首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on results of microscopic observation and laser Raman analysis about fluid inclusions, multiple special forms of immiscible inclusions that contain sulphur, liquid hydrocarbon, bitumen, etc. were discovered in samples collected from the H2S gas reservoir-containing carbonates in the Lower Triassic Feixianguan Formation in the Jinzhu-Luojia area, Kai County, Sichuan Province. Based on the lithology and burial history of the strata involved as well as measurement results of homogenization temperature of fluid inclusions, bitumen reflectivity, etc., it is concluded that the H2S in the gas reservoir resulted from the thermal reaction between hydrocarbons in reservoir and CaSO4 in the gypsum-bearing dolostone section at the high temperature (140°C–17°C) oil-cracked gas formation stage in Late Cretaceous. Thereafter, research on a great number of immiscible inclusions in the reservoir reveals that elemental sulphur resulted from oxidation of part of the earlier-formed H2S and further reaction between sulphates, hydrocarbons and H2S in geological fluids in H2S-bearing gas reservoir at a temperature of 86°C–89°C and a pressure of 340×105Pa and during the regional uplift stage as characterized by temperature decrease and pressure decrease in Tertiary. Meanwhile, gypsum, anhydrite and calcite formed at this stage would trap particles like elemental sulphur and result in a variety of special forms of immiscible inclusions, and these inclusions would contain information concerning the complexity of the fluids in the reservoir and the origin of H2S and natural sulphur in the gas reservoir.  相似文献   

2.
Isotopic evidence of TSR origin for natural gas bearing high H2S contents 1961 As the hazardous component of natural gas, the ex-istence of H2S, due to its extremely strong toxicity and corrosivity, not only decreases the percentage of hy-drocarbon gas within natural gas and reduces its in-dustrial value, it also threatens each aspect of drilling and exploitation. It frequently causes serious safety accidents[1] and leads to the E&P cost and risk of natural gas with higher H2S contents be…  相似文献   

3.
It has been proved to be a difficult problem to determine directly trapping pressure of fluid inclusions. Recently, PVT simulation softwares have been applied to simulating the trapping pressure of petroleum inclusions in reservoir rocks, but the reported methods have many limitations in practice. In this paper, a method is suggested to calculating the trapping pressure and temperature of fluid inclusions by combining the isochore equations of a gas-bearing aqueous inclusion with its coeval petroleum inclusions. A case study was conducted by this method for fluid inclusions occurring in the Upper-Paleozoic Shanxi Formation reservoir sandstones from the Ordos Basin. The results show that the trapping pressure of these inclusions ranges from 21 to 32 MPa, which is 6-7 MPa higher than their minimum trapping pressure although the trapping temperature is only 2-3℃ higher than the homogenization temperature. The trapping pressure and temperature of the fluid inclusions decrease from southern area to northern area of the basin.The trapping pressure is obviously lower than the state water pressures when the inclusions formed. These data are consistent with the regional geological and geochemical conditions of the basin when the deep basin gas trap formed.  相似文献   

4.
The aim of seismic reservoir monitoring is to map the spatial and temporal distributions and contact interfaces of various hydrocarbon fluids and water within a reservoir rock. During the production of hydrocarbons, the fluids produced are generally displaced by an injection fluid. We discuss possible seismic effects which may occur when the pore volume contains two or more fluids. In particular, we investigate the effect of immiscible pore fluids, i.e. when the pore fluids occupy different parts of the pore volume. The modelling of seismic velocities is performed using a differential effective‐medium theory in which the various pore fluids are allowed to occupy the pore space in different ways. The P‐wave velocity is seen to depend strongly on the bulk modulus of the pore fluids in the most compliant (low aspect ratio) pores. Various scenarios of the microscopic fluid distribution across a gas–oil contact (GOC) zone have been designed, and the corresponding seismic properties modelled. Such GOC transition zones generally give diffuse reflection regions instead of the typical distinct GOC interface. Hence, such transition zones generally should be modelled by finite‐difference or finite‐element techniques. We have combined rock physics modelling and seismic modelling to simulate the seismic responses of some gas–oil zones, applying various fluid‐distribution models. The seismic responses may vary both in the reflection time, amplitude and phase characteristics. Our results indicate that when performing a reservoir monitoring experiment, erroneous conclusions about a GOC movement may be drawn if the microscopic fluid‐distribution effects are neglected.  相似文献   

5.
The newly discovered Baogudi gold district is located in the southwestern Guizhou Province,China,where there are numerous Carlin-type gold deposits.To better understand the geological and geochemical characteristics of the Baogudi gold district,we carried out petrographic observations,elemental analyses,and fluid inclusion and isotopic composition studies.We also compared the results with those of typical Carlin-type gold deposits in southwestern Guizhou.Three mineralization stages,namely,the sedimentation diagenesis,hydrothermal(main-ore and late-ore substages),and supergene stages,were identified based on field and petrographic observations.The main-ore and late-ore stages correspond to Au and Sb mineralization,respectively,which are similar to typical Carlin-type mineralization.The mass transfer associated with alteration and mineralization shows that a significant amount of Au,As,Sb,Hg,Tl,Mo,and S were added to mineralized rocks during the main-ore stage.Remarkably,arsenic,Sb,and S were added to the mineralized rocks during the late-ore stage.Element migration indicates that the sulfidation process was responsible for ore formation.Four types of fluid inclusions were identified in ore-related quartz and fluorite.The main-ore stage fluids are characterized by an H2O–NaCl–CO2–CH4±N2system,with medium to low temperatures(180–260℃)and low salinity(0–9.08%NaCl equivalent).The late-ore stage fluids featured H2O–NaCl±CO2±CH4,with low temperature(120–200℃)and low salinity(0–7.48%Na Cl equivalent).The temperature,salinity,and CO2and CH4concentrations of ore-forming fluids decreased from the main-ore stage to the late-ore stage.The calculated δ^13C,d D,and δ^18O values of the ore-forming fluids range from-14.3 to-7.0%,-76 to-55.7%,and 4.5–15.0%,respectively.Late-ore-stage stibnite had δ^34S values ranging from-0.6 to 1.9%.These stable isotopic compositions indicate that the ore-forming fluids originated mainly from deep magmatic hydrothermal fluids,with minor contributions from strata.Collectively,the Baogudi metallogenic district has geological and geochemical characteristics that are typical of Carlin-type gold deposits in southwest Guizhou.It is likely that the Baogudi gold district,together with other Carlin-type gold deposits in southwestern Guizhou,was formed in response to a single widespread metallogenic event.  相似文献   

6.
This study examines the effects of natural shock metamorphism on fluid inclusions trapped in porous sedimentary target rocks and compares these results to previous experimental work on single crystal quartz. Samples of shock metamorphosed Coconino sandstone were collected from Barringer Meteorite Crater (Meteor Crater, Arizona) and classified based on their shock features into the six shock stages described by Kieffer [S.W. Kieffer, 1971. Shock metamorphism of the Coconino sandstone at Meteor Crater, Arizona, Journal of Geophysical Research 76, 5449-5473.]. The frequency of two-phase fluid inclusions decreases dramatically from unshocked samples of Coconino sandstone through shock stages 1a, 1b, and 2. No two-phase fluid inclusions were observed in shock stage 3 or 4 samples. However, the total number of grains containing fluid inclusions remains approximately the same for shock stages 1a–2, suggesting that two-phase fluid inclusions reequilibrated during impact to form single-phase inclusions. In shock stages 3 and 4, the total number of inclusions also decreases, indicating that at these higher shock pressures fluid inclusions are destroyed by plastic deformation and phase changes within the host mineral. Entrained quartz grains within a shock stage 5 sample contain two-phase inclusions, emphasizing the short duration of melting associated with the impact and the heterogeneous nature of impact processes. These results are similar to those observed in single-crystal experiments, although inclusions survive to slightly higher shock pressures in samples of naturally shocked Coconino sandstone. Results of this study suggest that the rarity of fluid inclusions in meteorites does not preclude the presence of fluids on meteorite parent bodies. Instead, fluid inclusions trapped during alteration events may have been destroyed due to shock processing. In addition, loss of fluids from inclusion vesicles along fractures and microcracks may lead to shock devolatilization, even in unsaturated target rocks.  相似文献   

7.
The northeastern area of Sichuan Basin, southwestern China, is the area with the maximal reserve of natural gas containing higher hydrogen sulphide (H2S) that has been found among the petroliferous basins of China, with the proven and controlled gas reserve of more than 200 billion cubic meters. These gas pools, with higher H2S contents averaging 9%, some 17%, are mainly distributed on structural belts of Dukouhe, Tieshanpo, Luojiazhai, Puguang, etc., while the oolitic-shoal dolomite of the Triassic Feixianguan Fm. (T1f) is the reservoir. Although many scholars regard the plentiful accumulation of H2S within the deep carbonate reservoir as the result of Thermochemical Sulfate Reduction (TSR), however, the process of TSR as well as its residual geological and geochemical evidence is still not quite clear. Based on the carbon isotopic analysis of carbonate strata and secondary calcite, etc., together with the analysis of sulfur isotopes within H2S, sulphur, gypsum, iron pyrites, etc., as well as other aspects including the natural gas composition, carbon isotopes of hydrocarbons reservoir petrology, etc., it has been proved that the above natural gas is a product of TSR. The H2S, sulphur and calcite result from the participation of TSR reactions by hydrocarbon gas. During the process for hydrocarbons being consumed due to TSR, the carbons within the hydrocarbon gas participate in the reactions and finally are transferred into the secondary calcite, and become the carbon source of secondary calcite, consequently causing the carbon isotopes of the secondary calcite to be lower (−18.2‰). As for both the intermediate product of TSR, i.e. sulfur, and its final products, i.e. H2S and iron pyrites, their sulfur elements are all sourced from the sulfate within the Feixianguan Fm. During the fractional processes of sulfur isotopes, the bond energy leads to the 32S being released firstly, and the earlier it is released, the lower δ 34S values for the generated sulphide (H2S) or sulfur will be. However, for the anhydrite that participates in reactions, the higher the reaction degree, the more 32S is released, while the less 32S remains and the more δ 34S is increased. The testing results have proved the process of the dynamic fractionation of sulfur isotopes.  相似文献   

8.
矿物中的流体包裹体记录了地球古流体的形成和演化、矿物的形成环境等各种地质信息。利用微区微量测量技术测定断裂带脉石矿物流体包裹体可以获得断层和地震活动的信息,延长认识地震复发周期的时间,对确定地震活动规律有重要意义。迄今为止,地震流体研究主要是关于宏观区域流体(水和气体)变化规律及其与地震的关系,对微区微量流体的研究很少。本文扼要介绍了地震和构造活动中流体作用与流体包裹体拉曼光谱测量技术,综述了流体包裹体(FI)分析在地震与断裂活动方面的研究进展,并提出了进一步研究的领域,以期促进微区微量地震流体研究和应用。  相似文献   

9.
This paper presents gas compositions and H-, O-isotope compositions of sulfide- and quartz-hosted fluid inclusions, and S-, Pb-isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210 of the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Fluid inclusions trapped in quartz and sphalerite are dominantly primary. H- and O-isotopic compositions of pyrite-hosted fluid inclusions indicate two major contributions to the ore-forming fluid that include the degassed magma and the meteoric-derived but rock 18O-buffered groundwater. However, H- and O-isotopic compositions of quartz-hosted fluid inclusions essentially suggest the presence of groundwater. Sulfide-hosted fluid inclusions show considerably higher abundances of gaseous species CO2, N2, H2S, etc. Than quartz-hosted ones. The linear trends among inclusion gaseous species reflect the mixing tendency between the gas-rich magmatic fluid and the groundwater. The relative enrichment of gaseous species in sulfide-hosted fluid inclusions, coupled with the banded ore structure indicating alternate precipitation of quartz with sulfide minerals, suggests that the magmatic fluid has been inputted to the ore-forming fluid in pulsation. Sulfur and lead isotope compositions of pyrite and galena separates indicate an essential magma derivation for sulfur but the multiple sources for metallic materials from the mantle to the bulk crust.  相似文献   

10.
It has been proved to be a difficult problem to determine directly trapping pressure of fluid inclusions. Recently, PVT simulation softwares have been applied to simulating the trapping pressure of petroleum inclusions in reservoir rocks, but the reported methods have many limita-tions in practice. In this paper, a method is suggested to calculating the trapping pressure and temperature of fluid inclusions by combining the isochore equations of a gas-bearing aqueous inclusion with its coeval petroleum inclusions. A case study was conducted by this method for fluid inclusions occurring in the Upper-Paleozoic Shanxi Formation reservoir sandstones from the Ordos Basin. The results show that the trapping pressure of these inclusions ranges from 21 to 32 MPa, which is 6–7 MPa higher than their minimum trapping pressure although the trapping temperature is only 2–3°C higher than the homogenization temperature. The trapping pressure and temperature of the fluid inclusions decrease from southern area to northern area of the basin. The trapping pressure is obviously lower than the state water pressures when the inclusions formed. These data are consistent with the regional geological and geochemical conditions of the basin when the deep basin gas trap formed.  相似文献   

11.
The Okinawa trough is a spreading back-are basin featuring emitting hydrothermal solutions (black chimney type) and modem sulfide precipitation on the sea floor. The study of fluid inclusions in water-rock interaction products in the Jade hydrothermal field indicates that the deep hydrothermal system beneath the sea floor is fairly rich in gas and there are two independent and coexisting fluids-CO2-hydrocarbon fluid and salt aqueous fluid. On the whole, the composition of CO2-hydrocarbon fluid inclusions is similar to that of the fluid inclusions in natural gas fields. The dominant composition of the inclusions in aqueous fluid is H2O with CO2 and CH4 being oversaturated. The salt aqueous fluid of the Jade hydrothermal system might be emitted through a black chimney, whereas CO2-rich fluids discharge CO2 bubbles and CO2 hydrate through fissures. Hydrocarbons in gas phase or in fluid might be enclosed somewhere under the sea. Large storage of CO2-CH4-H2S gas or fluid and reaction of this gas or fluid with salt water will lead to commercial sulfide deposits.  相似文献   

12.
Fluid inclusions from the Dajing and Caijiaying deposits have nearly the same ho-mogenization temperature. Correlation between temperature and salinity shows that both Sn-and Cu-bearing fluids Sn and Cu were present in the Dajing deposit but only one kind of fluids continuously evolved in the Caijiaying deposit. Study on rare earth elements (REE) in ancient fluid from the inclusions indicates that the fluid of Sn mineralizing stage in Dajing was derived from remelting magma of the continental crust, and the fluid of Cu-Pb-Zn mineralizing stage in the Dajing deposit and the fluid of Cu-Pb-Zn mineralization in the Caijiaying deposit were derived from the mantle. It is concluded that the Cu-Pb-Zn mineralizations in the Dajing and Caijiaying deposits resulted from the identical tectono-thermal event of magma-fluids induced by Mesozoic tectonic transition and extension in the eastern part of North China Craton.  相似文献   

13.
Abundant fluid inclusions in olivine of dunite xenoliths (~1–3 cm) in basalt dredged from the young Loihi Seamount, 30 km southeast of Hawaii, are evidence for three coexisting immiscible fluid phases—silicate melt (now glass), sulfide melt (now solid), and dense supercritical CO2 (now liquid + gas)—during growth and later fracturing of some of these olivine crystals. Some olivine xenocrysts, probably from disaggregation of xenoliths, contain similar inclusions.Most of the inclusions (2–10 μm) are on secondary planes, trapped during healing of fractures after the original crystal growth. Some such planes end abruptly within single crystals and are termed pseudosecondary, because they formed during the growth of the host olivine crystals. The “vapor” bubble in a few large (20–60 μm), isolated, and hence primary, silicate melt inclusions is too large to be the result of simple differential shrinkage. Under correct viewing conditions, these bubbles are seen to consist of CO2 liquid and gas, with an aggregate ? = ~ 0.5–0.75 g cm?3, and represent trapped globules of dense supercritical CO2 (i.e., incipient “vesiculation” at depth). Some spinel crystals enclosed within olivine have attached CO2 blebs. Spherical sulfide blebs having widely variable volume ratios to CO2 and silicate glass are found in both primary and pseudosecondary inclusions, demonstrating that an immiscible sulfide melt was also present.Assuming olivine growth at ~ 1200°C and hydrostatic pressure from a liquid lava column, extrapolation of CO2P-V-T data indicates that the primary inclusions were trapped at ~ 220–470 MPa (2200–4700 bars), or ~ 8–17 km depth in basalt magma of ? = 2.7 g cm?3. Because the temperature cannot change much during the rise to eruption, the range of CO2 densities reveals the change in pressure from that during original olivine growth to later deformation and rise to eruption on the sea floor. The presence of numerous decrepitated inclusions indicates that the inclusion sample studied is biased by the loss of higher-density inclusions and suggests that some part of these olivine xenoliths formed at greater depths.  相似文献   

14.
Microthermometric analyses of fluid inclusions on a suite of hydrothermally altered gabbros recovered just south of the eastern intersection of the Kane Fracture Zone and the Mid-Atlantic Ridge, record the highest homogenization temperatures yet reported for mid-ocean ridge hydrothermal systems. Fluid salinities in the high temperature inclusions are more than ten times that of seawater. Multiple generations of fluid inclusions entrapped along healed microfractures exhibit three distinct temperature-compositional groups. We interpret these populations as having been trapped during three separate fracturing events.The earliest episode of brittle failure in the gabbros is represented by coplanar, conjugate vapor-dominated and brine-dominated fluid inclusion arrays in primary apatite. Vapor-dominated inclusions exhibit apparent homogenization temperatures of 400°C and contain equivalent salinities of 1–2 wt.% NaCl. These inclusions are interspersed with liquid-dominated, sulfide-bearing inclusions containing salinities of 50 wt.% NaCl equivalent. These high salinity inclusions remain unhomogenized at temperatures greater than 700°C.Compositional and phase relationships of the fluid inclusions may be accounted for by two-phase separation of a fluid under 1000–1200 bars pressure. These pressures require that fluid entrapment occurred under a significant lithostatic component and indicate a minimum entrapmentdepth of 2 km below the axial valley floor. This depth corresponds to a minimum tectonic uplift of 3 km, in order to emplace the samples at the 3100 m recovery depth. The microfracture networks within magmatic apatites represent fluid flow paths for either highly modified, deeply penetrating seawater or a late stage magmatic aqueous fluid. The inclusions may have formed close to the brittle-ductile transition zone adjacent to an active magma chamber.Following collapse of the high temperature front, lower temperature fluids of definite seawater origin circulated through the open fracture networks, pervasively altering portions of the gabbros. This stage is represented by low-to-moderate (1–7 wt.% NaCl equivalent) salinity inclusions in plagioclase, apatite, epidote, and augite, which homogenize at temperatures of approximately 200–300°C and 400°C. Formation of hydrous mineral assemblages, under greenschist to lower amphibolite facies conditions, resulted in sealing of the vein system and may have resulted in modification of seawater salinities by as much as a factor of two. During or following these later stages of hydrothermal activity the gabbros were emplaced high on the axial walls by differential uplift attending formation of the flanking mountains.  相似文献   

15.
TSR is an interaction between sulfate and hydrocarbons, occurring widely in carbonate reservoirs. Because this process can produce a large amount of noxious acidic gases like H2S, it has drawn seri- ous concern recently. This paper reports an experiment that simulated an interaction between different minerals and hydrocarbon fluids under different temperature and time using a confined gold-tube system. The results showed that the main mineral that initiates TSR is MgSO4, and adding a certain amount of NaCl into the reactive system can also promote TSR and yield more H2S. The H2S produced in TSR is an important incentive for the continuous oxidative degradation of crude oils. For instance, the yield of oil-cracking gases affected by TSR was twice of that not affected by TSR while the yield of TSR-affected methane was even higher, up to three times of that unaffected by TSR. The carbon iso- topes of wet gases also became heavier. All of the above illustrated that TSR obviously motivates the oxidative degradation of crude oils, which makes the gaseous hydrocarbon generation sooner and increases the gas dryness as well. The study on this process is important for understanding the TSR mechanism and the mechanism of natural gas generation in marine strata.  相似文献   

16.
A key task of exploration geophysics is to find relationships between seismic attributes (velocities and attenuation) and fluid properties (saturation and pore pressure). Experimental data suggest that at least three different factors affect these relationships, which are not well explained by classical Gassmann, Biot, squirt-flow, mesoscopic-flow and gas dissolution/exsolution models. Some of these additional factors include (i) effect of wettability and surface tension between immiscible fluids, (ii) saturation history effects (drainage versus imbibition) and (iii) effects of wave amplitude and effective stress. We apply a new rock physics model to explain the role of all these additional factors on seismic properties of a partially saturated rock. The model is based on a well-known effect in surface chemistry: hysteresis of liquid bridges. This effect is taking place in cracks, which are partially saturated with two immiscible fluids. Using our model, we investigated (i) physical factors affecting empirical Brie correlation for effective bulk modulus of fluid, (ii) the role of liquids on seismic attenuation in the low frequency (static) limit, (iii) water-weakening effects and (iv) saturation history effects. Our model is applicable in the low frequency limit (seismic frequencies) when capillary forces dominate over viscous forces during wave-induced two-phase fluid flow. The model is relevant for the seismic characterization of immiscible fluids with high contrast in compressibilities, that is, for shallow gas exploration and CO2 monitoring.  相似文献   

17.
海底冷泉流体渗漏的原位观测技术及冷泉活动特征   总被引:5,自引:0,他引:5       下载免费PDF全文
海底冷泉渗漏是海洋环境中广泛分布的自然现象.本文主要介绍海底冷泉原住观测技术及全球几个典型冷来渗漏活动地区的原位观测结果.冷泉渗漏活动主要发育在海底裂隙和断层发育的地区,海底常有泥火山、麻坑、水合物、冷泉生物群落和冷泉碳酸盐岩的发育.冷泉渗漏主要包括液体和气体两种形式,流体流动包括上升流和下降流两种方式,流量变化大,主要与海底环境及构造作用有关.烃类渗漏是以气泡、油滴的形式沿断层向海底喷溢,释放量大,运移过程主要受涌浪、静水压力和裂隙压力等因素控制.冷泉渗漏活动是复杂的水文地质过程,受水合物形成和分解产生的气藏的充注和排空、深部常规油气藏的破坏及海底环境变化等多种作用的控制.  相似文献   

18.
Polycrystalline quartz ribbons in high-grade metamorphic rocks from the Daqingshan region, are typi- cal microfabrics of, and provide information for, deep crust deformation and metamorphism. The quartz ribbons have straight boundaries and extend stably along gneissosity. They truncate other mineral grains in the rocks and may contain inclusions of such minerals that are lens-shaped and oriented. They frequently end into branching termination. Analysis fluid inclusions in polycrystalline quartz rib- bons reveal that the complex types of fluid inclusions are inhomogeneously distributed. They are ob- viously different from inclusions captured at granulite facies, in both fluid compositions and T-P esti- mations. Based on microfabric and fluid inclusion analysis, the polycrystalline quartz ribbons are suggested to be formed by SO2-rich fluids filling micro-fractures that are parallel to early gneissosity. The SO2 composition is derived from the deformed host rocks. The fluid phase has significant effects on the rheological characteristics, fracturing of rocks, and formation of quartz ribbons.  相似文献   

19.
This paper presents gas compositions and H-, O-isotope compositions of sulfide- and quartz-hosted fluid inclusions, and S-, Pb-isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210 of the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Fluid inclusions trapped in quartz and sphalerite are dominantly primary. H-and O-isotopic compositions of pyrite-hosted fluid inclusions indicate two major contributions to the ore-forming fluid that include the degassed magma and the meteoric-derived but rock 18O-buffered groundwater. However, H- and O-isotopic compositions of quartz-hosted fluid inclusions essentially suggest the presence of groundwater. Sulfide-hosted fluid inclusions show considerably higher abundances of gaseous species CO2, N2, H2S, etc. than quartz-hosted ones. The linear trends among inclusion gaseous species reflect the mixing tendency between the gas-rich magmatic fluid and the groundwater. The relative enrichment of gaseous species in sulfide-hosted fluid inclusions, coupled with the banded ore structure indicating alternate precipitation of quartz with sulfide minerals, suggests that the magmatic fluid has been inputted to the ore-forming fluid in pulsation. Sulfur and lead isotope compositions of pyrite and galena separates indicate an essential magma derivation for sulfur but the multiple sources for metallic materials from the mantle to the bulk crust.  相似文献   

20.
Polycrystalline quartz ribbons in high-grade metamorphic rocks from the Daqingshan region, are typical microfabrics of, and provide information for, deep crust deformation and metamorphism. The quartz ribbons have straight boundaries and extend stably along gneissosity. They truncate other mineral grains in the rocks and may contain inclusions of such minerals that are lens-shaped and oriented. They frequently end into branching termination. Analysis fluid inclusions in polycrystalline quartz ribbons reveal that the complex types of fluid inclusions are inhomogeneously distributed. They are obviously different from inclusions captured at granulite facies, in both fluid compositions and T-P estimations. Based on microfabric and fluid inclusion analysis, the polycrystalline quartz ribbons are suggested to be formed by SO2-rich fluids filling micro-fractures that are parallel to early gneissosity. The SO2 composition is derived from the deformed host rocks. The fluid phase has significant effects on the rheological characteristics, fracturing of rocks, and formation of quartz ribbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号