allows for dealing with data gaps and uncertainties in a tiered fashion and in particular accommodates for combined effects resulting from chemical mixtures. It might be employed for ecotoxicological risk assessment of products containing chemical mixtures and optimization of their environmental performance.  相似文献   

3.
Sandy beach surf zones serve as alternative nursery habitats for juvenile Chinook salmon (0 age) during their early marine residency, a period considered critical due to high and variable mortality rates. Despite the importance of early marine residence, the extent of juvenile salmon surf zone use and movement along sandy beaches is not well understood. Juvenile Chinook salmon distribution and movement were studied in shallow surf zone habitats by sampling from 2006 to 2010 with a beach seine 11 beaches adjacent and distant to four estuary mouths in Oregon and Washington, USA. The estuary of origin of each juvenile was determined using genetic stock identification methods and coded wire tags. Surf zones sampled were within littoral cells, which are stretches of the coastline bordered by rocky headlands, and included estuaries with and without Chinook salmon populations. Juvenile salmonids were only collected at littoral cells with Chinook-inhabited watersheds. Most juveniles (95 %) were present at sandy beaches adjacent (<500 m from estuary mouth) to their estuary of origin. Few Chinook salmon (5 %) were collected at littoral cells that contained non-natal estuaries. These results indicate that juvenile Chinook salmon inhabiting surf zones mostly use beaches adjacent to their estuaries of origin, but some juveniles may reside in beaches distant from their point of ocean entry.  相似文献   

4.
Seagrasses provide a number of critical ecosystem services, including habitat for numerous species, sediment stabilization, and shoreline protection. Ariel photography is a useful tool to estimate the areal extent of seagrasses, but recent innovations in radiometrically calibrated sensors and algorithm development have allowed identification of benthic types and retrieval of absolute density. This study demonstrates the quantitative ability of a high spatial resolution (1 m) airborne hyperspectral sensor (3.2 nm bandwidth) in the complex coastal waters of Saint Joseph’s Bay (SJB). Several benthic types were distinguished, including submerged and floating aquatic vegetation, benthic red algae, bare sand, and optically deep water. A total of 23.6 km2 of benthic vegetation was detected, indicating no dramatic change in vegetation area over the past 30 years. SJB supported high seagrass density at depths shallower than 2 m with an average leaf area index of 2.0?±?0.6 m2 m?2. Annual seagrass production in the bay was 13,570 t C year?1 and represented 41 % of total marine primary production. The effects of coarser spatial resolution were investigated and found to reduce biomass retrievals, underestimate productivity, and alter patch size statistics. Although data requirements for this approach are considerable, water column optical modeling may reduce the in situ requirements and facilitate the transition of this technique to routine monitoring efforts. The ability to quantify not just areal extent but also productivity of a seagrass meadow in optically complex coastal waters can provide information on the capacity of these environments to support marine food webs.  相似文献   

5.
Complexities associated with dissolved organic matter (DOM) isolation from seawater have hampered compositional characterization of this key component of global carbon and nutrient cycles. DOM isolation efficiency by electrodialysis (ED) from salt-containing waters was optimized and evaluated on samples including coastal ocean seawater, open ocean seawater, artificial seawater from axenic cultures of marine phytoplankton, and artificial seawater samples containing standard compounds of different molecular sizes and charge. ED was performed with a system optimized for processing 2–10 L sample volumes. Additionally, the combination of ED and solid-phase extraction, using Bond Elut PPL exchange resin, was evaluated. Using only ED, the following DOC recoveries were achieved: coastal seawater, 71.3 ± 6.5 %; open ocean, 50.5 ± 3.1 %; phytoplankton cultures, 70.3 ± 12.5 %; glucose, 90.2 ± 2.1 %; EDTA, 67.5 ± 9.9 %; and vitamin B12, 98.3 ± 1.6 %. With the combination of PPL and ED techniques, an average DOC recovery of 76.7 ± 2.6 % was obtained for coastal seawater, but this recovery was not statistically different from seawater recoveries using only ED. Comparison of C/N ratios and fluorescence excitation emission matrices taken at the beginning and end of the recovery process for coastal samples processed using only ED indicated that the final recovered material was representative of the DOM present in the original samples. Typical recoveries using combined PPL and ED exceed those of previous isolation methods.  相似文献   

6.
Here we have examined interactions of gold nanoparticles differing in primary particle size and coating with the green algae Chlamydomonas reinhardtii as function of the colloidal stability of the particles in the experimental media used for toxicity studies. Interactions of dissolved Au3+ ions with algae were also examined. Included endpoints were photosynthetic yield and algal growth. Morphological and structural effects were examined microscopically and by flow cytometry. The results indicate no significant toxicity of gold nanoparticles to C. reinhardtii. Analysis of published data suggests toxicity of gold nanoparticles on algal growth to relate rather to particular coatings than to the gold core.  相似文献   

7.
成冰纪全球冰期是地球历史上最极端的冰室气候事件,冰川作用波及赤道区域,全球可能都遭受了冰封,海洋广泛缺氧,生物演化进程迟滞。然而,冰期结束之后,大气氧浓度迅速升高,海洋发生逐步氧化,大型带刺疑源类和真核多细胞藻类在埃迪卡拉纪开始繁盛,出现最早的动物,地表生物圈发生了翻天覆地的变化。显然,成冰纪全球冰期事件是地球系统演化的重要转折。认识冰期的环境效应是认识埃迪卡拉纪生物演化的关键,也是打开地表宜居环境演化的钥匙。本文总结了近年来成冰纪全球冰期的气候假说、冰期沉积特征、海洋氧化还原条件及冰期后的大气与海洋环境剧变等方面的研究进展,简要分析了全球冰期研究中存在的问题,并对该领域未来研究提出了展望与建议。  相似文献   

8.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

9.
Our study was based on the recent increase in wastewater pollution and its deleterious effects to the marine ecosystem. Using numerical simulation (DESCAR-3.2 software program), we investigated the orientation and quantification of trace metals in wastewater discharges from permanent and semi-permanent drain outfalls constructed along the Kuwait Coastline encompassing six Kuwait Governorates (GI-GVI). This study was related to trace metals toxicity and bioaccumulation effects on the commercial yellow fin Sea bream, Acanthopagrus latus fish using probit program and bioaccumulation factor (BAF), respectively. Observations from wastewater discharges showed high trace metals concentrations in the sequence of Zn > Cr > Cu > Fe > Ni > Pb > Hg during winter compared to summer and in GI and GIV compared to drain outfalls in the other Governorates. Seasonally, trace metals in A. latus revealed the sequence of Zn > Fe > Cu > Ni > Cr > Pb > Hg in GI, GII and GIV indicating the significance of toxic metals that bioaccumulated from their surrounding untreated wastewater. Toxicity test revealed A. latus highly sensitive to Hg even at low lethal concentrations (LC15) compared to other metals. BAF in A. latus body parts was >1 indicating significant accumulation of trace metals from wastewater. However, BAF was <1 in Cr suggesting that A. latus could absorb trace metals from multiple sources over lengthy exposure period and not necessarily from wastewater containing rich Cr levels. Thus, the present findings validate A. latus as bioindicator to pollution more authentically by numerical simulation, toxicity and bioaccumulation tests compared to the traditional method of labeling A. latus as a pollution indicator.  相似文献   

10.
Biomass-Cover Relationship for Eelgrass Meadows   总被引:1,自引:0,他引:1  
Eelgrass meadows play key roles in coastal ecosystems, and the extent of the standing biomass is focal to address ecosystem functioning. Eelgrass cover is commonly assessed in marine monitoring programs while biomass sampling is destructive and expensive. Therefore, we have proposed a functional relationship that translates eelgrass cover into aboveground biomass using site-specific information on Secchi depth or light attenuation. The relationship was estimated by non-linear regression on 791 combined observations of eelgrass cover and biomass from eight different coastal sites in Denmark. Eelgrass biomass initially increased with cover and flattened out as cover exceeded 40–50 % due to increased self-shading. Decreasing light energy with depth reduced the eelgrass biomass potential (assessed at 100 % cover), and this reduction was stronger for coastal sites with lower water transparency. Moreover, the biomass potential varied seasonally from around 110–140 g DW m?2 in spring months to a peak of 241 g DW m?2 in August, consistent with other seasonal studies. The model explained 56 % of the variation in log-transformed biomasses, but significant variation between coastal sites still remained, deviating between ?23 and 39 % from the mean relationship. These site-specific deviations could be due to differences in losses related to grazing, drifting algae and epiphytes, better light capture by dense canopies, as well as differences in how well light conditions within eelgrass meadows are represented by actual measurements of Secchi depth and light attenuation. The relationship can be employed to estimate eelgrass biomass of entire coastal ecosystems from observations of eelgrass cover and depth.  相似文献   

11.
While cyanide is known to be produced by many organisms, including plants, bacteria, algae, fungi and some animals, it is generally thought that high levels of cyanide in aquatic systems require anthropogenic sources. Here, we report accumulation of relatively high levels of cyanide in non-polluted salt marsh sediments (up to 230 μmol kg?1). Concentrations of free cyanide up to 1.92 μmol L?1, which are toxic to aquatic life, were detected in the pore-waters. Concentration of total (free and complexed) cyanide in the pore-waters was up to 6.94 μmol L?1. Free cyanide, which is released to the marsh sediments, is attributed to processes associated with decomposition of cord grass, Spartina alterniflora, roots and possibly from other sources. This cyanide is rapidly complexed with iron and adsorbed on sedimentary organic matter. The ultimate cyanide sink is, however, associated with formation of thiocyanate by reaction with products of sulfide oxidation by Fe(III) minerals, especially polysulfides. The formation of thiocyanate by this pathway detoxifies two poisonous compounds, polysulfides and hydrogen cyanide, preventing release of free hydrogen cyanide from salt marsh sediments into overlying water or air.  相似文献   

12.
Spatial patterns of estuarine biota suggest that some nearshore ecosystems are functionally linked to interacting processes of the ocean, watershed, and coastal geomorphology. The classification of estuaries can therefore provide important information for distribution studies of nearshore biodiversity. However, many existing classifications are too coarse-scaled to resolve subtle environmental differences that may significantly alter biological structure. We developed an objective three-tier spatially nested classification, then conducted a case study in the Alexander Archipelago of Southeast Alaska, USA, and tested the statistical association of observed biota to changes in estuarine classes. At level 1, the coarsest scale (100–1000’s km2), we used patterns of sea surface temperature and salinity to identify marine domains. At level 2, within each marine domain, fjordal land masses were subdivided into coastal watersheds (10–100’s km2), and 17 estuary classes were identified based on similar marine exposure, river discharge, glacier volume, and snow accumulation. At level 3, the finest scale (1–10’s km2), homogeneous nearshore (depths <10 m) segments were characterized by one of 35 benthic habitat types of the ShoreZone mapping system. The aerial ShoreZone surveys and imagery also provided spatially comprehensive inventories of 19 benthic taxa. These were combined with six anadromous species for a relative measure of estuarine biodiversity. Results suggest that (1) estuaries with similar environmental attributes have similar biological communities, and (2) relative biodiversity increases predictably with increasing habitat complexity, marine exposure, and decreasing freshwater. These results have important implications for the management of ecologically sensitive estuaries.  相似文献   

13.
Using coupled terrestrial and coastal zone models, we investigated the impacts of deglaciation and anthropogenic inputs on the CO2–H2O–CaCO3 system in global coastal ocean waters from the Last Glacial Maximum (LGM: 18,000 year BP) to the year 2100. With rising sea level and atmospheric CO2, the carbonate system of coastal ocean water changed significantly. We find that 6 × 1012 metric tons of carbon were emitted from the coastal ocean, growing due to the sea level rise, from the LGM to late preindustrial time (1700 AD) because of net heterotrophy and calcification processes. This carbon came to reside in the atmosphere and in the growing vegetation on land and in uptake of atmospheric CO2 through the weathering of rocks on land. It appears that carbonate accumulation, mainly, but not exclusively, in coral reefs from the LGM to late preindustrial time could account for about 24 ppmv of the 100 ppmv rise in atmospheric CO2, lending some support to the “coral reef hypothesis”. In addition, the global coastal ocean is now, or soon will be, a sink of atmospheric CO2. The temperature rise of 4–5°C since the LGM led to increased weathering rates of inorganic and organic materials on land and enhanced riverine fluxes of total C, N, and P to the coastal ocean of 68%, 108%, and 97%, respectively, from the LGM to late preindustrial time. During the Anthropocene, these trends have been exacerbated owing to rising atmospheric CO2, due to fossil fuel combustion and land-use practices, other human activities, and rising global temperatures. River fluxes of total reactive C, N, and P are projected to increase from late preindustrial time to the year 2100 by 150%, 380%, and 257%, respectively, modifying significantly the behavior of these element cycles in the coastal ocean, particularly in proximal environments. Despite the fact that the global shoal water carbonate mass has grown extensively since the LGM, the pHT (pH values on the total proton scale) of global coastal waters has decreased from ~8.35 to ~8.18 and the carbonate ion concentration declined by ~19% from the LGM to late preindustrial time. The latter represents a rate of decline of about 0.028 μmol CO3 2? per decade. In comparison, the decrease in coastal water pHT from the year 1900 to 2000 was about 8.18–8.08 and is projected to decrease further from about 8.08 to 7.85 between 2000 and 2100, according to the IS92a business-as-usual scenario of CO2 emissions. Over these 200 years, the carbonate ion concentration will fall by ~120 μmol kg?1 or 6 μmol kg?1 per decade. This decadal rate of decline of the carbonate ion concentration in the Anthropocene is 214 times the average rate of decline for the entire Holocene. Hence, when viewed against the millennial to several millennial timescale of geologic change in the coastal ocean marine carbon system, one can easily appreciate why ocean acidification is the “other CO2 problem”.  相似文献   

14.
The Euphrates Formation (Lower Miocene) in the Central Iraq consists mainly of shallow marine carbonates. Two hundred ten samples were collected from 21 wells (1E to 21ED) at Bahar Najaf area, and 18 samples were collected at Wadi Asadi in Baghdadi area, from Euphrates Formation. Four microfacies are identified, namely mudstone, wackestone, packstone, and rare grainstone with ten submicrofacies. The allochems in the Euphrates Formation are dominated by bioclasts. Peloids, ooids, and intraclasts are less abundant. The common fossils in the Euphrates Formation are miliolids, algae, ostracods, Miogypsina, and abundant shells of pelecypods and gastropods. Calcite and dolomite are the predominant mineral components of the Euphrates Formation. The carbonates of the Euphrates Formation have been affected by a variety of diagenetic processes such as micritization, dissolution, neomorphism, cementation, stylolitization, dolomitization, dedolomitization, and silicification. The Euphrates Formation was deposited in open to restricted platforms which indicated lagoonal environment with warm and restricted open circulation. In fact, prevalence and abundance of micrite provide an evidence of a shallow marine of low-energy environment and, in some places, may be approaching to be stagnant environment. The average of CaO in Najaf area (51.5 %) is slightly lower than that in Baghdadi area (53.3 %), which was reflected in calcite content found being 91 % in Najaf and 94 % in Baghdadi. Dolomite and gypsum appeared as minor minerals beside calcite, so low concentration of MgO (0.83 % in Najaf; 0.63 in Baghdadi) and SO3 (0.55 % in Najaf; 0.53 % in Baghdadi) was reflected information of small amounts of dolomite (2 % in Najaf; 1.6 % in Baghdadi) and gypsum (0.7 % in Najaf and 0.6 in Baghdadi) in the Euphrates Formation. The insoluble residue in Najaf area (4.37 %) is relatively higher than that in Baghdadi area (1.9 %), indicating that the Euphrates Formation in Najaf Area has deposited in an environment closer to the shoreline. Concentrations of the trace elements Sr, Mn, and Fe which support the conclusion that reminds the Euphrates Formation had been deposited in a shallow marine environment of quiet energy, with the likelihood that the shoreline was the nearest to Najaf rather than to Baghdadi.  相似文献   

15.
Franchthi Cave, bordering Kiladha Bay, in Greece, is a key archaeological site, due to its long occupation time, from?~?40,000 to?~?5000 year BP. To date, no clear evidence of Neolithic human dwellings in the cave was found, supporting the assumption that Neolithic people may have built a village where there is now Kiladha Bay. During the Neolithic period/Early Holocene, wide areas of the bay were indeed emerged above sea level. Bathymetric and seismic data identified a terrace incised by a valley in?~?1 to 2 m sediment depth. Eight sediment cores, up to 6.3-m-long, were retrieved and analysed using petrophysical, sedimentological, geochemical, and chronostratigraphic methods. The longest core extends into the exposure surface, consisting of a layer of carbonate rubble in a finer matrix, representing weathering processes. Dated organic remains place this unit at?~?8500 cal year BP. It is overlain by stiff silty mud representing an estuarine environment. This mud is capped by reduced sediments with roots marking an exposure surface. A shell-layer, dated to?~?6300 cal year BP, overlies this terrestrial sequence, reflecting the marine transgression. This layer occurs at 10.8 mbsl, 7.7 m deeper than the global sea level at that time, suggesting tectonic subsidence in the area. It is overlain by finer-grained marine carbonate-rich sediments. The top of the core shows traces of eutrophication, pebbles and marine shells, all likely a result of modern anthropogenic processes. These results are interpreted in the context of human occupation: the exposed surface contains pottery sherds, one dating to the Early to Middle Neolithic period, indicating that Neolithic people were present in this dynamic landscape interacting with a migrating coastline. Even if the artefacts are isolated, future investigations of the submerged landscape off Franchthi Cave might lead to the discovery of a Neolithic village, which eventually became buried under marine sediments.  相似文献   

16.
The combined Rhone and Aare Glaciers presumably reached their last glacial maximum (LGM) extent on the Swiss Plateau prior to 24 ka. Two well-preserved, less extensive moraine stades, the Gurten and Bern Stade, document the last deglaciation of the Aare Valley, yet age constraints are very scarce. In order to establish a more robust chronology for the glacial/deglacial history of the Aare Valley, we applied 10Be surface exposure dating on eleven boulders from the Gurten and Bern Stade. Several exposure ages are of Holocene age and likely document post-depositional processes, including boulder toppling and quarrying. The remaining exposure ages, however yield oldest ages of 20.7 ± 2.2 ka for the Gurten Stade and 19.0 ± 2.0 ka for the Bern Stade. Our results are in good agreement with published chronologies from other sites in the Alps.  相似文献   

17.
In this study, we performed leaching experiments for timescales of hours-to-months in deionized water on fresh volcanic ash from Mt. Etna (Italy) and Popocatépetl (Mexico) volcanos to monitor Fe release as a function of ash mineral chemistry and size, with the aim of clarifying Fe release mechanisms and eventually evaluating the impact of volcanic ash on marine and lacustrine environments. To define sample mineralogy and Fe speciation, inclusive characterization was obtained by means of XRF, SEM, XRPD, EELS and Mössbauer spectroscopies. For Etna and Popocatépetl samples, glass proportions were quantified at 73 and 40%, Fe2O3 total contents at 11.6–13.2 and 5.8 wt%, and Fe3+/FeTot ratios at 0.33 and 0.23, respectively. Leaching experiments showed that significant amounts of iron, ~?30 to 150 and ~?750 nmol g?1 l?1 for pristine Etna and Popocatépetl samples, respectively, are released within the first 30 min as a function of decreasing particle size (from 1 to 0.125 mm). The Popocatépetl sample showed a very sustained Fe release (up to 10 times Etna samples) all along the first week, with lowest values never below 400 nmol g?1 l?1 and a maximum of 1672 nmol g?1 l?1 recorded after 5 days. This sample, being composed of very small particles (average particle size 0.125 mm) with large surface area, likely accumulated large quantities of Fe-bearing sublimates that quickly dissolved during leaching tests, determining high Fe release and local pH decrease (that contributed to release more Fe from the glass) at short timescale (hours-to-days). The fractional Fe solubility (FeS) was 0.004–0.011 and 0.23% for Etna and Popocatépetl samples, respectively, but no correlation was found between Fe released in solution and either ash Fe content, glass/mineral ratio or mineral assemblage. Results obtained suggest that volcanic ash chemistry, mineralogy and particle size assume a relevant role on Fe release mostly in the medium-to-long timescale, while Fe release in the short timescale is dominated by dissolution of surface sublimates (formed by physicochemical processes occurring within the eruption plume and volcanic cloud) and the effects of such a dissolution on the local pH conditions. For all samples, a moderate to sustained Fe release occurred for leaching times comparable with their residence time within the euphotic zone of marine and lacustrine environments (variable from few minutes to few hours), revealing their possible contribution to increase Fe bioavailability.  相似文献   

18.
Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC?+?TOC) to the ocean during outgoing tides ranged from ??1.8±0.5?×?103 to 9.5±0.7?×?103?mol C h?1 during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10±4?×?106?mol C year?1. Following a major rain event (36 mm rain in 3 days), FDIC?+?TOC increased and reached values as high as 29.0 ±?0.7?×?103?mol C h?1. Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 ±?4?×?106?mol C year?1. These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.  相似文献   

19.
Experiments in which two species of freshwater green algae, Ankistrodesmus sp. and Selenastrum, were cultured in dilute solutions of metals chelated with EDTA reveal massive uptake of U and Ba, but relatively minor uptake of Ni, Co and V. For 2-ppm metal-spiked TBIM culture media at pH 8.1–8.2 and growth durations of 3–21 days at 13–16°C, both species accumulate U and Ba at levels of 1000 to 10,000 ppm by dry weight, representing a concentration factor of up to 5000 times the aqueous metal solute concentration. Uptake was comparable for passage of 100-ml spiked culture media through algal mats over 100 min. For aqueous solute concentrations of 20 ppb Ba, Co, Ni and U the algae adsorbed 3000–4000 ppm U and Ba giving concentration factors up to 200,000. With 40 ppb U, the algae adsorbed 6000 ppm, representing a concentration factor of 150,000. Co and Ni in the algae were present at levels below analytical sensitivity. The Ba aqueous concentration was about equivalent to, and the U concentration 100 times natural marine water abundances. For 2-ppm Co-, Ni- and V-spiked culture media, algal uptake was 40–600 ppm Ni, 17 ppm Co and 12 ppm V, respectively.Given the abundance of algae in both fresh and marine waters, coupled with the known association of plankton with U-rich Black Sea muds, the experimental results may indicate that algae also play a significant role in mediating U and Ba uptake from the hydrosphere. The recorded levels of algal uptake for metals are ~1000 × (U), ~100 × (Ba), ~100 × (Ni), ~20 × (Co), and ~6 × (V), previously reported abundances for “typical” marine plants.  相似文献   

20.
Inappropriate management of industrial effluents has been among major causes of water pollution and subsequent fish physiological and behavioral disorders and mortalities. This study investigated the effects of wastewater from a paper mill on immune-related gene expressions (lysozyme, tumor necrosis factor and heat shock protein 70) and hematological alterations, in juvenile rainbow trout (Oncorhynchus mykiss) during a 14-day exposure period. Following the determination of LC50, fish (135 ± 10 g body weight) were exposed to three effluent treatments: control (0), 10 and 25% of LC50, in laboratory conditions. The wastewater exposure initially increased lysozyme and tumor necrosis factor gene expression, and the expression of both genes was suppressed on the 14th day after exposure. There was a rise in heat shock protein 70 gene expression at the beginning of the experiment and then decreased to the level observed in the control group. Fish exposed to wastewater showed a significant increase in the levels of red blood cells, white blood cells and hematocrit three days following exposure, but the levels of these blood parameters significantly decreased at the end of the exposure period (P < 0.05). Our results indicated a range of immune-related gene toxicity and hematotoxicity in rainbow trout caused by the negative impacts of the industrial wastewater. Here we also discussed that poor biosecurity controls and inadequate treatments of effluents from industrial activities can lead to serious damages among wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号