首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The great Wenchuan (汶川) earthquake induced a large quantity of landslides. They are widely distributed and caused tremendous damages. The sliding mechanism and characteristics of these earthquake-induced landslides are different from those of conventional gravity landslides. Their occurrences are apparently controlled by the powerful earthquake, and they are characterized by high potential energy sliding and ejection sliding. In this article, the earthquake-induced landslides are classified, the characteris...  相似文献   

2.
<正>The Tsaoling rock-and-soil avalanche is the largest landslides triggered by the Chi-Chi earthquake(Taiwan,1999).In addition,because of the periodic reoccurrence of gigantic slides since 19 century,instruments installed and aerial photo scans regularly around the Tsaoling area.Besides of massive field observations,several periods of Digital Terrain Models(DTMs) generated by aerial photos sets have also been deployed to investigate and calculate the coseismic and post-seismic morphological changes.  相似文献   

3.
The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas. The evolution of the Yellow River, chronology of some landslides, and spatiotemporal distribution characteristics of super large scale and giant landslides within the region are summarized using paleoclimate evidence, and the relationship between the intensive landslide period and climatic changes since the Last Glacial period is analyzed. It is concluded that(1) Super large scale and giant landslides are distributed widely within the region, particularly in the Qunke-Jianzha basin.(2) The chronological sequence of landslides is established by dating the slip zones of landslides and analyzing the relations between landslides and their overlying or underlying loess formations. Five landslide development periods are determined: 53–49 ka BP, 33–24 ka BP, 10–8 ka BP, 5–3.5 ka BP, and the present.(3) These correspond closely to warm and wet periods during the last 100,000 years, i.e., two weak paleosol development stages of Malan loess deposited during the last Glacial period in the Chinese loess Plateau, L1-4 and L1-2 that belong to the marine oxygen isotope stage 3, the last deglacial period, the Holocene Optimum, and the modern global warming period.(4) Landslide triggers may be closely linked to warm and wet periods related to rapid climatic transitions.  相似文献   

4.
<正>Recent advances in landslide/avalanche modeling have been enabling us to investigate the kinematics of such catastrophic events with much more details.Taiwan is located in a region where seismic activities and extreme weather conditions frequently occur.One of their common consequences is the slope failure.In the past decodes,we witnessed at least three giant landslides:Tsaoling,Jiufenershan landslides,triggered by the Chi-Chi earthquake in  相似文献   

5.
The mineral assemblage and content and surface microtextures of slipping zone soil of several landslides in the Three Gorges Reservoir District have been analyzed using the scanning electron microscope (SEM) and X-ray diffractometer (XRD). All the mineral assemblages are similar in these landslides. The main minerals are montmorillonite, illite, kaolinite, chlorite, quartz and feldspar. There are two kinds of surface microtexture in the slipping zone soil, i.e., linear scratches and arcuate scratches. Based on analyses of the changes of the microtextures, one can obtain information about the number, directions and stages of landslide movements. The authors have also studied the mechanism of landslide formation, evaluated the stability of landslides and revival possibility of ancient landslides and forecasted the activity of similar landslides in different districts. The surface microtexture features of stable landslides and mobile landslides are summarized and it is concluded that the existence of filam  相似文献   

6.
Giant landslides are common along the upper Yellow River from Longyang Gorge to Liujia Gorge, and some of them even blocked and dammed the upper Yellow River. Chronology is inevitable in studying the mechanism of giant landslides. Controversy exists about the chronology of those giant landslides, and some have not yet dated. The Dehenglong landslide is the largest one among them. In this study, OSL samples were collected from lacustrine silty sediments and loess directly overlying the landslide sediments, as well as fault sediments related to the landslide. This landslide yielded an age of 89 ± 8 ka, which is identical with the fault age of 73 ± 5 ka at two sigma errors. The agreement of a topographic analysis and the absolute age of landslides imply that the formation of the Dehenglong landslide is strongly correlated with the tectonic activity.  相似文献   

7.
正Asia is the largest continent on Earth and records a prolonged history of continental growth and tectonic reactivation during the Phanerozoic.Several tectonic forces at the continental palaeomargins induced mountain building,both at the margins themselves(e.g.the Himalayas)and into the continental interior(e.g.the Tianshan).In many parts of Asia,mountain building and associated crustal exhumation/denudation are still very active as a  相似文献   

8.
Retrogressive landslides are common geological phenomena in mountainous areas and on onshore and offshore slopes. The impact of retrogressive landslides is different from that of other landslide types due to the phenomenon of retrogression. The hazards caused by retrogressive landslides may be increased because retrogressive landslides usually affect housing, facilities, and infrastructure located far from the original slopes. Additionally, substantial geomorphic evidence shows that the abundant supply of loose sediment in the source area of a debris flow is usually provided by retrogressive landslides that are triggered by the undercutting of water. Moreover, according to historic case studies, some large landslides are the evolution result of retrogressive landslides. Hence the ability to understand and predict the evolution of retrogressive landslides is crucial for the purpose of hazard mitigation. This paper discusses the phenomenon of a retrogressive landslide by using a model experiment and suggests a reasonably simplified numerical approach for the prediction of rainfall-induced retrogressive landslides. The simplified numerical approach, which combines the finite element method for seepage analysis, the shear strength reduction finite element method, and the analysis criterion for the retrogression and accumulation effect, is presented and used to predict the characteristics of a retrogressive landslide. The results show that this numerical approach is capable of reasonably predicting the characteristics of retrogressive landslides under rainfall infiltration, particularly the magnitude of each landslide, the position of the slip surface, and the development processes of the retrogressive landslide. Therefore, this approach is expected to be a practical method for the mitigation of damage caused by rainfall-induced retrogressive landslides.  相似文献   

9.
The Taiwan Strait is a part of the continental-margin rift of eastern China, which can tectonically be divided into the Taiwan Strait basin, southwestern Taiwan basin and Penhu-Beigang uplift. The basins are structurally semi-graban down-faulted ones in character. The Cretaceous-Cenozoic sedimentary strata in the basins have a maximum thickness of over 10,000 m. The formation and development of the Taiwan Strait rift were not only affected by both the East China Sea basin and South China Sea basin but also closely related to the Central Range collision orogen of Taiwan. In the Cenozoic, the Taiwan Strait area experienced, under the influence of a multiple of tectonic mechanisms, three stages of evolution: poly-centre downfault-ing, down warping-faulting and foreland basin formation. The depositional centres of the basins migrated from west to east during the Tertiary, resulting in the thinning of the Palaeogene strata from west to east but that of the Neogene in the reverse direction. All this determine  相似文献   

10.
The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides in Huaxian County with a new hazard assessment method. This method is based on probabilistic seismic hazard analysis and the Newmark cumulative displacement assessment model. The model considers a comprehensive suite of information, including the seismic activities and engineering geological conditions in the study area, and simulates the uncertainty of the intensity parameters of the engineering geological rock groups using the Monte Carlo method. Unlike previous assessment studies on ground motions with a given exceedance probability level, the hazard of earthquake-induced landslides obtained by the method presented in this study allows for the possibility of earthquake-induced landslides in different parts of the study area in the future. The assessment of the hazard of earthquake-induced landslides in this study showed good agreement with the historical distribution of earthquake-induced landslides. This indicates that the assessment properly reflects the macroscopic rules for the development of earthquake-induced landslides in the study area, and can provide a reference framework for the management of the risk of earthquake-induced landslides and land planning.  相似文献   

11.
Calcite samples were extracted both from the rock matrix and the superficial coating of a karstified fault plane of an underground quarry, located in the eastern border of the Paris basin. The karstification is dated as Quaternary. Analysis of mechanical calcite twinning reveals that only the calcite matrix has also undergone a compression trending WNW that can be attributed to the Mio-Pliocene alpine collision. Both coating and matrix have undergone a strike-slip regime with σ1 roughly trending north–south, that could correspond to the regional present-day state of stress, a strike-slip compression rather trending NNW, modified by local phenomena. To cite this article: M. Rocher et al., C. R. Geoscience 335 (2003).  相似文献   

12.
HYDROGEOLOGY     
正20141756 Chen Ruige(Mathematical College,China University of Geosciences,Beijing100083,China);Zhou Xun Numerical Simulation of Groundwater Level Fluctuation in a Coastal Confined Aquifer with Sloping Initial Groundwater Level Induced by the Tide(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,32(7),2013,p.1099-1104,6 illus.,16 refs.) Key words:confined water,groundwater level  相似文献   

13.
正20141408 Cai Jia(Institute of Geology,Chinese Academy of Geological Sciences,Beijing100037,China);Liu Fulai Petrogenesis and Metamorphic P-T Conditions of Garnet-Spinel-Biotitebearing Paragneiss in Danangou Area,Daqingshan-Wulashan Metamorphic Complex Belt(Acta Petrologica Sinica,ISSN1000-0569,CN11-1922/P,29(7),  相似文献   

14.
15.
正20142386An Guoying(China Aero Geophysical Survey and Remote Sensing Center for Land and Resources,Beijing 100083,China)Application of Satellite Remote Sensing in Regional Hydrogeological Investigation:Taking Cenozoic Strata in Wenquan Sheet(1∶250 000)of Karakoram Range as an Example(Geosci-  相似文献   

16.
正20141016An Chengbang(Key Laboratory of Western China’s Environmental Systems,Ministry of Education,Lanzhou University,Lanzhou 730000,China);Zhao Yongtao Lake Records during the Last Glacial Maximum from Xinjiang,NW China and Their Climatic Impli-  相似文献   

17.
正20141538 Cao Qing(School of Earth Sciences and Engineering,Xi’an Petroleum University,Xi’an 710065,China);Zhao Jingzhou Characteristics and Significance of Fluid Inclusions from Majiagou Formation,Yichuan Huangling Area,Ordos Basin(Advances in Earth Science,ISSN1001-8166,CN62-1091/P,28(7),2013,p.819-828,7 illus.,3 tables,43 refs.)  相似文献   

18.
GEOCHEMISTRY     
正20142002 Wei Hualing(Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang065000,China);Zhou Guohua Element Content and Mineral Compositions in Different Sizes of Soil in Tongling Area,Anhui Province(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,32(11),2013,p.1861  相似文献   

19.
正20141768 An Shaopeng(Institute of Rock and Soil Mechannics,Chinese Academy of Sciences,Wuhan 430071,China);Wei Lide Experimental Study on Mechanical Behavior of Xigeda Formation Siltstone and Structure Interface(Journal of Engineering Geology,ISSN1004-9665,CN11-3249/P,21(5),2013,p.702-708,9illus.,1 table,16 refs.)  相似文献   

20.
正20140985Chen Liang(Post-Doctoral Research Station of Mining Engineering,School of Nuclear Resources and Nuclear Fuel Engineering,University of South China,Heng-yang 421001,China);Huang Wei Composition of Major and Correlated Elements with Organic Matters and Paleoclimatic Implication for Lower Paleogene Sediments in Sanshui Basin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号