首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
大兴安岭多年冻土泥炭地是对全球变暖响应敏感的地区之一。在全球变暖、多年冻土退化背景下,为了探明秋季冻融对多年冻土泥炭地无机氮时空变化的影响,本研究于2019年9—11月以大兴安岭三种多年冻土泥炭地为研究对象进行野外原位实验,分析了秋季冻融前、中和后期多年冻土泥炭地浅层和深层土壤无机氮的时空变化特征以及浅层和深层土壤含水量和温度的变化规律,建立了土壤无机氮含量与土壤温度和含水量间的多元线性回归模型。研究表明:多年冻土小叶章泥炭地(XY)、兴安落叶松-泥炭藓泥炭地(XA)和白毛羊胡子苔草泥炭地(BM)的土壤铵态氮(NH_(4)^(+)-N)含量变化范围:(1.00±0.00)~(20.60±0.20)mg·kg^(-1),硝态氮(NO_(3)^(-)-N)含量的变化范围:(0.02±0.01)~(14.64±1.11)mg·kg^(-1),且无机氮以土壤NH_(4)^(+)-N为主;秋季冻融后期无机氮含量明显高于前期。尽管水热交互作用对该时期无机氮没有显著影响,但是在不同冻融阶段,无机氮对环境因子的响应程度存在差异:在秋季冻融前、中和后期浅层无机氮动态分别与浅层温度和含水量的变化相关,但在整个秋季冻融期间BM浅层无机氮含量仅对10~20 cm含水量存在响应(R^(2)=0.344,P<0.01)。研究表明,秋季冻融期内,多年冻土泥炭地无机氮发生初步累积,且浅层环境因子对无机氮响应程度最大。本研究可补充大兴安岭多年冻土泥炭地秋季冻融对土壤无机氮影响研究的相关数据,并为多年冻土泥炭地响应全球变暖的温室气体释放的研究提供基础数据支撑。  相似文献   

2.
青藏高原季节冻土区土壤冻融过程水热耦合特征   总被引:8,自引:5,他引:3  
青藏高原被誉为“中华水塔”, 其广泛分布的多年冻土和季节冻土在保证我国水资源安全上具有重要的地位。基于2015年7月 - 2016年6月青海海北站季节冻土的水热监测数据(土壤含水量为未冻水含量), 分析了冻结深度的季节变化和冻融过程水热运移特征。结果表明: 各土层土壤温度与土壤水分含量变化均表现为“U”型。土壤温度变化规律与日平均气温基本一致, 但滞后于日平均气温的变化, 滞后时间取决于土层深度。与多年冻土冻融规律不同, 海北站季节冻土表现为单向冻结、 双向融化特征, 冻融过程大致可划分为三个阶段: 冻结初期、 冻结稳定期和融化期。同时, 季节冻土消融速率大于冻结速率, 且融化过程中以浅层土壤融化为主。在冻结过程中, 土壤水分沿上、 下两个方向分别向冻结锋面迁移, 各土层土壤含水量迅速下降。而在融化过程中, 各土层土壤含水量逐渐增加, 且在浅层土壤形成一个土壤水分的高值区。土壤冻融过程中未冻水含量与各土层土壤温度具有较好的相关关系, 且浅层土壤拟合效果优于深层土壤。本研究对揭示高原关键水文过程以及寒区水热耦合模型构建具有重要意义。  相似文献   

3.
多年冻土区活动层是地表水和地下水相互转化中十分重要的交换通道,活动层土壤含水量是多年冻土区水文循环中重要的组成部分,其动态变化与寒区生态环境密切相关。在气候变化背景下,深入了解活动层土壤含水量的动态变化特征具有重要意义。本文利用ELM(Extreme Learning Machine)模型对青藏高原腹地不同海拔高度多年冻土区土壤含水量进行模拟分析,结果表明:与BP神经网络模型相比,二输入变量ELM模型的模拟精度更高;ELM模型模拟后1天土壤含水量的NSE值在0.69~0.87之间,其中坡下20 cm深度处模拟NSE取得最大值(0.87),并且模拟精度随着推后时间的增加有所提升,模拟后3天和后7天的NSE值分别在0.76~0.92和0.75~0.93之间;坡下各深度含水量的模拟效果优于坡上。在此基础上,通过设置不同的气候变化情景,研究土壤含水量在气候变化背景下的动态变化规律及响应特征。研究发现,升温导致冻结初期以及融化初期不同深度的土壤含水量均出现增大的趋势,在完全冻结期和完全融化期变化不明显。且随着气温增幅的加大,冻结初期以及融化初期的土壤含水量变化也逐渐增大,深层土壤含水量较浅层土壤含水量的增加更加显著。在降水增加的情景下,降水增加越大,土壤含水量的增加趋势越明显,但整体变化幅度较小;坡上各深度土壤含水量的增加主要发生在融化初期和完全融化期,坡下则主要集中在融化初期,相比于深层土壤,浅层土壤对降水增加的响应更加强烈。  相似文献   

4.
冻融期东北农田土壤温度和水分变化规律及影响因素分析   总被引:3,自引:3,他引:0  
为了更好地认识季节性冻融区冻融过程对农田土壤温度和水分的影响, 以吉林省长春市黑顶子河流域为研究对象, 监测了冻融期流域内玉米田和水稻田土壤温度和水分的变化过程。结果表明: 冻融期表层土壤温度主要受积雪厚度影响, 深层土壤温度主要受土壤初始含水率影响。冻结期, 冻结层含水率几乎都呈增加趋势, 其中浅层土壤增幅最大; 冻结速度慢、 初始含水量低、 相邻土层含水量高的土层冻结过程水分增加量更大, 反之则小。融化期, 各下垫面、 土层土壤含水率基本呈下降趋势, 且主要集中在表层0 ~ 30 cm, 水分损失以蒸发为主, 冻结层对土壤蒸发有抑制作用; 冻结层的融化是造成各下垫面不同土层土壤含水率差异, 以及各土层在不同融化阶段土壤含水率差异的主要原因。  相似文献   

5.
祁连山大通河源多年冻土区浅层土壤水热时空变化特征   总被引:1,自引:0,他引:1  
在大通河源不同草甸生态系统中建立浅层土壤水热监测网络. 2010-2011年监测结果表明:土壤温度和水分均具有明显的冻融交替和空间梯度变化格局. 在沼泽化草甸和典型草甸区,土壤融化和冻结末期分别出现在5月底、6月初和11月中下旬;而退化草甸区对应的时间则出现在4月底、5月初和11月中上旬. 在沼泽化草甸和典型草甸土壤温度变化曲线上有明显的“零点幕”时期,而退化草甸则不太明显. 土壤温度曲线的阶段划分结果表明,沼泽化草甸和典型草甸各阶段不存在显著差异,二者阶段划分曲线基本重合,均可以划分为6个阶段:春季升温阶段、春季“零点幕”阶段、夏季升温阶段、秋季降温阶段、秋季“零点幕”阶段和冬季降温阶段. 对于退化草甸而言,春季和秋季“零点幕”时期不明显,阶段划分曲线与前二者具有较大差异. 退化草甸温度曲线“零点幕”时期不显著对应于下伏多年冻土临近岛状多年冻土边缘,是最易于受环境影响变化而发生退化的区域. 3个监测场地浅层土壤水热格局一定程度上指示了下伏多年冻土的空间分布格局.  相似文献   

6.
黑河高山草甸冻土带水热传输过程   总被引:6,自引:0,他引:6       下载免费PDF全文
以黑河源区高山草甸冻土带的基本气象参数、植被参数和土壤水热性质参数为输入条件,利用CoupModel模型计算了试验点两个完整年度日尺度上的各种基本水热状况,计算结果较符合实测值(7层地温和土壤液态含水量平均R2分别为0.95和0.83).利用模型输出的土壤热通量和土壤水迁移分析了试验点季节性冻土区的水热传输过程:在土壤层开始冻结期,下层土壤液态水向冻结锋面集结,集结期向上的地热通量急剧增加;在冻结期,土壤热传导主要与上下层的土壤温度有关,土壤水迁移基本处于零通量状态;在融化期,在融化锋面未出现液态水分集结现象,融化层土壤水热传输过程迅速改变并与非冻结土壤一致,向下的地热通量急剧增加.  相似文献   

7.
冯晓琳  张艳林  常晓丽 《冰川冻土》2021,43(5):1468-1479
大兴安岭北部是我国唯一的中高纬度多年冻土区,其水热特征分析对陆气能量交换、生态系统和气候变化等研究有重要意义。基于2011—2020年期间对大兴安岭森林生态站附近的湿地多年冻土开展的气温和0~2 m地温和土壤含水量数据,对大兴安岭湿地多年冻土活动层的水热特征进行了分析。结果表明:湿地多年冻土活动层内地温的变幅随深度减小,且具有滞后性。融化期地表温度高于深层地温,冻结期相反。2012年、2013年、2019年和2020年的平均融化速率分别为0.49、0.61、0.47和0.56 cm·d-1,向上平均冻结速率分别为1.34、2.12、2.58和1.65 cm·d-1。向下平均冻结速率分别为1.69、1.02、3.32和1.00 cm·d-1,最大融化深度分别为78.73、85.65、66.22和74.94 cm。2012年5月—2013年5月期间,土壤未冻水含量随地温变化的拟合关系较好,相关系数大于0.90,且深层拟合效果优于表层。融化期土壤水分变化幅度大,与地温的相关性差,随深度增加相关性减弱。湿地充足的水分为多年冻土的双向冻结提供了条件。研究成果可为大兴安岭湿地多年冻土区的冻融循环、水热耦合机理和模拟研究提供数据基础和理论依据。  相似文献   

8.
青藏高原含砂砾石土壤导热率实验研究   总被引:4,自引:1,他引:3  
土壤导热率是土壤的基本物理参数之一,也是陆面模式的重要输入量,对研究土壤热传输、水热耦合运移有重要意义。青藏高原由于独特的地理环境备受学者关注,但目前常用的土壤水、热属性参数化方案仅仅考虑了沙土、粉土和黏土,就砂砾石重要性的认识还不足,很少有模式模拟砾石对青藏高原多年冻土和高寒草地的影响。采用便携式热导仪(KD2 Pro,DECAGON,美国)测量了青藏高原玛多和北麓河两地典型土壤在冻结和未冻结状态下不同水分条件时的土壤导热率,分析了砂砾石含量对土壤孔隙度的影响及冻结和未冻结状态下,不同水分条件下砂砾石含量对土壤导热率的影响。结果表明:当含水量高于某一阈值时,含水土壤冻结状态下的导热率高于未冻结状态下的导热率;土壤含水量对土壤导热率影响显著,导热率随着含水量的增加而增大,在含水量较小时变化更明显;砂砾石含量比重多的土壤孔隙度较小,且砂砾石含量越大的土壤在冻结状态下导热率高。以上结果表明,砂砾石对土壤导热率有显著影响,在将来的模式模拟研究中必须考虑砂砾石对土壤热属性的影响,进而提高土壤水热过程模拟的精度。  相似文献   

9.
青藏高原多年冻土区冻融循环过程对地表能量及其分配的影响研究相对较少,青藏高原唐古拉站多年冻土的实测资料,依据10 cm土壤温度划分浅层土壤冻融循环的各个阶段并结合能量闭合率、地表能量各通量等数据探讨浅层土壤冻融循环过程与地气间水热交换过程之间的影响。结果表明:浅层土壤冻融循环过程各阶段均受气候变化的影响,其融化过程起始时间提前同时冻结过程起始时间推后,完全融化阶段持续时间增加,且逐渐接近完全冻结阶段持续时间;在浅层土壤不同冻融状态下,能量闭合率差值较大,其中完全融化阶段能量闭合状况普遍好于完全冻结阶段;净辐射值在完全融化阶段高于完全冻结阶段,净辐射在完全冻结阶段主要转化为感热通量,在完全融化阶段主要转化为潜热通量,地表土壤热通量在完全融化阶段为正值,在完全冻结阶段为负值。  相似文献   

10.
地下水浅埋条件下越冬期土壤水热迁移的数值模拟   总被引:26,自引:3,他引:23  
雷志栋 《冰川冻土》1998,20(1):51-54
应用土壤冻融过程中水热耦合迁移模型,对内蒙古河套灌区地下水浅埋条件下整个土壤冻融过程进行了模拟,分析了越冬期土壤水热迁移规律.结果表明,快速冻结阶段土壤冻结速度随深度线性减小.冻结过程中某一深度处的含水量增量与冻结速度呈双曲线型相关关系.提出了土壤冻融过程中的特征含水量概念,以描述土壤含水量的动态变化特征.  相似文献   

11.
多年冻土区活动层冻融状况及土壤水分运移特征   总被引:14,自引:8,他引:6  
利用位于典型多年冻土区的唐古拉综合观测场2007年9月1日—2008年9月1日实测活动层剖面土壤温度和水分数据,对多年冻土区活动层的冻结融化规律进行研究;同时,对冻融过程中的活动层土壤液态水含量的变化特征进行分析,探讨了活动层内部土壤水分分布特征及其运移特点对活动层冻结融化过程的影响. 结果表明:活动层融化过程从表层开始向下层土壤发展,冻结过程则会出现双向冻结现象. 一个完整的年冻融循环中活动层冻结过程耗时要远远小于融化过程. 活动层土壤经过一个冻融循环,土壤水分整体呈现下移的趋势,土壤水分逐步运移至多年冻土上限附近积累. 同时,土壤水分含量和运移特征会对活动层冻融过程产生显著的影响.  相似文献   

12.
季节冻土区黑土耕层土壤冻融过程及水分变化   总被引:6,自引:2,他引:4  
利用黑龙江省水利科学研究院水利试验研究中心综合实验观测场2011年11月-2012年4月整个冻结融化期的实测野外黑土耕层土壤温度和水分数据, 对中-深季节冻土区黑土耕层土壤冻融过程中冻结和融化特征分阴、阳坡进行了分析, 研究了冻融过程中不同深度土壤水分的变化情况, 并探讨了降水对不同深度耕层土壤含水量变化的影响. 结果表明:黑土耕层土壤冻结融化过程分为5个阶段, 历时164 d, 约5.5个月. 阶段I, 秋末冬初黑土耕层土壤开始步入冻结期; 阶段II, 黑土耕层土壤整日处于冻结状态, 阴坡比同样深度的阳坡土壤温度低; 阶段III为黑土耕层土壤稳定冻结期; 阶段IV, 黑土耕层土壤步入昼融夜冻的日循环交替状态, 冻融循环的土层逐渐向深部发展, 阳坡比阴坡融化得更深、更早, 阴坡比阳坡经历冻融循环次数更多; 阶段V为稳定融化期, 在融化过程不存在冻融交替的现象, 直到整个冻层内的土壤全部消融. 各深度位置阴坡土壤温度的最高值出现时间比阳坡晚约0.5 h. 经过整个冻结融化期后, 阴、阳坡各层土壤含水量均大于冻结前, 阴坡土壤含水量比阳坡整体偏低. 在整个冻结融化期, 阳坡地下1 cm、5 cm、10 cm 及15 cm处含水量最大值出现在地下5 cm; 阴坡的含水量整体趋于平稳且在融化期受降水影响明显.  相似文献   

13.
以黄土高原渭河流域西部黄土丘陵沟壑区为研究区域,建立了野外观测场地,对该区域浅层非饱和土体冻融过程及水热运移规律对气候作用的响应过程进行了研究与分析。结果表明:气温对地温及地温变幅的影响随深度增加而迅速衰减,地温振幅随深度增加按指数规律衰减且温度波的相位随深度的增加而滞后,地表下200 cm深度以内地温振幅受气温影响较大。该区域裸露地表土壤的最大冻结深度在20~50 cm之间。在土壤冻结过程中,深层土壤未冻水逐渐向冻结层运移,导致深层含水量逐渐减少。不同深度土壤冻结系数随土壤深度的增加而减小,融化系数则相反。地表下50 cm深度以内的土体含水量受降水影响波动显著。土壤含水量与温度呈相似变化,地温峰值出现的时间总滞后于土壤水分,其变异程度均随土壤深度的增加而减小。  相似文献   

14.
全球土壤湿度的记忆性及其气候效应   总被引:7,自引:1,他引:6  
利用1948-2010年全球GPCC月平均降水,GHCN_CAMS月平均气温资料,GLDAS-NOAH月平均、3h土壤湿度和降水资料以及观测资料,分析了土壤湿度与降水和气温之间的关系。结果表明:全球土壤湿度记忆性的时间尺度在20~110d不等,干旱地区浅层(0~10cm)土壤湿度记忆性较短,中深层(10~200cm)较长,湿润区及高山地区土壤湿度记忆性均较长,北半球春季土壤湿度记忆性最长,南半球夏季土壤湿度记忆性最长;降水和气温对同期土壤湿度在不同地区的作用不同,北半球夏、秋季降水是土壤湿度的主要来源,除非洲干旱区以外的中低纬度地区及南半球,土壤湿度随降水的增加而增加,随气温的升高而减小;浅层土壤湿度受同期降水和气温的影响最为显著;前期降水和气温对土壤湿度的影响存在着较大的空间差异,北半球中高纬度地区,当年的夏、秋季降水是次年春季土壤湿度的主要来源,中层土壤(10~100cm)是降水的主要存储层。浅层土壤受外界影响较大,对前期气候信息的存贮有限。中低纬度地区及南半球,中深层土壤更多地是存储前一个季节的气温和降水信息,对跨季节气候信息的存储并不明显;低纬度地区春季土壤湿度的增加可能有利于后期降水的增多,高纬度地区春季土壤湿度的增加可能使后期降水减少,在季节尺度上中层土壤湿度对后期的降水影响较明显,在月至日尺度上浅层土壤湿度对后期降水的影响更重要;春季干旱区尤其是中层土壤湿度的增加可能有利于夏季气温的降低。  相似文献   

15.
卓嘎  罗布  巴桑曲珍 《冰川冻土》2021,43(6):1704-1717
青藏高原土壤水热状况对气候变化和植被退化方面的研究具有重要意义,土壤湿度的准确刻画还会影响到数值预报模式对当地及其下游地区降水的模拟能力。为此,采用中国科学院那曲高寒气候环境观测研究站安多观测点2014年1—12月的土壤温度、土壤湿度观测资料以及同期安多气象站观测数据,分析了青藏高原那曲中部不同深度土壤温湿度的分布特征及其与气温、降水量等气象要素的关系。结果表明:土壤温度在浅层为正弦曲线,随着土壤深度的增加,曲线逐渐接近直线。土壤升温迅速而降温过程缓慢。封冻和解冻日期随土壤深度的增加而推迟,封冻期逐渐缩短。不同层次土壤湿度日内变化较小。月变化呈单峰型结构,峰值和谷值基本出现在8月和12月。土壤湿度上升速率较下降速率缓慢。区域尺度上GLDAS-NOAH资料显示出类似的变化特征。土壤温湿度在一年中的变化不一致,但土壤温湿度呈显著正相关。浅层土壤的温度梯度明显大于深层;浅层土壤湿度最大,中间层较大,深层土壤湿度最小。随着干季向湿季的转换,由于太阳辐射的增加,非绝热加热呈增加的趋势。土壤湿度与气象要素在不同时段的相关性存在一些差异,但总体上土壤湿度与气温、降水量和相对湿度呈正相关,与风速、日照时数相关性不显著。  相似文献   

16.
李飞  郭佳锴  张世强 《冰川冻土》2021,43(6):1888-1903
冻土水热过程的准确模拟对于理解和预估冰冻圈变化对水资源和生态的影响具有重要意义,其中,导热率和未冻水是多年冻土水热模拟中的两个关键参数。在VIC-CAS模型的基础上,分别尝试用EBM的导热率算法和CLM 5.0的未冻水算法替换VIC-CAS模型中的导热率和未冻水算法,并利用长江源区沱沱河站的观测数据进行了数值模拟对比试验,分析了不同的导热率和未冻水算法对土壤分层温湿度模拟的影响。结果表明:EBM导热率算法对浅层土壤的温度模拟优于原算法,而在深层土壤的模拟效果变差;对浅层土壤湿度模拟改进不明显,而对深层土壤的模拟精度降低。CLM 5.0未冻水算法对土壤温度模拟影响较小,对浅层土壤的湿度模拟效果变差,但在深层土壤上优于原算法。这两种算法的对比实验为进一步改进VIC-CAS模型中冻土水热过程的算法提供了借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号