首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
New major and trace element and Sr–Nd isotope data are presented for basaltic glasses from active spreading centers (Central Lau Spreading Center (CLSC), Relay Zone (RZ) and Eastern Lau Spreading Center (ELSC)) in the Central Lau Basin, SW Pacific. Basaltic lavas from the Central Lau Basin are mainly tholeiitic and are broadly similar in composition to mid-ocean ridge basalts (MORB). Their generally high 87Sr/86Sr ratios, combined with relatively low 143Nd/144Nd ratios are more akin to MORB from the Indian rather than Pacific Ocean. In detail, the CLSC, RZ and ELSC lavas are generally more enriched in large ion lithophile elements (Rb, Ba, Sr, and K) than average normal-MORB, which suggests that the mantle beneath the Central Lau Basin was modified by subducted slab-derived components. Fluid mobile/immobile trace element and Sr – Nd isotope ratios suggest that the subduction components were essentially transferred into the mantle via hydrous fluids derived from the subducted oceanic crust; contributions coming from the subducted sediments are minor. Compared to CLSC lavas, ELSC and RZ lavas show greater enrichment in fluid mobile elements and depletion in high field strength elements, especially Nb. Thus, with increasing distance away from the arc, the influence of subduction components in the mantle source of Lau Basin lavas diminishes. The amount of hydrous fluids also influences the degree of partial melting of the mantle beneath the Central Lau Basin, and hence the degree of melting also decreases with increasing distance from the arc.  相似文献   

2.
Lower Carboniferous lavas from the Midland Valley and adjacent regions of Scotland are mildly alkaline and intraplate in nature. The sequence is dominated by basalt and hawaiite, although mugearite, benmoreite, trachyte and rhyolite are also present. Basic volcanic rocks display the LIL element and LREE enrichment typical of intraplate alkali basalt terrains. Low initial87Sr/86Sr (0.7029–0.7046), high εNd (−0.4 to +5.6) and moderately radiogenic206Pb/204Pb (17.77–18.89) ratios are also comparable with alkali basalts from other continental rifts and oceanic islands.When the Carboniferous lavas are compared with subduction-related lavas of Old Red Sandstone age, erupted in and around the Midland Valley ca. 50 Ma earlier (at 410 Ma) remarkable similarities are apparent. Significant overlap occurs in Nd and Pb isotopic compositions. Sr isotopic compositions are, however, more radiogenic in the older subduction-related lavas. This, combined with high K and Rb concentrations in ORS lavas may be explained by the incorporation of a sediment component derived from the subducted slab, which by Lower Carboniferous times had been lost from the mantle source region by convection. A pronounced negative Nb anomaly in the ORS subduction-related lavas may be explained by the retention of a Nb-bearing phase in the mantle during hydrous melting of the mantle wedge above the subduction zone.Allowing for the effects of the added component from the subducted slab, there appears to be no necessity to invoke separate mantle source regions for the two suites of lavas: both may have been derived from chemically similar portions of mantle. If volcanic arc lavas are derived from the mantle wedge, the implication is that such a source lies at relatively shallow depth within the upper mantle: the same may therefore apply to the Carboniferous continental rift basalts. This evidence, combined with the fact that there is no evident hot-spot trail across the Midland Valley despite a long period of within-plate volcanism and rapid plate movements during the Carboniferous, suggests that the alkali basalt magmatism is not the product of a deep-seated mantle plume. Rather, the volcanism appears to owe more to passive rifting and to diapiric upwelling from a source region within the uppermost mantle.  相似文献   

3.
Middle Miocene to Quaternary lavas on Kunashir Island in the southern zone of the Kurile Arc were examined for major, trace, and Sr–Nd–Pb isotope compositions. The lavas range from basalt through to rhyolite and the mafic lavas show typical oceanic island arc signatures without significant crustal or sub-continental lithosphere contamination. The lavas exhibit across-arc variation, with increasingly greater fluid-immobile incompatible element contents from the volcanic front to the rear-arc; this pattern, however, does not apply to some other incompatible elements such as B, Sb, and halogens. All Sr–Nd–Pb isotope compositions reflect a depleted source with Indian Ocean mantle domain characteristics. The Nd and Pb isotope ratios are radiogenic in the volcanic front, whereas Sr isotope ratios are less radiogenic. These Nd isotope ratios covary with incompatible element ratios such as Th/Nd and Nb/Zr, indicating involvement of a slab-derived sediment component by addition of melt or supercritical fluid capable of mobilizing these high field-strength elements and rare earth elements from the slab. Fluid mobile elements, such as Ba, are also elevated in all basalt suites, suggesting involvement of slab fluid derived from altered oceanic crust. The Kurile Arc lavas are thus affected both by slab sediment and altered basaltic crust components. This magma plumbing system has been continuously active from the Middle Miocene to the present.  相似文献   

4.
Abstract Two new cases of association of adakites with ‘normal’ island arc lavas and transitional adakites are recognized in the islands of Batan and Negros in northern and central Philippines, respectively. The Batan lavas are related to the subduction of the middle Miocene portion of the South China Sea basin along the Manila trench; those of Negros come from the almost aseismic subduction of the middle Miocene Sulu Sea crust along the Negros trench. The occurrence of the Batan adakites is consistent with previous findings showing adakitic glass inclusions within minerals of mantle xenoliths associated with Batan arc lavas. The similarity of adakite ages (1.09 Ma) and that of the metasomatized xenoliths (1 Ma) suggests that both are linked to the same slab‐melting and metasomatic event. Earlier Sr, Pb and Nd‐isotopic studies, however, also reveal the presence of an important sediment contribution to the Batan lava geochemistry. Thus, the role played by slab melts, assumed to have mid‐ocean ridge basalts‐like (MORB) isotopic characteristics, in enriching the Batan subarc mantle is largely masked by the sediment input. The Negros adakites are present only in Mount Cuernos, the volcanic center nearest to the Negros trench. Batch partial melting calculations show that the Negros adakites could be derived from a garnet amphibolitic source with normal‐MORB (N‐MORB) geochemistry. This is supported by the MORB‐like isotopic characteristics of the Mount Cuernos lavas. The volcanic rocks from the other volcanoes consist of normal arc and transitional adakitic lavas that have slightly higher Sr‐ and Pb‐isotopic ratios, probably due to slight sediment input. Mixing of adakites and normal arc lavas to produce transitional adakites is only partly supported by trace element geochemistry and not by field evidence. The transitional adakites can be modeled as partial melts of an adakite‐enriched mantle. Trace element enrichment of non‐adakitic lavas could reflect the interaction of their mantle source with uprising slab melts, as metasomatic mantle minerals scavenge certain trace elements from the adakitic fluids. Therefore, in arcs beneath which thick (up to 2 km) continent‐derived detrital sediments are involved in subduction, like in Batan, the sediment signature can overwhelm the slab melt input. In arcs like Negros where slow subduction could cause a more efficient scraping of thinner (approximately 1 km) detrital sediments, the contribution of slab melts is easier to detect.  相似文献   

5.
In central Japan, the Pacific plate subducts westward beneath the Eurasian plate and the Philippine Sea plate subducts northwestward into the mantle wedge between the Eurasian plate and the subducted Pacific slab. There, the Northeast Japan arc is joined to the Izu-Ogasawara arc. We determined 87Sr/86Sr ratios and Rb and Sr contents for 47 volcanic rock samples from 15 Quaternary volcanoes in central Japan and summarized the geographical distribution of the ratios. The general trend of slowly increasing 87Sr/86Sr ratio from the back-arc side toward the volcanic front in the Northeast Japan arc is broken by a marked high ratio (above 0.7060) centered around Akagi volcano located at the southernmost region of the arc. Elsewhere, the ratio along the volcanic front in this arc varies within the range 0.7038 to 0.7045. The marked high 87Sr/86Sr ratio is considered to be due to the addition of slab-derived components transported by the Philippine Sea plate to the magma-generating region in the mantle wedge beneath central Japan. Therefore, the geographical distribution of the high ratio may correspond to that of the Philippine Sea slab-derived components in the mantle wedge and we may draw the underground outline of the Philippine Sea plate. This outline implies that an aseismic portion of the Philippine Sea plate continues a few tens km ahead of the seismic one. A belt of low 87Sr/86Sr ratios from the Izu Peninsula northwestward along the northern end of the Izu-Ogasawara arc coincides with the zone where the subducting Philippine Sea plate is not observed seismologically, while it is detected seismologically on both sides of the belt.  相似文献   

6.
Niobium–tantalum systematics of slab-derived melts are powerful tracers that discriminate residual high-pressure rutile-bearing eclogite from low-pressure garnet-bearing amphibolite in subducting plates. Previously reported low Nb–Ta ratios in modern slab melts suggested a predominance of shallow melting in the presence of residual amphibole and that deep melting of rutile-bearing eclogitic slabs, devoid of residual amphibole, is volumetrically insignificant. This study evaluates Nb/Ta in combination with other trace element systematics of modern intra-oceanic and slab melt-related arc lavas from the south-western volcanic chain of the Solomon Islands that cover over 1000 km of the SW Pacific plate border. After a change of subduction polarity, an old subducted Pacific slab and a recently subducting Indian–Australian slab are both present beneath the arc. Solomon arc lavas show sub- to superchondritic Nb–Ta ratios (ca. 10 to 27) which is the largest range ever reported in modern island arc lavas. The large range of Nb/Ta likely results from enrichment of the depleted sub-arc mantle by two distinct slab-derived melts in addition to fluids. One minor slab melt component is derived from the shallow and recent subducting Indian–Australian plate where amphibole is still a significant residual phase. The second slab melt component is predominant in Solomon arc lavas and can be attributed to deep rutile–eclogite-controlled melting of old subducted Jurassic Pacific oceanic crust where residual amphibole is entirely absent or insignificant. The deep Pacific slab melt component is the most likely origin of the extremely high and superchondritic Nb/Ta signatures that produce the upper half of the observed range of Nb/Ta in Solomon arc lavas. The slab melt component that enriched the sub-arc mantle with an unusually high Nb/Ta signature is derived from an initially intact Pacific plate that was probably subject to a slab break-off event and subsequent melting at depths exceeding 100 km. The geochemical evidence presented here shows that old and cold subducted oceanic crust, which is initially not torn, may resist shallow melting but can melt at greater depths instead. The resulting slab melts are generated in the presence of residual rutile-bearing eclogite and significantly fractionate Nb–Ta ratios which may be of relevance at a global scale.  相似文献   

7.
A geochemical and isotopic study of lavas from Pichincha, Antisana and Sumaco volcanoes in the Northern Volcanic Zone (NVZ) in Ecuador shows their magma genesis to be strongly influenced by slab melts. Pichincha lavas (in fore arc position) display all the characteristics of adakites (or slab melts) and were found in association with magnesian andesites. In the main arc, adakite-like lavas from Antisana volcano could be produced by the destabilization of pargasite in a garnet-rich mantle. In the back arc, high-niobium basalts found at Sumaco volcano could be produced in a phlogopite-rich mantle. The strikingly homogeneous isotopic signatures of all the lavas suggest that continental crust assimilation is limited and confirm that magmas from the three volcanic centers are closely related. The following magma genesis model is proposed in the NVZ in Ecuador: in fore arc position beneath Pichincha volcano, oceanic crust is able to melt and produces adakites. En route to the surface, part of these magmas metasomatize the mantle wedge inducing the crystallization of pargasite, phlogopite and garnet. In counterpart, they are enriched in magnesium and are placed at the surface as magnesian andesites. Dragged down by convection, the modified mantle undergoes a first partial melting event by the destabilization of pargasite and produces the adakite-like lavas from Antisana volcano. Lastly, dragged down deeper beneath the Sumaco volcano, the mantle melts a second time by the destabilization of phlogopite and produces high-niobium basalts. The obvious variation in spatial distribution (and geochemical characteristics) of the volcanism in the NVZ between Colombia and Ecuador clearly indicates that the subduction of the Carnegie Ridge beneath the Ecuadorian margin strongly influences the subduction-related volcanism. It is proposed that the flattening of the subducted slab induced by the recent subduction (<5 Ma?) of the Carnegie Ridge has permitted the progressive warming of the oceanic crust and its partial melting since ca. 1.5 Ma. Since then, the production of adakites in fore arc position has deeply transformed the magma genesis in the overall arc changing from ‘typical’ calc-alkaline magmatism induced by hydrous fluid metasomatism, to the space- and time-associated lithology adakite/high-Mg andesite/adakite-like andesite/high-Nb basalts characteristic of slab melt metasomatism.  相似文献   

8.
This paper presents new O and Sr isotope data for lavas from the northern part of the Roman perpotassic province. The samples comprise the tephritic leucititic to leucite phonolitic lavas and the saturated lavas from the Vulsinian District, the olivine leucite melilitite of San Venanzo, and the kalsilite diopside melilitite of Cupaello. Previous oxygen isotope work on the lavas of the Vulsinian District suggested crustal contamination of “normal” mantle-derived magmas. The new data cover the ranges previously found. O and Sr isotope ratios of evolved lavas of the undersaturated suite indicate assimilation in variable amounts of up to ca. 10% of continental crustal material. The saturated lavas probably assimilated large amounts (up to ca. 50%) of crust. Lavas chemically identified as corresponding to little modified mantle-derived liquids are high in both87Sr/86Sr andδ18O: 0.7103−0.7107, +7.8 to +9.4 (Vulsini), 0.7104, +12.3 (San Venanzo) and 0.7112, +14.4 (Cupaello). These high values are interpreted to have been inherited from a metasomatized parental mantle. Hydrous fluids enriched in large-ion lithophile elements and high inδ18O and87Sr/86Sr are thought to have mixed with mantle of “normal”δ18O and87Sr/86Sr. The fluids probably origi dehydration of continent-derived sediments, which were subducted beneath a mantle wedge in the continent-continent collision of the Corsica-Sardinia block and the Adriatic (Italian) plate. This hypothesis is supported by Pb and Nd isotopic evidence and is probably valid for the entire Roman Province.  相似文献   

9.
In order to understand the role of the subducted lithosphere in producing the geochemical characteristics of arc magmas, major- and trace-element along with Sr- and Nd-isotope compositions have been determined for Quaternary volcanic rocks from the Izu-Bonin intra-oceanic arc. 87Sr/86Sr and 143Nd/144Nd ratios decrease away from the volcanic front of this arc and lie on mixing lines between the assumed isotopic compositions of fluid phases mainly derived from the basalt layer of the subducted lithosphere and upper-mantle materials in the sub-arc wedge. This across-arc variation can be explained through a simple sequence of processes involving initial release of fluid phases from the subducted oceanic crust to produce hydrous peridotite at the base of the mantle wedge. This hydrous peridotite is dragged downward with the slab and releases a second-stage metasomatizing fluid beneath the volcanic arc. The higher concentrations of both Sr and Nd in the fluid beneath the volcanic front than those beneath the back-arc side may be a possible cause of the observed across-arc variation in Sr-Nd isotopic ratios. The difference in compositions of fluid phases is attributed to the different hydrous phases which decompose in the hydrous peridotite layer; amphibole beneath the volcanic front and phlogopite beneath the back-arc side of the volcanic arc. The mineralogically controlled fluid addition may also be responsible for the across-arc variation in Rb/K and Rb/Zr ratios, increasing away from the volcanic front.  相似文献   

10.
Measurements of chlorine concentrations in matrix glasses from 18 primitive (>6 wt% MgO) and eight evolved lavas from active spreading centers in the Lau Basin back-arc system provide insight into the processes which control chlorine concentrations in subduction-related magmas, and can be used to investigate chlorine enrichment related to fluids derived from the underlying subducted slab. Chlorine contents of the glasses are highly variable (0.008-0.835 wt%) and generally high with respect to uncontaminated mid-ocean ridge basalt. Chlorine contents are highest in fractionated lavas from propagating ridge tips and lowest in more primitive basaltic lavas. Two different styles of enrichment in chlorine (relative to other incompatible elements) are recognized. Glasses from the Central Lau Spreading and Eastern Lau Spreading Center typically have low Ba/Nb ratios indicating minimal input of slab-derived components, and high to very high ratios of chlorine relative to K2O, H2O, and TiO2. This style of chlorine enrichment is highest in the most fractionated samples and is consistent with crustal assimilation of chlorine-rich altered ocean crust material. Data from the literature suggest that contamination by chlorine-rich seawater-derived components also characterizes the Woodlark Basin and North Fiji Basin back-arc systems. The second style of chlorine enrichment reflects input from slab-derived fluid(s) to the mantle wedge from the adjacent Tonga subduction zone. Basaltic glasses from the Valu Fa Ridge and Mangatolu Triple Junction show correlations between ratios of chlorine and K2O, H2O, and TiO2 and indices of slab-derived fluid input such as Ba/Nb, Ba/Th and U/Th, consistent with chlorine in these lavas originating from a saline fluid added to the mantle wedge. Within the Valu Fa Ridge the measured range of chlorine contents equates to a chlorine flux of 224-1120 kg/m/yr to the back-arc crust. Using a simple melting model and additional data from other back-arc and arc sample suites we conclude that chlorine is a major component within the slab fluids that contribute to many arc and back-arc melting systems, and probably plays an important role in regulating trace element transport by slab fluids in the mantle wedge. For the back-arc suites we have examined the estimated Cl/H2O and Cl/K2O ratios in the slab fluid component correlate with proximity to the arc front, suggesting that progressive dehydration of the slab and/or re-equilibration and transport within the mantle wedge may influence the overall degree of chlorine enrichment within the slab fluid component. The degree of chlorine enrichment observed in most back-arc lavas also appears too great to be explained solely by melting of amphibole, phlogopite or apatite within the mantle source and suggests that chlorine must be present in another phase, possibly a chlorine-rich fluid.  相似文献   

11.
Yoga A.  Sendjaja  Jun-Ichi  Kimura  Edy  Sunardi 《Island Arc》2009,18(1):201-224
The Sunda Arc of Indonesia developed along the convergent margin between the Eurasian and the Australian Plates. More than 100 Quaternary volcanic centers occur along the arc. The West Java Arc is a segment of the Sunda Arc in which more than 10 volcanic centers are located, corresponding to the 120 to 200 km depth contours of the Wadati–Benioff zone. The geochemistry of 207 Quaternary lavas from six centers across the arc was investigated. The lavas range from basalt to dacite. Incompatible element abundances increase from the volcanic front to the rear‐arc in response to a change from low‐K to high‐K suites. Nd–Sr isotope compositions of the basalts scatter between mid‐ocean ridge basalt (MORB) source mantle and Indian Ocean sediment (SED) compositions, with volcanic front low‐K basalts having more radiogenic Nd than the rear‐arc basalts. It is suggested that mixing between slab‐derived fluids mainly from the SED and melt from MORB source mantle played a significant role in determining the geochemistry of the West Java basalts. Incompatible element patterns in primitive mantle normalized multi‐element plots are almost identical across the arc, except for greater inclination and weaker positive Sr spikes in the rear‐arc basalts. This suggests a lower degree of partial melting in the rear‐arc mantle, accompanied by change in SED fluid composition between the volcanic front and the rear‐arc. The latter is confirmed by fluid‐fluxed melting model calculations using multiple trace elements and Nd and Sr isotopes. All the West Java Arc lavas require deficit of Sr from the slab SED. This may occur due to selective breakdown of Sr‐rich hydrous silicate minerals, such as zoisite, at shallower depths before the SED component reaches the depth of dehydration effective for magma genesis. The rear‐arc basalts need further Sr deficits along with lesser fluid. These features are commonly observed in many arc basalts, and are likely attributable to the same mechanism.  相似文献   

12.
The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38–140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to ? 13‰; average = ? 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc. Infiltration of such fluids into the mantle wedge likely accounts for the unusual magma sources inferred for this arc.  相似文献   

13.
Accompanying with the shortening,thickening and uplifting of the lithosphere,a series of Cenozoic potassic volcanic rock zones are developed in the northern Qinghai-Tibet Plateau.From south to north,the volcanic rocks can be divided into three volcanicrock belts:Qiangtang-Nangqian volcanic belt,Middle Kunlun-Hoh Xil volcanic belt and Western Kunlun-Eastern Kunlun volcanic belt[1].Spatiotemporal evolu-tion of the volcanism and the origins of magmas con-strains on the pulsing uplifting and …  相似文献   

14.
The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.  相似文献   

15.
Analytical results of the relative and absolute abundance of LIL-incompatible trace elements (K, Rb, Cs, Sr, and Ba) and isotopic compositions ( , , and ) are summarized for fresh samples from active and dormant volcanoes of the Volcano and Mariana island arcs. The presence of thickened oceanic crust (T 15–20 km) beneath the arc indicates that while hybridization processes resulting in the modification of primitive magmas by anatectic mixing at shallow crustal levels cannot be neglected, the extent and effects of these processes on this arc's magmas are minimized. All components of the subducted plate disappear at the trench. This observation is used to reconstruct the composition of the crust in the Wadati-Benioff zone by estimating proportions of various lithologies in the crust of the subducted plate coupled with analyses from DSDP sites. Over 90% of the mass of the subducted crust consists of basaltic Layers II and III. Sediments and seamounts, containing the bulk of the incompatible elements, make up the rest. Bulk Western Pacific seafloor has , δ 18O +7.2, K/Rb 510, K/Ba 46, and K/Cs 13,500. Consideration of trace-element data and combined systematics limits the participation of sediments in magmagenesis to less than 1%, in accord with the earlier results of Pb-isotopic studies. Combined data indicate little, if any, involvement of altered basaltic seafloor in magmagenesis. Perhaps more important than mean isotopic and LIL-element ratios is the restricted range for lavas from along over 1000 km of this arc. Mixtures of mantle with either the subducted crust or derivative fluids should result in strong heterogeneities in the sources of individual volcanoes along the arc. Such heterogeneities would be due to: (1) gross variations of crustal materials supplied to the subduction zone; and (2) lesser efficiency of mixing processes accompanying induced convection between arc segments (parallel to the arc) as compared to that perpendicular to the arc. The absence of these heterogeneities indicates that either some process exists for the efficient mixing of mantle and subducted material parallel to the arc or that subducted materials play a negligible role in the generation of Mariana-Volcano arc melts.Consideration of plausible sources in the mantle indicates that (1) an unmodified MORB-like mantle cannot have generated the observed trace-element and isotopic composition of this arc's magmas, while (2) a mantle similar to that which has produced alkali-olivine basalts (AOB) of north Pacific “hot spot” chains is indistinguishable in many respects spects from the source of these arc lavas.  相似文献   

16.
The major and trace element geochemistry of lavas erupted from four volcanic front (VF) stratovolcanoes in southeastern Guatemala show differences in the relative importance of flux and decompression melting in a continental arc setting. The VF stratovolcanoes exhibit a wide compositional range from basalt to dacite, although modern Pacaya erupts basaltic lavas. The VF basalts have relatively low MgO contents and plot outside the field of primary arc magmas defined by melting experiments on hydrous peridotite. After subtracting the effects of the fractionation, assimilation, and alteration of some VF lavas, separate partial melting and mixing trends were identified for Agua–Pacaya and Tecuamburro–Moyuta.The distinct chemical signatures of the hemipelagic and carbonate sediments subducted off Guatemala provide constraints on material transfer processes that occurred between the slab and mantle wedge. Model fluids and melts from the subducted slab were calculated using recently published mineral–aqueous fluid partition coefficients. Wide separation of the model fluid and melt compositions on a U/La versus Ba/Th diagram creates diagnostic mixing curves with an enriched mid-ocean ridge basalt source. Fluid from mature ocean crust has high U/La, fluid from carbonate sediment has high Ba/Th, and fluid and melt from hemipelagic sediments have both high U/La and Ba/Th. In a simple single-stage model, a mantle metasomatized by fluid originating largely from the oceanic crust with only minor sediment fluid contributions best explains the overall large ion lithophile element composition of the VF lavas. (Th/Rb)N ratios of ∼1 in the VF lavas from southeastern Guatemala require a component of sediment melting. Therefore, a more realistic two-stage model to describe the Guatemalan arc data involves an initial hemipelagic sediment melt input to the wedge followed by minor fluid additions from the oceanic crust or sediments. Correlation between measures of slab input and extent of melting in the older VF lavas from Tecuamburro and Moyuta favors flux-dominated melting near the base of the mantle wedge. In sharp contrast, the lack of a relationship between slab additions and melting in younger lavas from Agua and Pacaya volcanoes implies a significant role for decompression melting closer to the top of the wedge. In this melting scenario, the rate of crustal extension determines the extent of melting.  相似文献   

17.
Haixiang  Zhang  Hecai  Niu  Hiroaki  Sato  Xueyuan  Yu  Qiang  Shan  Boyou  Zhang  Jun'ichi  Ito  Takashi  Nagao 《Island Arc》2005,14(1):55-68
Abstract   Volcanic rocks consisting of adakite and Nb-enriched basalt are found in the early Devonian Tuoranggekuduke Group in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, northwest China. The geochemical characteristics of the andesitic and dacitic rocks in this area resemble that of adakites. The relatively high Al2O3, Na2O and MgO content and Mg values indicate that the adakites were generated in relation to oceanic slab subduction rather than the partial melting of basaltic crust. A slightly higher SrI and a lower ɛ Nd( t  = 375 Ma) compared to adakites of mid-oceanic ridge basalt (MORB) imply that slab sediments were incorporated into these adakites during slab melting. The Nb-enriched basalt lavas, which are intercalated in adakite lava suite, are silica saturated and are distinguished from the typical arc basalts by their higher Nb and Ti content (high field strength element enrichment). They are derived from the partial melting of the slab melt-metasomatized mantle wedge peridotite. Apparently, positive Sr anomalies and a slightly higher heavy rare earth element content in these adakites compared to their Cenozoic counterparts indicate that the geothermal gradient in the Paleo-Asian Oceanic subduction zone and the depth of the Paleo-Asian Oceanic slab melting are between those of their Archean and Cenozoic counterparts. The distribution of the adakites and Nb-enriched basalts in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, indicates that the Paleo-Asian Oceanic Plate subducted southward beneath the Kazakhstan-Junggar Plate in the early Devonian period.  相似文献   

18.
The Aeolian volcanic arc displays a wide range of magmatic products. Mafic lavas range from hypersthene normative calc-alkaline basalts to silica-undersaturated potassic absarokites, although the former are spatially and temporally dominant, consistent with the subduction-zone tectonic setting. In addition, intermediate and acidic members of the various fractionation series may be recognised. Large variations in trace element and isotope ratios accompany the rapid calc-alkaline to potassic transition, and it is argued that these may be largely explained in terms of subduction-zone mantle enrichment involving components derived from both basaltic ocean crust and subducted sediments. In addition, it seems that the mantle wedge itself was substantially heterogeneous prior to the onset of subduction zone processes. Not only are these subduction components similar to those proposed in a number of island arcs, but they also resemble those recognised in the ultra-potassic lavas of the Roman province, supporting recent subduction-related petrogenetic models of the Roman magmatism. Although subducted sediment plays an important role in the generation of some potassic magmatism, it is not uniquely responsible for K2O-rich lavas, which are also produced without a large sediment contribution.  相似文献   

19.
Tomographic images of mantle structure beneath the region north and northeast of Australia show a number of anomalously fast regions. These are interpreted using a recent plate tectonic reconstruction in terms of current and former subduction systems. Several strong anomalies are related to current subduction. The inferred slab lengths and positions are consistent with Neogene subduction beneath the New Britain and Halmahera arcs, and at the Tonga and the New Hebrides trenches where there has been rapid rollback of subduction hinges since about 10 Ma. There are several deeper flat-lying anomalies which are not related to present subduction and we interpret them as former subduction zones overridden by Australia since 25 Ma. Beneath the Bird’s Head and Arafura Sea is an anomaly interpreted to be due to north-dipping subduction beneath the Philippines-Halmahera arc between 45 and 25 Ma. A very large anomaly extending from the Papuan peninsula to the New Hebrides, and from the Solomon Islands to the east Australian margin, is interpreted to be the remnant of south-dipping subduction beneath the Melanesian arc between 45 and 25 Ma. This interpretation implies that a flat-lying slab can survive for many tens of millions of years at the bottom of the upper mantle. In the lower mantle there is a huge anomaly beneath the Gulf of Carpentaria and east Papua New Guinea. This is located above the position where the tectonic model interprets a change in polarity of subduction from north-dipping to south-dipping between 45 and 25 Ma. We suggest this deep anomaly may be a slab subducted beneath eastern Australian during the Cretaceous, or subducted north of Australia during the Cenozoic before 45 Ma. The tomography also supports the tectonic interpretation which suggests little Neogene subduction beneath western New Guinea since no slab is imaged south of the New Guinea trench. However, one subduction zone in the tectonic model and many others, that associated with the Trobriand trough east of Papua New Guinea and the Miocene Maramuni arc, is not seen in the tomographic images and may require reconsideration of currently accepted tectonic interpretations.  相似文献   

20.
The basaltic rocks from the central and southern islands of the New Hebrides-Aneityum, Tanna, Erromango, Efate, Emae, Tongoa and Epi, have geochemical features typical of island arc volcanics. They are enriched in LILE and depleted in Zr, Hf, Nb and Ta compared to N-type MORB. The rocks were derived from a similar upper mantle source as N-type MORB but with a higher degree of partial melting. In addition their source was enriched in LILE (K, Rb, Sr, Ba and LREE) probably by migrating hydrous fluids released during the dehydration of the subducted oceanic slab. The basalts from Futuna island which is located farther from the trench, display characteristics typical of calc-alkaline rocks. The Futuna basalts were generated from a different LILE-enriched upper mantle source. It seems that this upper mantle source was modified by interaction with partial melts from the subducted oceanic lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号