首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选取塔克拉玛干沙漠腹地塔中地区和北缘过渡带肖塘地区2013年土壤热通量观测资料,初步比较分析了塔克拉玛干沙漠两种下垫面的土壤热通量变化特征。结果表明:(1)在日变化尺度上,两个站点都有明显的日变化特征,1月份塔中站土壤热通量日平均变化幅度小于肖塘站,日较差分别为58.9 W.m2和72.4 W.m2,4月份两站土壤热通量变化幅度较为接近,日较差分别为88.1W.m2、100.1 W.m2。7、10月份塔中站土壤热通量变化幅度明显高于肖塘站,日较差分别为99.0 W.m2、53.7W.m2,100.3 W.m2、73.3W.m2。(2)不同天气条件下两个站点土壤热通量变化都有很大差异。晴天,塔中站和肖塘站土壤热通量变化都呈现出单峰型,变化幅度较一致,日较差分别为119.7 W.m2、119.1 W.m2。沙尘天和雨天受云层或降水的影响土壤热通量变化波动较大,沙尘天塔中站变化幅度小于肖塘站,日较差分别为83.6 W.m2、133.1 W.m2;雨天塔中站和肖塘站变化幅度都很剧烈,日较差分别为70.6 W.m2、66.6 W.m2。(3)年变化尺度上,塔中站土壤热通量在7月份达到最大值(7.7 W.m2),在11月出现最小值(-5.3 W.m2),肖塘站7月份出现最大值(4.2 W.m2),11月份出现最小值(-10.2 W.m2)。塔中站和肖塘站土壤热通量年总量差异很大,塔中站为16.8 W.m2,能量由大气向土壤传递,土壤为热汇,而肖塘站则为-34.9 W.m2,能量由土壤向大气传播,土壤表现为热源。  相似文献   

2.
利用塔克拉玛干沙漠大气环境综合观测试验站塔中西站10 m梯度自动气象站2009年1、4、7、10月观测数据,基于土壤的一维热扩散方程计算四季自然沙地下垫面的地表土壤热通量和地面加热场强度,从而分析沙漠下垫面的地面加热场强度变化特征。结果表明:(1)春季和夏季地表土壤热通量日总量为正值,热通量方向向下,沙层相对大气是热汇,秋季和冬季则相反;日较差最大值出现在秋季,最小值出现在冬季;除冬季以外土壤热通量只占净辐射通量的很小一部分;(2)1、4、7、10月地面加热场强度分别为-33.20~87.39 W/m~2、-36.92~274.16 W/m~2、-7.59~244.78W/m~2、-24.90~170.42 W/m~2,地面加热场强度日平均值均为正值,地面为热源,夏季最强,春季次之,冬季最弱;(3)与大气相较,白天地面为强热源,夜间为弱冷源,春季地面加热场强度峰值出现在12时(地方时),夏季、秋季、冬季均出现在13时(地方时)。因此,塔克拉玛干沙漠腹地地面加热场强度具有独特的日变化和季节变化特征。  相似文献   

3.
利用2013—2014年6—8月黄河源区近地面的观测数据进行CLM4.5单点模拟植被变化对近地面水热交换影响和能量平衡的研究。结果表明:(1)100%植被覆盖与控制试验(植被覆盖度为50%)向上短波的模拟差值为-6.76 W·m~(-2),裸地(植被覆盖度为0%)与控制试验的差值为7.76 W·m~(-2)。(2)植被覆盖度降低对向上长波辐射的模拟影响较大,其中裸地与控制试验的向上长波辐射模拟差值为5.34 W·m~(-2),而100%植被覆盖与控制试验的向上长波模拟差值仅为-0.62 W·m~(-2)。(3)叶面积指数减少会使地表反照率增大,但辐射通量整体变化幅度不大。其中向上短波平均增加1.35 W·m~(-2),潜热平均减小8.43 W·m~(-2)。(4)叶面积指数增加会使向上长、短波减少,同时潜热通量输送增大,且叶面积指数增加后,向上长波辐射、感热的变化范围略大于叶面积指数减少时。(5)净辐射受到云的影响较大,其变化范围为200~461 W·m~(-2)。6—7月的土壤热通量在2013年不同深度均达到峰值,其中5 cm深处土壤热通量在6—7月的平均值为6.25 W·m~(-2),最大值为30.34 W·m~(-2)。  相似文献   

4.
沙尘气溶胶对辐射有显著影响,利用耦合了Shao2004起沙参数化方案的WRF/Chem(大气/化学全耦合模式),模拟分析了沙尘天气过程中沙尘气溶胶对辐射的影响。结果发现沙尘气溶胶可以导致地面向下的短波辐射通量减小42.51%,平均减小-3.30~-49.46 W·m~(-2),最大可达-162.67 W·m~(-2);沙尘气溶胶可以通过自身向外发射长波辐射,导致地面向下的长波辐射通量增大,地面向下的长波辐射通量平均增加为17.49~50.49 W·m~(-2),最大可达99.17 W·m~(-2)。当PM10浓度为10~20 mg·m-3,沙尘气溶胶能够减小地面向下的长波辐射通量,即沙尘气溶胶在该地区对大气具有"保温"作用;白天沙尘气溶胶主要增加大气层顶向上的长波辐射通量,夜间则减少大气层顶向上的长波辐射通量,大气层顶向外的长波辐射通量平均变化为-25.29~28.83 W·m~(-2),最大可达87.22 W·m~(-2)。  相似文献   

5.
杜娟  刘朝顺  高炜 《气象科学》2016,36(2):184-193
以通用陆面模式CLM 3.0(Community Land Model 3.0)为模型算子,基于集合卡尔曼滤波(Ensemble Kalman Filter,En KF)发展了一个土壤温湿度同化系统,主要用于改进模式对土壤温湿度和地表水热通量的模拟精度,并考察集合样本数、同化频率及不同观测量的组合对同化效果的影响。该系统同化了FLUXNET两个站点(阿柔和Bondville)不同土壤深度、不同时间频率的土壤温度和湿度数据。通过对阿柔站不同集合样本数的设计,综合考虑计算成本和计算精度,最终将集合样本数设置为40。通过分析三种同化方案对同化频率的敏感性得出,同化土壤温度最为敏感,同时同化土壤温湿度次之,同化土壤湿度最不敏感。对于阿柔站点,同化系统对不同土壤深度温度和湿度的模拟精度均能提高90%,潜热通量的均方根误差由94.0 W·m~(-2)降为46.3 W·m~(-2),感热通量均方根误差由55.9 W·m~(-2)降为24.6 W·m~(-2)。Bondville站点浅层土壤温度的改进在30%左右,深层土壤温度改进达到60%,对土壤湿度的改进均在70%以上,潜热通量和感热通量的均方根误差分别从57.4 W·m~(-2)和54.4 W·m~(-2)降为51.0 W·m~(-2)和42.5 W·m~(-2)。试验结果表明,同化站点土壤温湿度数据对土壤水热状况及通量的模拟改进非常有效,同时也验证了同化土壤水分遥感产品的可行性和必要性。  相似文献   

6.
青藏高原陆面过程对中国的天气和气候具有重要影响。高原西部因自然环境恶劣、近地层观测实验缺乏而难以精确确定陆面过程参数和土壤热属性等参数,陆面过程模型通常只能采用模型默认参数,给该地区陆面过程模拟结果带来了不确定性,也降低耦合了陆面过程模型的天气气候模式性能。本文利用2015年6月至2017年1月期间青藏高原西部狮泉河站的陆面过程观测资料,分析了该地区常规气象特征,估算了空气动力粗糙度、热力粗糙度、地表反照率、土壤热容量、土壤热传导率、土壤热扩散率和土壤水通量密度等重要参数。结果表明,狮泉河区域近地层以偏西风为主;气温、太阳辐射、比湿等的季节变化比较显著;干湿季分明,降水主要集中在6—9月。地表反照率受土壤湿度影响,存在微小的季节变化,平均为0.20,与沙漠和戈壁相当。空气动力粗糙度和零平面位移受各方位地物分布影响而存在差异,平均分别为5.58×10~(-2)m和0.44 m。不同热力粗糙度计算方案在该地区的性能存在较大差异;热传输附加阻尼及热力粗糙度受大气边界层层结状况影响,狮泉河大气边界层层结以不稳定为主,不稳定层结下热传输附加阻尼kB-1和热力粗糙度平均值分别为11.37和6.44×10~(-7)m。土壤热容量、热传导率、热扩散率和水通量密度年平均分别为0.95×106J·m~(-3)·K~(-1)、0.24 W·m~(-1)·K~(-1)、2.73×10~(-7)m~2·s~(-1)和0.12×10~(-5)m·s~(-1),与塔克拉玛干沙漠和敦煌戈壁的观测结果比较一致。  相似文献   

7.
不同土壤类型的热通量变化特征   总被引:3,自引:0,他引:3  
利用2004—2007年中国科学院中国生态系统研究网络(CERN)生态站实测土壤热通量、辐射等资料,分析了不同土壤类型表层热通量的日变化和季节变化,以及不同土壤类型的热通量与总辐射、净辐射的关系。结果表明,由于导热率越大,热量传输就越快;热容量越小,热量传输也越快,造成土壤热通量的日较差和年较差较大,所以黄绵土和紫色土的表层热通量日较差最大(220~280 W.m-2),高寒草甸土和水稻土最小(55W.m-2);季节变化中土壤表层热通量的年较差变化范围在12~28W.m-2之间,灰漠土最大,为28W.m-2,热通量年较差从大到小依次为灰漠土、黄绵土、盐碱潮土、红壤土、紫色土、沼泽土、水稻土和高寒潮土,高寒潮土最小,为12W.m-2。不同土壤类型的热通量与总辐射、净辐射呈正相关关系,但不同土壤类型的土壤热通量在12:00(地方时)所占净辐射的比例各不相同,高寒草甸土最小,约为8%;黄绵土最大,为38%,多数土壤的热通量占净辐射的比例在15%~20%之间,这充分表明不同土壤类型表层热通量的传输存在很大差异。  相似文献   

8.
黄土高原陇东地区有着特殊的气候背景和下垫面,对这一地区陆气相互作用特征和影响因素的观测分析对改进和发展陆面过程模式以及气候变化研究有重要意义。利用陇东平凉陆面过程与灾害天气观测研究站连续一年的陆面过程观测资料,分析了雨养农田降水量、土壤含水量、辐射、反照率和能量通量的季节变化,以及降水、土壤含水量和农业生产活动对能量分配的影响。结果表明,陇东地区降水量季节分布不均,土壤含水量有明显季节差异,随降水有明显波动;辐射通量的季节变化较为规律,短波辐射的日均值受天气状况影响,波动较大;地表反照率呈明显的季节变化,全年正午反照率最大值为0.83,出现在降雪后,生长季随着作物的生长,反照率下降至0.2以下,农作物收割以后的裸土反照率随降水变化明显,反照率与土壤体积含水量呈明显的线性相关关系;湍流能量通量日循环和季节变化明显,地表能量分配在很大程度上受降水影响,同时农业生产活动也对其有较大影响,主导能量通量有较大的月际波动,潜热通量月平均日变化峰值最大为240.8 W·m~(-2),出现在5月,感热通量为192.5 W·m~(-2),出现在4月;在年尺度上,正午净辐射多被感热通量消耗,感热通量约占35%,潜热通量约占32%,低于灌溉农田;在冬小麦快速生长季(3-5月),潜热通量约占34%,远低于灌溉的冬小麦田,研究站点的蒸散发过程受到水分限制。  相似文献   

9.
沙尘对南疆沙漠腹地太阳辐射的影响   总被引:1,自引:0,他引:1  
利用塔克拉玛干沙漠腹地塔中大气环境观测试验站(83°39'E,38°58'N)总辐射、散射辐射和直接辐射的观测资料,分析了塔中大气透明系数变化和沙尘对总辐射、直接辐射、散射辐射的影响。结果表明,10-12月塔中大气透明系数最好,春、夏季最差;晴天大气透明系数最高(0.57),沙尘暴天气最低(0.07)。晴天、浮尘和扬沙天气总辐射最大可达1000 W·m-2以上,而沙尘暴天气最大可达700 W·m-2。晴天散射辐射值大多在400 W·m-2以下,主要集中在100~200 W·m-2范围内;有沙尘的天气大多在600 W·m-2以下。沙尘对直接辐射的衰减最大,晴天、浮尘、扬沙和沙尘暴天气下直接辐射200 W·m-2的概率依次为41.2%,72.5%,78.1%和100%。随着大气中沙尘增多,散射辐射逐渐向高值区域集中。沙尘天气下各辐射日变化曲线波动很大,其中总辐射和直接辐射减小很多;总辐射和散射辐射日变化曲线形态相似、量值接近。大气透明系数与总辐射、直接辐射和散射辐射关系密切。  相似文献   

10.
青藏高原地区地表能量通量的估算与验证对高原及其周边地区能量和水循环研究具有重要意义,地表能量平衡系统SEBS(Surface Energy Balance System)模型为研究高原非均匀地表区域地表能量通量提供了一种行之有效的方法。基于中国科学院那曲高寒气候环境观测研究站(简称那曲站)、中国科学院纳木错多圈层综合观测研究站(简称纳木错站)和中国科学院珠穆朗玛大气与环境综合观测研究站(简称珠峰站) 2008年辐射资料、大气边界层塔站观测资料,结合MODIS卫星数据,利用SEBS模型估算地表能量通量,并用站点地表能量通量观测资料进行验证。结果表明,模型估算的感热通量和土壤热通量与站点实测值具有较好的一致性,且感热通量和土壤热通量的估算精度明显优于潜热通量;感热通量的估算精度最高,那曲站、纳木错站和珠峰站的均方根误差分别为54. 98,37. 37和27. 10 W·m~(-2);而模型估算的潜热通量验证结果偏差较大和站点实测数据存在"能量不闭合"问题相关。鉴于在地表能量通量观测中广泛存在"能量不闭合"的问题,利用波文比校正方法校正站点实测潜热通量。研究表明波文比校正方法可以明显改善地表通量观测数据"能量不闭合"的问题,那曲站、纳木错站和珠峰站的能量闭合率分别提高了19. 4%,21. 4%和19. 1%;与原始站点实测潜热通量相比,校正后的潜热通量与SEBS模型估算结果一致性较好,3个站点潜热通量的均方根误差分别减少了6. 78,33. 48和29. 30 W·m~(-2)。  相似文献   

11.
应用改进地表粗糙度的中尺度模式WRF模拟青藏高原及其周边地区2004-2013年地表湍流通量的变化特征,结果发现,自2004-2013年以来,青藏高原中部和东南部地区感热通量增加,分别增加了9. 952 W·m~(-2)·(10a)~(-1)和14. 595 W·m~(-2)·(10a)~(-1);青藏高原其他区域感热减小,减少了-4. 473 W·m~(-2)·(10a)~(-1);青藏高原周边东南部横断山脉增加了9. 928 W·m~(-2)·(10a)~(-1),云贵高原地区增加了9. 868 W·m~(-2)·(10a)~(-1)和江南丘陵地区增加了15. 177 W·m~(-2)·(10a)~(-1);其他周边地区感热减小,减少的量级为-10. 26 W·m~(-2)·(10a)~(-1)。青藏高原东部地区潜热有较弱的增加[1. 175 W·m~(-2)·(10a)~(-1)],青藏高原其他区域都减小[-3. 762 W·m~(-2)·(10a)~(-1)];青藏高原东侧四川盆地、南侧孟加拉湾附近以及周边北部地区减弱,分别为-0. 27,-2. 416和-2. 287 W·m~(-2)·(10a)~(-1);周边其他地区潜热通量都有不同程度的增加,我国东南部江浙地区有较强的增加[11. 385 W·m~(-2)·(10a)~(-1)],印度半岛增加的幅度不大[2. 988 W·m~(-2)·(10a)~(-1)],云贵高原以东缅甸增加[9. 287 W·m~(-2)·(10a)~(-1)]和黄土高原增加[1. 160 W·m~(-2)·(10a)~(-1)],但云贵高原是减少的[-2. 705 W·m~(-2)·(10a)~(-1)]。  相似文献   

12.
夏季青藏高原地面热源和高原低涡生成频数的日变化   总被引:1,自引:0,他引:1  
通过1981—2010年NCEP/NCAR再分析资料,分析出夏季青藏高原地面热源具有强烈的日变化,白天高原是强热源,夜间高原地面转变为弱热汇,日较差可达420 W·m~(-2),呈由西向东递减分布。其中地面感热和潜热加热的日变化均十分明显,日较差分别可达300 W·m~(-2)和200 W·m~(-2);感热加热的日变幅由西北向东南递减,而潜热加热由南向北递减。同时,利用人工识别的高原低涡数据集初步分析了夏季高原低涡生成频数的日变化,发现夜间生成的高原低涡频数略高于白天,其中00 UTC的低涡源地主要在西藏那曲和林芝(工布江达),12 UTC低涡源地主要在西藏那曲和青海玉树。  相似文献   

13.
利用"中国干旱气象科学研究计划——我国北方干旱致灾过程及机理"的观测数据,分析塔中站、奈曼站、平凉站和锦州站2015年8—10月及定西站2016年8—10月地表能量通量变化特征。分析发现,不同下垫面辐射均表现出明显的日变化,相对于向下短波辐射和向下长波辐射,不同下垫面反射辐射和向上长波辐射差异更加明显。塔中站反射辐射和向上长波辐射最大,锦州站和平凉站相对较小。净辐射具有明显的日变化特征,和总辐射相位一致,农田净辐射日峰值相对较大。地表反照率3个月平均从大到小依次为塔中站(0. 27)、定西站(0. 19)、锦州站(0. 16)、奈曼站(0. 15)和平凉站(0. 14)。各站点感热通量和潜热通量均为单峰型,其中,奈曼站感热通量峰值最大(276 W·m~(-2)),平凉站潜热通量峰值最大。定西站和锦州站净辐射分配以感热通量为主,平凉站则以潜热通量为主。  相似文献   

14.
《高原气象》2021,40(3):495-509
选取2014-2018年黑河流域中下游不同类型下垫面(荒漠、玉米田、湿地、胡杨、胡杨柽柳混合林)的站点观测数据,定量比较了不同下垫面地表能量收支的变化;探讨了不同气象要素以及灌溉作用对潜热输送的影响。结果表明:潜热的年变化与向下短波辐射以及气温的年变化保持一致;不同下垫面能量收支差异较大,玉米田下垫面月均潜热峰值可达200 W·m~(-2),荒漠下垫面只有100 W·m~(-2);荒漠下垫面潜热季节变化幅度较小,湿地、混合林和胡杨林的季节变化更为明显,变化幅度更大,其中湿地最大;玉米田下垫面潜热通量受灌溉的影响较大,灌溉导致土壤湿度突然增大,潜热通量也随之迅速增大;地表热通量在能量收支中占比较小,且随季节变化不大,在各个下垫面均是如此。  相似文献   

15.
利用2009—2012年在北京密云、青海阿柔、河南济源、甘肃张掖、河北馆陶和沽源的野外对比试验数据,分析了国产光学型大孔径闪烁仪的观测精度、稳定性和一致性,为国产光学型大孔径闪烁仪的后续生产和改进提供科学依据。分析结果表明:(1)以德国BLS900闪烁仪观测值作为参考值,张掖巴吉滩3套和沽源站5套国产大孔径闪烁仪样机感热通量观测值的平均均方根误差分别为19.91 W·m~(-2)和9.81 W·m~(-2);样机感热通量观测值均值与涡动相关仪观测值比较,均方根误差分别为21.08 W·m~(-2)和12.87 W·m~(-2),表明国产大孔径闪烁仪具有较好的观测精度;(2)国产大孔径闪烁仪在高温、低温、高湿或低湿的恶劣天气条件下以及长时间序列的观测均具有较好的稳定性;(3)样机观测感热通量之间的回归斜率差异较大,为6%,相关系数大于0.98,表明国产大孔径闪烁仪的一致性较好。综上所述,国产光学型大孔径闪烁仪基本达到了国外同类仪器的性能水平。  相似文献   

16.
黄河源区高寒湿地-大气间的水分和热量及碳交换过程是影响青藏高原气候变化的主要因素之一。本文从2013年7月16日至10月19日期间黄河源区麻多湿地下垫面湍流通量涡动相关系统和气象站观测资料中,每月选取3~4天晴天条件下的观测数据,分析了黄河源麻多湿地-大气间感热通量、潜热通量和CO_2通量的日变化特征,并探讨了近地面能量平衡闭合度。结果表明:黄河源高寒湿地下垫面潜热通量和感热通量有日变化过程,日出后水分和热量交换通量逐渐增高,峰值均出现在12:00—16:00(北京时,下同)。在2013年夏季,黄河源湿地下垫面感热通量的最高值出现在9月15:30,达到了150.0 W·m~(-2),潜热通量的最高值出现在7月16:00,达到了300.0 W·m~(-2)。黄河源高寒湿地生态系统的能量消耗主要以潜热为主,近地面能量的闭合度较差,达到了48.8%。湿地净生态系统的CO_2交换通量日变化特征呈"U"型曲线,在整个植被生长季节的日变化过程中,日出后湿地系统吸收大气中的CO_2,净生态系统CO_2交换量NEE(Net Ecosystem Exchange)为负,中午达负极值,极值为-0.55 mg·m~(-2)·s~(-1),出现在7月21日12:30;夜间下垫面释放CO_2,NEE为正。进一步分析结果表明:CO_2交换通量的变化动态范围受空气温度、太阳辐射和植被冠层的影响明显。  相似文献   

17.
半干旱区不同下垫面大气湍流通量比较分析   总被引:1,自引:0,他引:1  
为了更深入地认识不同条件下的陆-气相互作用,选取2007年1月至2008年12月兰州大学半干旱气候与环境观测站(Semi-Arid Climate and Environment Observatory of Lanzhou University,SACOL)与中科院吉林通榆观测站的湍流资料,并结合常规气象观测资料,利用Swinbank于1951年提出的涡动相关法分析三种下垫面上的湍流通量,从而定量地描述和认识陆-气相互作用,并比较分析半干旱区不同下垫面热通量和动量通量的日变化与季节变化特征。结果表明:(1)SACOL、草原站和农田站上感、潜热通量的日变化均表现为单峰型,其中感热通量Hs日峰值可分别达到140.3,157.3和144.8 W·m-2;潜热通量LvE日峰值为Hs的40%~75%。(2)夜间热通量主要集中于-22.6~24.2 W·m-2,夜间Hs一年四季均表现为负值,而LvE几乎保持正值。(3)各测站上动量通量τ具有明显日变化,但由于风向、风速差异,通榆地区τ的日峰值可达0.25 kg·m-1·s-2,而SACOL仅有0.08 kg·m-1·s-2。(4)通榆站上τ的日变化具有显著季节差异,春、秋季的日较差远大于其他季。(5)排除热力因子影响,黄土高原下垫面对湍流活动的削弱作用更强,在该下垫面上近地层大气更容易也更快趋于稳定。  相似文献   

18.
南疆沙漠腹地大气边界层湍流通量特征的观测研究   总被引:4,自引:0,他引:4  
利用新疆塔中站2006年4月、8月的三维风速。温度和水汽脉动资料,运用涡旋相关法计算得到了春、夏季塔中10m高度的动量、感热和潜热通量。结果表明,塔中地区地表热量输送以感热输送为主。春季每天的最大感热通量变化范围为120—320W·m^-2,月平均值为220W·m^-2;夏季最大感热通量的变化范围为140—340W·m^-2,月平均值为230W·m^-2。感热通量值在夜间为负,白天为正,符号的改变出现在日出、日落前后。夏季潜热通量最大值一般为20—60W·m^-2,平均值为27W·m^-2,潜热通量比感热通量小一个量级。春季动量通量的平均值为-0.063W·m^-2,夏季动量通量的平均值为-0.091W·m^-2。日变化规律比较明显,日出后,动量向下传输增大,在09-10时(地方时)出现一个最大值,随后动量向下传输并开始减小。  相似文献   

19.
利用"古浪非均匀近地层观测试验"数据,分析地表热通量不同算法对地表能量不闭合的影响,估算中国西北干旱区农田下垫面的植被光合作用、空气热储存、生物量储热和垂直平流输送,并且分析其对干旱区农田下垫面夏季地表能量不平衡的补偿。结果表明:干旱区农田植被光合作用平均日变化最大值达9.9 W·m~(-2),空气热储存平均日变化最大值达10.6 W·m~(-2),生物量储热平均日变化最大值达32.4 W·m~(-2),垂直平流输送平均日变化最大值达22.9 W·m~(-2);各补偿项对地表能量闭合度分别提高2%、1%、2%和6%;在能量平衡方程中引入这4项后地表能量平衡闭合度由79%提升到90%。植被光合作用、空气热储存、生物量储热和垂直平流输送对干旱区农田地表能量不闭合有明显改善。  相似文献   

20.
由中国气象局乌鲁木齐沙漠气象研究所承担的“西部五省气候变化与生态环境评估子项目-风沙灾害监测与荒漠化评估系统”于2007年4月10日开始进行塔克拉玛干沙漠腹地野外综合观测试验。项目沿塔里木盆地周围、沙漠公路以及北疆艾比湖-石河子-乌鲁木齐一带布设了大气降尘采集器和TSP等设备。在沙漠公路沿线肖塘和塔中气象站分别安装了三层梯度集沙仪、沙通量及LAS,并结合塔中站80m梯度、哈得站和肖塘站10m梯度等先进的探测设备,跟踪监测沙尘暴的发生过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号