首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
季节冻土区黑土耕层土壤冻融过程及水分变化   总被引:6,自引:2,他引:4  
利用黑龙江省水利科学研究院水利试验研究中心综合实验观测场2011年11月-2012年4月整个冻结融化期的实测野外黑土耕层土壤温度和水分数据, 对中-深季节冻土区黑土耕层土壤冻融过程中冻结和融化特征分阴、阳坡进行了分析, 研究了冻融过程中不同深度土壤水分的变化情况, 并探讨了降水对不同深度耕层土壤含水量变化的影响. 结果表明:黑土耕层土壤冻结融化过程分为5个阶段, 历时164 d, 约5.5个月. 阶段I, 秋末冬初黑土耕层土壤开始步入冻结期; 阶段II, 黑土耕层土壤整日处于冻结状态, 阴坡比同样深度的阳坡土壤温度低; 阶段III为黑土耕层土壤稳定冻结期; 阶段IV, 黑土耕层土壤步入昼融夜冻的日循环交替状态, 冻融循环的土层逐渐向深部发展, 阳坡比阴坡融化得更深、更早, 阴坡比阳坡经历冻融循环次数更多; 阶段V为稳定融化期, 在融化过程不存在冻融交替的现象, 直到整个冻层内的土壤全部消融. 各深度位置阴坡土壤温度的最高值出现时间比阳坡晚约0.5 h. 经过整个冻结融化期后, 阴、阳坡各层土壤含水量均大于冻结前, 阴坡土壤含水量比阳坡整体偏低. 在整个冻结融化期, 阳坡地下1 cm、5 cm、10 cm 及15 cm处含水量最大值出现在地下5 cm; 阴坡的含水量整体趋于平稳且在融化期受降水影响明显.  相似文献   

2.
青藏高原季节冻土区土壤冻融过程水热耦合特征   总被引:8,自引:5,他引:3  
青藏高原被誉为“中华水塔”, 其广泛分布的多年冻土和季节冻土在保证我国水资源安全上具有重要的地位。基于2015年7月 - 2016年6月青海海北站季节冻土的水热监测数据(土壤含水量为未冻水含量), 分析了冻结深度的季节变化和冻融过程水热运移特征。结果表明: 各土层土壤温度与土壤水分含量变化均表现为“U”型。土壤温度变化规律与日平均气温基本一致, 但滞后于日平均气温的变化, 滞后时间取决于土层深度。与多年冻土冻融规律不同, 海北站季节冻土表现为单向冻结、 双向融化特征, 冻融过程大致可划分为三个阶段: 冻结初期、 冻结稳定期和融化期。同时, 季节冻土消融速率大于冻结速率, 且融化过程中以浅层土壤融化为主。在冻结过程中, 土壤水分沿上、 下两个方向分别向冻结锋面迁移, 各土层土壤含水量迅速下降。而在融化过程中, 各土层土壤含水量逐渐增加, 且在浅层土壤形成一个土壤水分的高值区。土壤冻融过程中未冻水含量与各土层土壤温度具有较好的相关关系, 且浅层土壤拟合效果优于深层土壤。本研究对揭示高原关键水文过程以及寒区水热耦合模型构建具有重要意义。  相似文献   

3.
以风火山流域某阴坡坡顶、 坡底和阳坡坡底活动层土壤水热及气象资料为基础, 对青藏高原多年冻土区不同地形条件下的土壤水热时空变化特征进行了分析。结果表明: 在融化阶段, 除表层5 cm外, 阴坡坡底各深度土壤开始融化日期均比坡顶早, 比阳坡坡底晚; 阴坡坡脚各深度土壤含水量均大于坡顶和阳坡坡底。在冻结阶段, 开始冻结日期在阴坡坡底均比坡顶早, 但比阳坡坡底晚; 阴坡坡底各深度土壤含水量均高于坡顶相应土层的含水量, 在20 cm、 100 cm、 160 cm深处高于阳坡相应土层的含水量, 但在5 cm、 50 cm深处, 稳定冻结后两者的含水量差异较小。在整个冻融过程中, 阴坡坡底土壤温度对气温变化的响应弱于坡顶及阳坡坡底, 但其土壤水分对降水的响应强于坡顶及阳坡坡底。植被生长发育受水分和热量条件的制约, 不同地形条件下水热时空变化差异将影响植被空间分布特征。在未来气候变暖情况下, 上坡位植被可能因为水分胁迫而退化, 出现荒漠化现象, 而下坡位由于受侧向流的影响, 土壤水分对降水的响应强烈, 植被不会发生显著退化; 在不同坡向之间, 同一坡位阳坡植被退化程度可能大于阴坡。  相似文献   

4.
祁连山是我国重要的生态安全屏障,其高寒生态环境和水源涵养能力广泛受到近地表冻融过程的复杂影响。为了解土壤水热在冻融期的变化情况,以祁连山中部天涝池流域亚高山草甸为研究对象,分析2014—2019年冻融期大气温度、土壤温度及未冻水体积含水量(USWC)变化特征,通过统计分析法对亚高山草甸土壤冻融期土壤温度对大气温度的响应及土壤水热拟合进行了探讨。研究结果表明:冻融期亚高山草甸土壤呈单向冻结双向融化特征,观测时段内冻结深度在100~140 cm,土壤温度与大气温度的相关性较好,其中0~40 cm深度土壤温度与大气温度显著正相关(P<0.01),120~180 cm土壤温度与大气温度显著负相关(P<0.05);冻融过程中土壤USWC变化趋势呈“U”形,40~60 cm深度土壤层和表层分别在冻结期和融化期出现水分高值区;土壤USWC与负温绝对值之间具有较好的幂函数相关关系(y=axb),其中经验参数a始终为正值,b始终为负值且逐年增大;观测期间(2014—2019年)的土壤冻结时长、冻结速率和冻结深度等都在减小。本研究可为祁连山亚高山草甸土壤冻融作用对径流形成...  相似文献   

5.
多年冻土区活动层冻融状况及土壤水分运移特征   总被引:14,自引:8,他引:6  
利用位于典型多年冻土区的唐古拉综合观测场2007年9月1日—2008年9月1日实测活动层剖面土壤温度和水分数据,对多年冻土区活动层的冻结融化规律进行研究;同时,对冻融过程中的活动层土壤液态水含量的变化特征进行分析,探讨了活动层内部土壤水分分布特征及其运移特点对活动层冻结融化过程的影响. 结果表明:活动层融化过程从表层开始向下层土壤发展,冻结过程则会出现双向冻结现象. 一个完整的年冻融循环中活动层冻结过程耗时要远远小于融化过程. 活动层土壤经过一个冻融循环,土壤水分整体呈现下移的趋势,土壤水分逐步运移至多年冻土上限附近积累. 同时,土壤水分含量和运移特征会对活动层冻融过程产生显著的影响.  相似文献   

6.
硬壳覆盖条件下土壤冻融期水盐运动规律研究   总被引:23,自引:4,他引:19  
采用大田试验,研究了水泥硬壳覆盖后冻融期土壤温度、水分、盐分的变化规律,采用室内土柱试验,研究了冻融交替时期土壤中的水盐运动规律,试验表明,土壤水泥硬壳覆盖后土壤的冻结时间减少,冻结深度变浅;明显抑制土壤水分的无效蒸发;明显抑制土壤在融冻时期的土壤返盐,同时由于“冻层滞水”在春季的融化,有淋洗表层土壤盐分的作用,使土壤表层脱盐,土柱脱融试验进一步说明,土壤经冻融过程后,土壤中的水盐发生了重新分布。  相似文献   

7.
科尔沁草甸地冻融期土壤水热盐动态迁移规律   总被引:3,自引:0,他引:3       下载免费PDF全文
为掌握科尔沁草甸地冻融期土壤水、热、盐迁移规律,以科尔沁左翼后旗阿古拉生态水文试验站2013年10月—2014年5月土壤冻融期实测气象、土壤等数据为基础,用统计分析法对研究区草甸地冻融期土壤温度、水分、盐分的变化规律进行了分析。结果表明:气温对土壤剖面温度的影响随着土壤深度的增加而降低,土壤剖面温度变化滞后于气温变化的时间取决于气温升降幅度,且没有显著的规律;由于气温回升速度大于降温速度,导致土壤消融速度比冻结速度快;土壤冻结过程由表层向下进行,冻结温度与土壤含盐量呈负相关关系,用温度的线性内插法准确确定草甸地于2014年3月9日达到最大冻深104 cm;土壤消融时受地下暖土层热流和地表温度双重影响,由底部向地表和由地表向冻结层进行双向消融;地下水位埋深较浅,受土壤冻融作用影响,升降趋势显著;草甸地土壤冻结期盐分向地表积聚,并于2月达到最大,后经消融及雨水淋润作用开始下降;冻融期盐分变异性大于水分变异性,说明盐分的运移过程更为复杂。  相似文献   

8.
多年冻土活动层, 尤其是浅层土壤的水热传输机制, 以及冻融过程的时空异质性是研究地-气间能水交换的关键。利用位于青藏高原中部的唐古拉和通天河两个活动层观测场2013年的土壤温度和水分数据, 比较了不同下垫面浅层土壤日冻融循环过程的差异, 以及不同冻融阶段的地温日变化及热扩散率特征。结果表明: 根据一日之内地温的正负波动, 浅层土壤的冻融过程可以划分为解冻期、 完全融化期、 始冻期和完全冻结期四个时期, 其中解冻期和始冻期统称为日冻融循环发生期。解冻期的持续天数和深度明显高于始冻期, 高寒草原的日冻融循环天数和发生深度明显高于高寒草甸。浅层土壤(0 ~ 20 cm)日地温变化普遍呈现明显的正弦波动趋势, 且不同冻融阶段的振幅差异较大, 由于相变的缘故, 解冻期的日地温变化振幅最小。高寒草甸的日地温振幅显著低于高寒草原, 说明日地温动态与土壤质地和土壤水分密切相关, 植被作为热绝缘层, 减弱了地温对气温波动的响应。地表下5 ~ 10 cm的热扩散率显著大于10 ~ 20 cm深度, 且5 - 10月融化季的热扩散率显著大于冻结季。热传导对流方程可以描述多年冻土区典型下垫面在季节冻融循环周期内不同月份的水分迁移方向。  相似文献   

9.
藏北高原D105点土壤冻融状况与温湿特征分析   总被引:6,自引:3,他引:3  
利用CAMP/Tibet在藏北高原D105点所观测的2002年1月1日-2005年12月31日土壤温度、含水量资料, 分析了该点的土壤温、湿度变化及其冻融特征. 结果表明: D105点40 cm深度以上土壤温度日变化明显, 随着深度增加, 土壤温度日变化相位明显滞后. 各层土壤温度月最高值出现在8-9月, 月最低值都出现在1-2月; 年际气候的差异至少可以反映到185 cm深处的土壤. 土壤冻结和消融都是由表层开始, 土壤随深度增加冻结快, 消融则慢. 冻结期间, 土壤温度分布上部低, 下部高; 消融期间, 则分布相反. 60 cm深度以上的土壤含水量在消融期有显著的波动, 表明60 cm深度以上的土壤与大气之间的水热交换比较频繁. 土壤温度的日变化和平均温度对土壤的冻融过程有较大的影响; 土壤含水量的多少会极大的影响土壤的冻融过程、土壤热量的分布状况以及地表能量的分配. 因此水(湿度)热(温度)相互耦合影响着土壤的冻融过程.  相似文献   

10.
兰州黄土在冻融过程中水热输运实验研究   总被引:6,自引:0,他引:6  
李述训  程国栋 《冰川冻土》1996,18(4):319-324
实验表明,当上边界面温度按正弦变化,下边界面温度保持某一固定值时,冻结均匀的兰州黄土融化后,相变界面附近的含水量明显增大。同样,对初始均匀融化的兰州黄土试样,经冰融循环作用后,冰土层内最大融化深工附近的含水量大于附近区域的含水量。试样内水分在冻融作用下的这种积累特征,与天然情况下多年冻土上限附近出现的水分富积现象相类似。由于在冻结和融化过程中,水分将向相变界面附近迁移,多年冻土上限附近地下冰的形成  相似文献   

11.
中国的沙漠和沙地部分或全部分布在季节冻土区, 研究沙丘的冻融过程是讨论季节冻结期间沙丘风蚀和形态演变规律的条件之一。以宁夏河东沙地流动沙丘和沙障固定沙丘为研究对象, 通过野外观测和室内控制实验, 分析了沙丘的冻融过程及其控制因素。结果显示: 沙丘的冻结期在11月中旬至3月上旬, 流动沙丘各地貌部位的冻结时长和冻结层厚度均存在较大差异(背风坡面>迎风坡面>丘顶), 背风坡脚的冻深最大。在季节冻结期内沙丘表层始终不发生冻结, 未冻层厚度的阈值约为10 cm且具有保护冻结层的作用, 流动沙丘迎风坡中在未冻层风蚀后, 地表冻结层融化再被风蚀, 如此循环过程造成其冻结层厚度远小于沙障固定沙丘的冻结层厚度。流动沙丘丘顶和背风坡面的冻结层厚度分别受短时(32 h)和较长历时(15 d)平均气温的影响。野外观测和室内控制实验均证明水分含量低于1.6%的沙丘沙不发生冻结, 冻结层硬度随含水率的增加呈幂函数递增(P<0.001), 随温度降低呈缓慢递增。  相似文献   

12.
季节冻土区正融粉质黏土强度影响因素敏感性分析   总被引:1,自引:1,他引:0  
针对季节冻土区路基填土春融时常处于强度不稳定的状态, 根据季节冻土特性选取冻结温度、 融化温度、 围压、 含水率4种影响因素, 对张家口季节冻土区粉质黏土进行了模拟正融土的常规三轴试验, 采用灰色关联分析法对试验结果进行分析, 给出了4种影响因素对强度的敏感性排序。结果表明: 含水率、 融化温度、 冻结温度的敏感性超过60%, 需要重点考虑。9%含水率时, 土样强度较高, 发生脆性破坏, 随着含水率的增大, 向延性破坏转变; 融化温度主要影响土体剪切过程中融化速度和排水固结的速度, 温度越低, 土样强度越高; 冻结温度通过改变土颗粒和冰晶体的胶结程度来影响强度, 冻结温度越低, 胶结作用越强, 但低于-10 ℃后, 强度增长缓慢; 围压越大, 土体强度越大, 不同围压影响下, 应力-应变曲线的形状和走势却大致相同, 分析结果可为季节冻土区实际工程提供一定的参考。  相似文献   

13.
季冻区土质边坡滑动界面临界深度的试验研究   总被引:1,自引:0,他引:1  
程永春  葛琪  何锋 《岩土力学》2010,31(4):1042-1046
为研究季节冰冻区土质边坡春融期常发生的浅层滑坡灾害,考虑盐水冰点低于水的冰点这一物理特性,设计了模拟土坡内部冻融界面的试验方法。比较了在不同含水率时,经冻融循环后土质边坡滑动面的临界深度,验证了在冻融界面上土质边坡的破坏形态,根据试验结果拟合了符合本文土样条件的土质边坡滑动面临界深度的损伤模型。分析表明,冻融循环后,随含水率和冻融循环次数的增加,边坡滑动破坏的临界深度值逐渐减小,经对试验数据拟合提出的临界深度随冻融循环损伤模型,可为季节冰冻区的边坡设计提供参考。  相似文献   

14.
冻结层的存在使得寒区有着与非寒区差别明显的水文循环过程,土壤冻融规律、水热盐运移、融雪水入渗等已成为众多学者的研究对象. 寒区低温条件下冻融土壤持水性质与非冻融土壤不同,其包气带冻结层往往具有弱透水性、蓄水保墒和隔热减渗的作用,使得寒区春季冻结层土壤的墒情较高. 以冻融土壤和非冻融土壤墒情对比监测为基础,选取地表以下100 cm的土壤为研究对象,在黑龙江大学呼兰校区设置冻融和非冻融对比监测试验场,同时段、同频率、同埋深(间隔 20 cm土层)进行土壤结构、水热及环境参数监测. 通过对比分析了不同埋深不同冻融阶段的墒情参数,量化了低温冻融条件下土壤墒情较非冻融土壤的高出部分,最后对冻土保墒的机理进行探讨与分析. 结果表明:冻结条件下土壤水分重新分布,在土水势的作用下由非冻结区向冻结区迁移. 初冻期地表土壤墒情达到最大,冻结期土壤最大墒情值随冻结锋面迁移分别在20、40、60 cm处达到最大,稳定冻结期和融化初期在80 cm处达到最大;土壤最大墒情值一般在冻结锋面前沿的10~20 cm处,较好地保持了土壤水分. 无论是从空间(不同埋深)还是时间(不同冻融阶段)角度分析,冻融土壤含水率均大于非冻融土壤,二者含水率的差值随埋深和冻融阶段的推移而加大,在稳定冻结期80 cm处达到最大,差值量可达6.4%~7.8%.  相似文献   

15.
以黄土高原渭河流域西部黄土丘陵沟壑区为研究区域,建立了野外观测场地,对该区域浅层非饱和土体冻融过程及水热运移规律对气候作用的响应过程进行了研究与分析。结果表明:气温对地温及地温变幅的影响随深度增加而迅速衰减,地温振幅随深度增加按指数规律衰减且温度波的相位随深度的增加而滞后,地表下200 cm深度以内地温振幅受气温影响较大。该区域裸露地表土壤的最大冻结深度在20~50 cm之间。在土壤冻结过程中,深层土壤未冻水逐渐向冻结层运移,导致深层含水量逐渐减少。不同深度土壤冻结系数随土壤深度的增加而减小,融化系数则相反。地表下50 cm深度以内的土体含水量受降水影响波动显著。土壤含水量与温度呈相似变化,地温峰值出现的时间总滞后于土壤水分,其变异程度均随土壤深度的增加而减小。  相似文献   

16.
以青藏铁路西格段季节性冻土区路基冻害为研究背景,在室内分普通和盐化两个试验段填筑路基实体模型,进行封闭系统中反复冻融循环条件下的模型试验,分析冻融循环条件下普通路基和人工盐化路基的温度和位移规律,并探讨水分、盐分的迁移规律。结果表明:路基土体温度与环境温度变化趋势一致,路基土体的温度滞后于环境温度约36 h;越靠近冷端的位置,温度波动范围越大,温度随着深度的增加逐渐减小,温差也随之减小,路基土体温度的波动范围约为环境温度波动的一半;温度是影响水分迁移的主要因素,水分迁移在路基顶面以下一定的范围内达到最大,越靠近冷端,水分迁移量越大;路基土盐化之后冻胀量减小约73.9%,说明人工盐化路基土的方法可以整治季节性冻土区路基冻害。  相似文献   

17.
正冻土冻结缘研究现状及展望   总被引:1,自引:0,他引:1  
王丹  杨成松  马巍  张莲海 《冰川冻土》2020,42(4):1195-1201
湿土冻结过程中, 生长发育于冰透镜体与冻结锋面之间特殊的区间带称为冻结缘带。冻结缘作为温度场、 水分场和应力场三场耦合作用的结果, 是冰分凝的水源补给站, 冰水相变发生的剧烈区域以及水分迁移的必经之路, 具有重要的研究意义, 也是深入认识冻胀机理的基础。通过系统地阐述冻结缘的形成过程、 相关理论与试验、 微结构特征、 参数特征及冻结缘的模型构建等5个方面的研究进展及成果, 结合各个方向的发展趋势提出了冻结缘研究的重点, 即对冻结缘的研究应回归到试验研究, 利用新型测试技术深入对冻结缘微结构的观测, 结合物理参数及结构性参数变化构建耦合的冻结缘模型, 从而揭示其热力学机理, 为冻胀机制分析、 冻土精确预报提供理论支撑。  相似文献   

18.
不同冻结条件下辽西风积砂土动力参数试验研究   总被引:1,自引:0,他引:1  
张向东  任昆  刘家顺 《冰川冻土》2020,42(4):1229-1237
为研究不同冻结条件对辽西风积砂土动力参数的影响, 以京沈客运专线阜新段路基为研究背景, 利用GDS冻土动态三轴测试系统对不同温度、 水分、 冻融次数下风积砂土的动弹性模量及阻尼比进行了测试, 获得了土体动弹性模量及阻尼比的变化规律, 提出了风积砂土动力参数的修正系数。结果表明: 随着环境温度的降低, 土体动弹性模量逐渐增大, 阻尼比逐渐减小, 温度与动弹性模量之间近似呈线性关系, 与阻尼比呈指数关系; 随着含水率的增加, 土体动弹性模量逐渐增大。存在着一个含水率敏感区间, 在此区间内动弹性模量变化较为明显, 含水率与阻尼比之间关系不明显, 随着含水率的增加阻尼比稍有降低; 随着冻融循环次数的增加动弹性模量逐渐降低, 阻尼比逐渐增大, 前5次冻融循环对土体动力参数的影响较大, 之后影响逐渐减小。在此基础上, 建立了风积砂土动力参数的修正系数, 能够较好的反映不同冻结条件下土体动力参数的变化规律, 为季冻区铁道工程建设提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号