首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout northeast China, the widely distributed peatlands have formed a large carbon (C) pool. However, the relationship between peatland initiation and climate controls is still poorly documented and understood. Understanding the responses of these C‐rich ecosystems to past climate change will provide useful insights into projecting the fate of peatland C in the future. In this study, we present a detailed historical reconstruction of peatland development in northeast China based on 312 basal peat dates, and examine the relationship between Holocene peatland dynamics and climate sensitivity. Our results indicate that peatland initiation started in the early Holocene, and that the majority of peatlands were initiated by and developed during the late Holocene. After the most intensive initiation period of 4.2–0.8 ka, the rate of peatland development slowed, which was concomitant with decreasing insolation and monsoon intensity. The widespread peatland initiation in the late Holocene might have been caused by the cool and moist climate patterns. The optimum timing of the peatland development was not uniform across northeast China, and these spatio‐temporal differences indicate the influences of regional climate and terrain on peatland initiation. Peat‐core data show variations in the long‐term apparent rate of C accumulation (LORCA) during the Holocene, with an average rate of 37.2 g C m?2 a?1. The peak LORCA occurred during 10.5–9.0 ka, probably in response to higher temperatures and stronger East Asia summer monsoon intensities. Both temperature and humidity are important factors influencing the peatland initiation and C dynamics in this region.  相似文献   

2.
Under changing climatic conditions permafrost peatlands can play an important role in the global carbon budget through permafrost carbon feedbacks and shifts in carbon assimilation. To better predict future dynamics in these ecosystems an increased understanding of their Holocene carbon and permafrost history is needed. In Tavvavuoma, northern Sweden, we have performed detailed analyses of vegetation succession and geochemical properties at six permafrost peatland sites. Peatland initiation took place around 10 000 to 9600 cal. a BP, soon after retreat of the Fennoscandian Ice Sheet, and the peatlands have remained permafrost‐free fens throughout most of the Holocene. At the four sites that showed a continuous accumulation record during the late Holocene radiocarbon dating of the shift from wet fen to dry bog vegetation, characteristic of the present permafrost peatland surface, suggests that permafrost developed at around 600–100 cal. a BP. At the other two sites peat accumulation was halted during the late Holocene, possibly due to abrasion, making it more difficult to imply the timing of permafrost aggradation. However also at these sites there are no indications of permafrost inception prior to the Little Ice Age. The mean long‐term Holocene carbon accumulation rate at all six sites was 12.3±2.4 gC m−2 a−1 (±SD), and the mean soil organic carbon storage was 114±27 kg m−2.  相似文献   

3.
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial‐scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water‐table depths were inferred using testate amoeba analyses. High‐resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present‐day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.  相似文献   

4.
Peatlands contain approximately 25% of the total soil organic carbon, despite covering only 3% of earth’s land surface. The ecological, hydrological and biogeochemical functions of peatlands are tightly coupled to climate. Therefore, both direct human impacts and indirect effects of climate change can threaten the ecological function of peatlands through changes in hydrology. However, little is known about how peatland ecosystems, and specifically their biogeochemistry, carbon cycling, and development, may respond to climatic change. In this study, the Peat Accumulation Model was adapted to investigate the response of peatland development and carbon cycling to climatic change through simulating changes in precipitation and temperature at different stages of peatland development history. The warming and wetting were imposed on this system at 10,000 years since its initialization (mid-development stage) and at 20,000 years since its initialization (late-development stage). Here, it was revealed that peatlands can switch between carbon sinks and sources suddenly, but the extent to which the change takes place depends on the developmental stage of peatland ecosystems. The simulation results for the late-development stage showed that peatlands could function as carbon sources once warming and wetting was imposed but that peatland ecosystems during the mid-development stage can still function as carbon sinks under warming and wetting conditions. Moreover, peatland ecosystems have self-regulation capabilities so that they can go back to their normal ecological and biogeochemical functions under newly stabilized climates. Also, it is the change in temperature that results in the fundamental change in peatland development and carbon cycling. This study indicates that the response of peatland ecosystems to climate change is largely determined by their developmental stages.  相似文献   

5.
《第四纪科学杂志》2017,32(4):457-462
Despite the discovery of cryptotephra layers in over 100 peatlands across northern Europe, Holocene cryptotephra layers have not previously been reported from Polish peatlands. Here we present the first Holocene tephra findings from two peatlands in northern Poland. At Bagno Kusowo peatland we identify the most easterly occurrence of the AD 860 B tephra, recently correlated to the White River Ash (WRAe) derived from Mount Churchill, Alaska. A shorter core from Linje peatland contains tephra from the Askja 1875 eruption, extending the spatial distribution and regional importance of this Icelandic tephra in Eastern Europe. Our research indicates the potential of cryptotephra layers to date and correlate the growing number of palaeoenvironmental studies being conducted on Polish peatlands and contributes towards the development of a regional Holocene tephrostratigraphy for Poland. Copyright © 2017 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.
  相似文献   

6.
Peatlands are globally important ecosystems in terms of biodiversity, hydrology, and for the role they play in the carbon cycle. They store approximately one‐third of the carbon contained in the terrestrial biosphere, whilst covering only approximately 3% of the land and freshwater surface. Tropical peatlands represent an important component of this carbon store and can be found in Asia, Africa, South and Central America. However, tropical peatlands are also under severe threat of destruction from human activities including deforestation, agricultural expansion and resource exploitation. In South America, the Pastaza–Marañon foreland basin (PMFB) in NW Peru represents the most carbon dense landscape in Amazonia due to an abundance of peatlands, including nutrient‐poor ombrotrophic peat domes and river‐influenced minerotrophic swamps. The Aucayacu peatland in the PMFB is a nutrient‐poor peat dome and represents the oldest peatland yet reported in Amazonia. It is a relatively large peatland—it is estimated that Aucayacu has maximum dimensions of 33 km (NW‐SE) by 15 km (NE‐SW) (Fig. 1 ). The flora of the site is characterized by stunted vegetation due to low nutrient status, known as ‘pole’ and ‘dwarf’ forest, which at Aucayacu grows above a patchy understory of grasses and ferns (Fig. 2 ). Recent research has shown that Aucayacu has laid down peat up to 7.5 m deep in ~ 8900 years.  相似文献   

7.
Weckström, J., Seppä, H. & Korhola, A. 2010: Climatic influence on peatland formation and lateral expansion in sub‐arctic Fennoscandia. Boreas, Vol. 39, pp. 761–769. 10.1111/j.1502‐3885.2010.00168.x. ISSN 0300‐9843. The initiation and lateral expansion patterns of five small sub‐arctic peatlands in the Fennoscandian tree‐line region were studied by 21 accelerator mass spectrometry (AMS) 14C‐dated basal‐peat samples representing three to six dates per site. The radiocarbon dates were converted to calendar years and are based on the median probability. When combined with earlier basal‐peat dates from the region, four distinctive periods can be observed in the cumulative record of the dates. The early Holocene, from c. 10 000 to 8000 cal. yr BP, was characterized by the fast initiation and rapid expansion of peatlands, whereas at 8000–4000 cal. yr BP lateral expansion was modest. The most intensive period of peatland expansion occurred at the beginning of the late Holocene at c. 4000 to 3000 cal. yr BP, after which it slowed down towards the present. All these periods are in rough agreement with the main Holocene climatic periods in the area, namely the relatively warm and moist early Holocene, the warm and dry Holocene thermal maximum (HTM) at 8000–4000 cal. yr BP, and the start of the cooler and moister trend (neoglacial cooling) from c. 4000 cal. yr BP to the present, indicating a broad‐scale climatic control on the lateral growth of sub‐arctic peatlands in Fennoscandia. In order to study the lateral expansion of peatlands and to evaluate their Holocene succession patterns, more studies based on multiple dates from the same peatland are needed.  相似文献   

8.
Sediment, pollen, and plant macrofossil stratigraphies from two small oligotrophic Chamaedaphne-Sphagnum peatlands provide data about local hydrologic changes in northern Michigan during the Holocene. Gleason Bog started about 8000 yr B.P. as a shallow pond that supported rich fen vegetation. After it was partly filled with peat and sand (about 4000 yr B.P.), the vegetation changed to oligotrophic bog. At Gates Bog paludification starting about 3800 yr B.P. caused peat accumulation over sand without an initial pond phase. The onset of peat accumulation at both sites is attributed to a rise in the water table resulting from the onset of cool and moist late Holocene climates. The water table of Gleason Bog is linked to the water level of adjacent Douglas Lake, which may have undergone a simultaneous rise. The results emphasize the individuality of hydrological conditions and hydroseral development in northern Michigan peatlands.  相似文献   

9.
Macrofossil analyses were used to reconstruct long-term vegetation successions within ombrotrophic peatlands (bogs) from the northern shorelines of the St. Lawrence Estuary (Baie-Comeau) and the Gulf of St. Lawrence (Havre-St-Pierre). Over the Holocene, the timing and the ecological context of peatland inception were similar in both regions and were mainly influenced by fluctuations in relative sea level. Peat accumulation started over deltaic sands after the withdrawal of the Goldthwait Sea from 7500 cal yr BP and above silt–clay deposits left by the Laurentian marine transgression after 4200 cal yr BP. In each region, the early vegetation communities were similar within these two edaphic contexts where poor fens with Cyperaceae and eastern larch (Larix laricina) established after land emergence. The rapid transitions to ombrotrophy in the peatlands of Baie-Comeau are associated with particularly high rates of peat accumulation during the early developmental stage. The results suggest that climate was more propitious to Sphagnum growth after land emergence in the Baie-Comeau area. Macrofossil data show that treeless Sphagnum-dominated bogs have persisted over millennia and that fires had few impacts on the vegetation dynamics. This study provides insight into peatland vegetation responses to climate in a poorly documented region of northeastern America.  相似文献   

10.
Stratigraphical investigations, geomorphological mapping, and diatom, plant macrofossil and pollen analyses were undertaken in and around two lakes in central Ireland to establish correlations between changes in lake conditions and catchment vegetation throughout the Holocene. Similar investigations of an adjacent mire reveal early Holocene changes in lake level and area. The palaeoecological data show high correlations related to variations in lake depth and area, catchment vegetation type, organic inputs and trophic status. Catchment‐scale deforestation is gradual and occurs through the Bronze and the Iron Ages, and the construction of a crannog in the early Medieval period (seventh century AD ) appears to be associated with a widespread increase in deforestation and mixed agriculture in the catchment. Both pollen and plant macrofossils suggest that one of the crannogs was used for crop storage in addition to domestic and any other activities. In the early to middle Holocene similarities in the proxy‐data appear to be climatically driven through changing lake levels and areal extent whereas the later Holocene record is clearly dominated by anthropogenic changes within the catchment and the construction of crannogs in the lakes. The advantages of combining multi‐proxy indicators of lake hydroecology with the vegetation record are illustrated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Numerous palaeoecological studies have used testate amoeba analysis to reconstruct Holocene hydrological change in peatlands, and thereby past climatic change. Current studies have been almost exclusively restricted to ombrotrophic bogs and the period since the fen–bog transition. Although the critical link between peatland surface wetness and climate is less direct in minerotrophic peatlands, such records may still be of value where there are few others, particularly if multiple records can be derived and inter‐compared. Expanding the temporal and spatial scope of testate amoeba‐based palaeohydrology to minerotrophic peatlands requires studies to establish the primacy of hydrology and the efficacy of transfer functions across a range of sites. This study analyses testate amoeba data from wetlands spanning the trophic gradient in the eastern Mediterranean region. Results demonstrate that different types of wetlands have distinctly different amoeba communities, but hydrology remains the most important environmental control (despite water table depth being measured at different times for different sites). Interestingly, Zn and Fe emerge as significant environmental variables in a subset of sites with geochemical data. Testate amoeba–hydrology transfer functions perform well in cross‐validation but frequently perform poorly when applied to other sites, particularly with sites of a different nutrient status. It may be valid to use testate amoebae to reconstruct hydrological change from minerotrophic peatlands with an applicable transfer function; however, it may not be appropriate to use testate amoebae to reconstruct hydrological change through periods of ecosystem evolution, particularly the fen–bog transition. In practice, the preservation of amoeba shells is likely to be a key problem for palaeoecological reconstruction from fens. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Oceanic island flora is vulnerable to future climate warming, which is likely to promote changes in vegetation composition, and invasion of non‐native species. Sub‐Antarctic islands are predicted to experience rapid warming during the next century; therefore, establishing trajectories of change in vegetation communities is essential for developing conservation strategies to preserve biological diversity. We present a Late‐glacial‐early Holocene (16 500–6450 cal a bp ) palaeoecological record from Hooker's Point, Falkland Islands (Islas Malvinas), South Atlantic. This period spans the Pleistocene‐Holocene transition, providing insight into biological responses to abrupt climate change. Pollen and plant macrofossil records appear insensitive to climatic cooling during the Late‐glacial, but undergo rapid turnover in response to regional warming. The absence of trees throughout the Late‐glacial‐early Holocene enables the recognition of far‐travelled pollen from southern South America. The first occurrence of Nothofagus (southern beech) may reflect changes in the strength and/or position of the Southern Westerly Wind Belt during the Late‐glacial period. Peat inception and accumulation at Hooker's Point is likely to be promoted by the recalcitrant litter of wind‐adapted flora. This recalcitrant litter helps to explain widespread peatland development in a comparatively dry environment, and suggests that wind‐adapted peatlands can remain carbon sinks even under low precipitation regimes. © 2019 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   

13.
长白山地区是中国泥炭分布集中地区之一。本文选择长白山地区典型的泥炭剖面--大桥剖面,探讨其沉积物常量元素和微量元素的垂直分布规律及其对全新世气候变化的指示作用,并与该区另一代表剖面--金川泥炭剖面进行对比。结果表明,泥炭中常量元素含量最大值出现在195 cm,向上、向下都减少,铁含量与灰分、容重在剖面上的变化规律基本一致,说明它主要来源于灰分;由于泥炭和砂土的基本性质,如容重、灰分、pH值有很大的区别,泥炭层微量元素大于下部砂土的含量,亚表层微量元素含量最高,这与灰分、纤维含量正好相反,与pH值剖面变化一致;沉积物容重、灰分、pH值、Ca/ Mg以及元素的富集因子、泥炭中总碳含量在剖面上的变化,显示很强的一致性,据此反映该区经历了早11880~7600aBP)、中(7 600~480aBP)、晚(2480~0aBP)全新世三个环境阶段,其结论与前人通过孢粉、同位素手段分析得到的金川泥炭剖面环境变迁规律相同,从而说明它们可以作为研究环境变迁的敏感指标。  相似文献   

14.
土壤温度和含水量是影响可溶性有机碳(DOC)变化的重要因素。然而,多年冻土泥炭地土壤DOC变化对秋季冻结期土壤水热变化的响应尚不明确。本研究选取大兴安岭3种多年冻土泥炭地[小叶章泥炭地(CP)、兴安落叶松-泥炭藓泥炭地(LP)、白毛羊胡子苔草泥炭地(EP)]作为研究对象,开展野外原位试验探究秋季冻结期土壤水热变化对多年冻土泥炭地土壤DOC变化的影响。结果表明:秋季冻结期土壤DOC含量表现为EP>CP>LP,平均含量分别为83.99、45.75和43.13mg·L^(-1)。在秋季冻结前期3种类型多年冻土泥炭地土壤DOC含量均呈波动下降趋势,中、后期CP,LP土壤DOC变化较平缓。在秋季冻结前期,CP整体土壤DOC含量随浅层土壤温度的降低而减少;在后期CP浅层和整体土壤DOC含量随浅层土壤含水量的增加而增加。在秋季冻结中期,LP浅层土壤温度升高和含水量的减少,降低了土壤DOC含量;LP整体土壤DOC的变化随着浅层温度的升高逐渐降低。在秋季冻结后期,EP深层和整体土壤DOC含量随深层含水量增加而增加。在整个秋季冻结期,LP浅层土壤DOC主要受地表温度驱动,深层土壤DOC则主要受深层含水量的影响;整体土壤DOC则受地表温度影响较大。研究表明秋季冻结期多年冻土泥炭地土壤水热变化驱动土壤DOC含量的变化。研究结果为多年冻土区碳循环和“双碳”背景下的碳排放研究提供基础科学数据。  相似文献   

15.
High-resolution pollen analyses ( 50 yr) from sediment cores retrieved at Chernyshov Bay in the NW Large Aral Sea record shifts in vegetational development from subdesertic to steppe vegetation in the Aral Sea basin during the late Holocene. Using pollen data to quantify climatic parameters, we reconstruct and date for the first time significant changes in moisture conditions in Central Asia during the past 2000 yr. Cold and arid conditions prevailed between ca. AD 0 and 400, AD 900 and 1150, and AD 1500 and 1650 with the extension of xeric vegetation dominated by steppe elements. These intervals are characterized by low winter and summer mean temperatures and low mean annual precipitation (Pmm < 250 mm/yr). Conversely, the most suitable climate conditions occurred between ca. AD 400 and 900, and AD 1150 and 1450, when steppe vegetation was enriched by plants requiring moister conditions (Pmm  250–500 mm/yr) and some trees developed. Our results are fairly consistent with other late Holocene records from the eastern Mediterranean region and the Middle East, showing that regional rainfall in Central Asia is predominantly controlled by the eastern Mediterranean cyclonic system when the North Atlantic Oscillation (NAO) is in a negative phase.  相似文献   

16.
Holocene histories of two polygonal peatlands in the low arctic of south-central Nunavut, Canada, are reconstructed using plant macrofossil and pollen stratigraphies of four cores. Peat accumulation began in both basins between 7600 and 8000 cal. yr BP, within less than 1000 years after deglaciation. Mid- to late-Holocene vegetation changes recorded in the peat cores may be related to permafrost aggradation, associated with a regional cooling trend inferred from a nearby lake sediment record. However, differences in the timing of changes among the peatland coring sites indicate that local autogenic processes have also played an important role. Peat accumulation rates have decreased considerably in the past 3000 to 5000 years compared to the early Holocene. Our results illustrate the complexity of peatland development and peat accumulation dynamics in areas of permafrost, resulting from the important influences of both internal autogenic factors and external environmental forces such as climatic change.  相似文献   

17.
大兴安岭多年冻土泥炭地是对全球变暖响应敏感的地区之一。在全球变暖、多年冻土退化背景下,为了探明秋季冻融对多年冻土泥炭地无机氮时空变化的影响,本研究于2019年9—11月以大兴安岭三种多年冻土泥炭地为研究对象进行野外原位实验,分析了秋季冻融前、中和后期多年冻土泥炭地浅层和深层土壤无机氮的时空变化特征以及浅层和深层土壤含水量和温度的变化规律,建立了土壤无机氮含量与土壤温度和含水量间的多元线性回归模型。研究表明:多年冻土小叶章泥炭地(XY)、兴安落叶松-泥炭藓泥炭地(XA)和白毛羊胡子苔草泥炭地(BM)的土壤铵态氮(NH_(4)^(+)-N)含量变化范围:(1.00±0.00)~(20.60±0.20)mg·kg^(-1),硝态氮(NO_(3)^(-)-N)含量的变化范围:(0.02±0.01)~(14.64±1.11)mg·kg^(-1),且无机氮以土壤NH_(4)^(+)-N为主;秋季冻融后期无机氮含量明显高于前期。尽管水热交互作用对该时期无机氮没有显著影响,但是在不同冻融阶段,无机氮对环境因子的响应程度存在差异:在秋季冻融前、中和后期浅层无机氮动态分别与浅层温度和含水量的变化相关,但在整个秋季冻融期间BM浅层无机氮含量仅对10~20 cm含水量存在响应(R^(2)=0.344,P<0.01)。研究表明,秋季冻融期内,多年冻土泥炭地无机氮发生初步累积,且浅层环境因子对无机氮响应程度最大。本研究可补充大兴安岭多年冻土泥炭地秋季冻融对土壤无机氮影响研究的相关数据,并为多年冻土泥炭地响应全球变暖的温室气体释放的研究提供基础数据支撑。  相似文献   

18.
The quantitative and qualitative compositions of polycyclic aromatic hydrocarbons (PAHs) were determined, and the vertical stratification of PAHs was characterized along profiles in hummocky tundra peatlands. In perennially frozen peat layers, PAHs occur in a conserved state and do not undergo transformation in contrast to seasonally thawed layers. Statistically significant correlations were detected between the mass fraction of 5–6-ring structures (especially, benzo[ghi]perylene), individual PAHs, and botanical composition of the peat at the thawing–freezing boundary; and profile relations for various combinations of PAHs were calculated. The radiocarbon and paleobotanical analysis of peatlands in combination with the obtained results can be used for assignment of initial vegetation to periods of peat formation in the Holocene and as markers of the response of the peatland permafrost to climate changes at high latitudes.  相似文献   

19.
The historic era, which in Cumbria begins with the Roman invasion of AD 71, is a frequently neglected period in palaeoecological research, but its study can bring benefits in improving knowledge of landscape history and in understanding the significance and limitations of palaeoecological records. Pollen and geochemical data are presented for late Holocene records from Deer Dyke and Hulleter Mosses in southern Cumbria. The records show initially low levels of anthropogenic impact, followed by a phase of forest clearance and mixed agriculture from the 7th to 11th centuries AD. The timing of these clearances suggests that they were initially Anglo‐Saxon in origin, rather than Norse. Further clearances in the 16th century AD are interpreted as a response to monastic dissolution and late Tudor population pressures; the landscapes reached their contemporary form following extensive clearances in the 17th century AD. Silicon and titanium concentrations at Deer Dyke Moss were used to reconstruct past levels of atmospheric dust loading, which is broadly related to soil erosion. Geochemical influx was found to peak during periods of landscape transition rather than from established land use. This relationship with pollen data is thought to reflect the predominantly low levels of anthropogenic impact in the region, which changes as substantial woodland clearances during the 16th century AD and continuous land use pressure since then have greatly increased the supply of airborne dust. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes a multi‐proxy palaeoecological investigation undertaken in conjunction with an archaeological survey of the Upper Sangro Valley in the Abruzzo National Park, Central Italy. Despite being a biodiversity hotspot and regarded as a near‐pristine area, the pollen, spore and diatom data all show major changes in the vegetation extending to over 2000 m a.s.l. during the mid to late Holocene. Although there are changes in ecological composition earlier in the Holocene they are different in type and magnitude from the changes which began about 800 cal a BC. The pollen and diatom evidence do not correlate well with regional palaeoclimate data, or on‐site isotopic evidence, but do appear to be related to Samnite (later Iron Age) clearance and upland grazing associated with transhumance and later annexation (and centuriation) of the lower slopes by Roman surveyors. The greatest change in vegetation was during the period c. AD 500–600 and corresponds with the Byzantine–Gothic Wars, and Lombard–Carolingian settlement reorganization into nucleated hilltop settlements which managed upland grazing. This pattern of intensive land use at all altitudes persisted until the early 20th century and only changed following rural depopulation after World War II. These data illustrate how cultural factors had a profound effect on this mountainous region which, in this case, far outweighed the effects of climatic fluctuations which are known to have occurred from both this study area and the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号