首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In the East Ligurian segment of the North Apennines, eugeosynclinal sequences which contain ophiolitic rocks have been tectonically emplaced onto approximately coeval miogeosynclinal sediments. These allochthonous sequences represent the floor of a Mesozoic ocean which closed during the early Tertiary. The ophiolitic rocks consist of serpentinite, gabbro, pillowed and massive basalts, and breccias derived from these lithologies. They are overlain with depositional contacts by Upper Jurassic-Cretaceous pelagic cherts, limestones, and a shale/limestone sequence.The ophiolitic breccias attain thicknesses up to 100 m and strike lengths up to a few kilometres, and consist largely of unorganized accumulations of sand- to block-sized clasts. Compositions at specific horizons may range from oligomict breccias containing gabbro, basalt, or serpentinite fragments, to polymict breccias consisting of any mixture of these lithologies. Most of the breccias probably represent slow talus accumulations at the base of major submarine fault scarps which have exposed gabbro and serpentinite to submarine erosion. Direct exposure of gabbro and serpentinite on the ocean floor is also indicated by the occurrence of stratigraphically intact contacts between these lithologies and overlying pelagic sediments (generally cherts). The distribution and thickness of the breccias and volcanics, and the distribution of the gabbro and serpentinite, can vary greatly within distances of a few kilometres, thus producing complex heterogeneous sequences consisting of laterally impersistent lithological units.Recent observations and deep drilling of the Mid-Atlantic Ridge and other rifted ridges have revealed occurrences of significant thicknesses of basaltic, serpentinitic, and gabbroic breccias upon and within the volcanic layer of the oceanic crust, as well as the direct submarine exposure of plutonic rocks. It is therefore likely that the East Ligurian sequences represent parts of rifted ridge-generated crust. If so, then the complexity of the East Ligurian sequences suggests that the upper part of rifted ridge-generated crust may in places possess large variations in its stratigraphy over small (<10 km2) areas.Smooth, non-rifted (fast-spreading) ridges, which have very reduced topography and lack major fault scarps, should form ophiolitic complexes deficient in breccias containing fragments of plutonic igneous rocks. Most large ophiolitic complexes do not contain plutonic rock-bearing breccias, and were therefore probably formed at smooth ridges. The apparently preferential preservation of this type of ophiolitic complex, as opposed to the rifted ridge-type crust in East Liguria, may be related to the less pervasive and less intense fracturing of smooth ridges. This resulted in greater “cohesion” and lateral continuity of smooth ridge-generated crust during later tectonic emplacement into allochthonous positions in orogenic belts.  相似文献   

2.
The middle sector of the Yarlung Zangbo suture zone stretches over 200 km long from Ngamring through Geding to Rinbung, roughly along Yarlung Zangbo River valley (Fig. 1). This belt resulted from the closure of the Tethyan ocean and the collision be- tween Indian plate and Lhasa block[1―8]. Lots of works demonstrated that rifting of the Tethyan basin in southern Tibet started from Triassic time. Initial oce- anic crust appeared in the Late Jurassic, and then ex- perienced a rapid sprea…  相似文献   

3.
The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The orogen initiated from the rifting of the Late Proterozoic Rodinia, and then it experi-enced stages of Cambrian rift basin and Ordovician archipelagic oceanic basin, and foreland basin during Silurian to Early-Middle Devonian. The average ratios of Al/(Al Fe Mn), Al/(Al Fe), δ Ce, Lan/Ybn and Lan/Cen from cherts of Cambrian Heicigou Formation are 0.797, 0.627, 1.114, 0.994 and 1.034 re-spectively. In the NAS standardized REE distribution pattern, the cherts from Xiangqianshan is slightly HREE enriched, and the cherts from Ganluci and Shiqingdong are plane. All of these features indicated that Cambrian cherts of the Heicigou Formation originated from a continental margin rift background. On the contrary, the average ratios of Al/(Al Fe Mn), Al/(Al Fe), δ Ce, Lan/Ybn, Lan/Cen of the Ordovician chert from Dakecha, Cuijiadun, Shihuigou, Laohushan, Heicigou, Maomaoshan, Bianmagou, Da-chadaban, Baiquanmen, Jiugequan and Angzanggou, are respectively 0.72, 0.58, 0.99, 1.09 and 0.96 respectively. Their NAS standardized REE distribution patterns of most Ordovician cherts are plane mode or slightly HREE enriched. The REE distribution pattern of few samples of cherts are slightly LREE enriched. Characteristics of sedimentary geochemistry and tectonic evolution demonstrated that the Cambrian-Ordovician cherts, associated with rift, oceanic, island arc and back-arc volcanic rocks, was not formed in a typical abyssal oceanic basin or mid-oceanic ridge. On the contrary, they formed in a deepwater basin of continental margin or a archipelagic ocean tectonic setting. Several Early Paleo-zoic ophiolite belts in North Qilian and adjacent periphery Qaidam microplate imply that an archipelagic ocean during Ordovician existed in the east of Pro-Tethys.  相似文献   

4.
δ18O values for 87 chert samples from the 3.4-b.y.-old Onverwacht Group, South Africa, range from +9.4 to +22.1‰. δ-values for cherts representing early silicified carbonates and evaporites, and possible primary precipitates range from +16 to +22‰ and are distinctly richer in18O than silicified volcaniclastic debris and cherts of problematical origin. The lower δ-values for the latter two chert types are caused by isotopic impurities such as sericite and feldspar, and/or late silicification at elevated temperature during burial. Cherts with δ-values below +16‰ are thus not likely to yield geochemical data relevant to earth surface conditions.Fine-grained chert is less than 0.7‰ depleted in18O relative to coexisting coarse drusy quartz. Because coarse quartz preserves its isotopic composition with time, the maximum amount of post-depositional lowering of the δ-values of cherts by long-term isotopic exchange with meteoric groundwaters does not exceed 0.7‰ in 3.4 b.y. In response to metamorphism the δ-values of Onverwacht cherts appear to remain unchanged or to have increased by as much as 4‰. Neither metamorphism nor long-term isotopic exchange with groundwaters can explain why Onverwacht cherts are depleted in18O relative to their Phanerozoic counterparts.Meteoric waters with a δ18O range of at least 3‰ appear to have been involved in Onverwacht chert diagenesis. δ-values for possible primary cherts or cherts representing silicified carbonates and evaporites are compatible with the depositional and diagenetic environments deduced from field and petrographic evidence. Onverwacht cherts appear to have formed with δ-values at least 8‰ lower than Phanerozoic cherts.The new Onverwacht data combined with all published oxygen isotope data for cherts suggest a secular trend similar to that initially suggested by Perry (1967) in which younger cherts are progressively enriched in18O. However, Precambrian cherts appear to be richer in18O than Perry's original samples and can be reasonably interpreted in terms of declining climatic temperatures from ~70°C at 3.4 b.y. to present-day values, as initially suggested by Knauth and Epstein (1976). This surface temperature history is compatible with existing geological, geochemical, and paleontological evidence.  相似文献   

5.
Hroaki  Ishiga  Kotaro  Ishida  Kaori  Dozen Makoto  Musashino 《Island Arc》1996,5(2):180-180
Abstract Geochemical characteristics, mainly of major and trace elements and REE (rare earth elements) of bedded chert and shale/mudstone sequences, across the Permian/Triassic boundary in southwest Japan are examined. The boundary is characterized by the disappearance of bedded cherts, and the interval between the Upper Permian cherts and Lower Triassic (probably Smithian) cherts comprises siliceous shales and organic black mudstones. Bedded cherts are characterized by a gradual depletion of chemical elements from Middle to Upper Permian. However, overlying siliceous shales exhibit a clear enrichment in some elements, especially alkaline metals (such as K, Rb and Cs) and Ti, Th, Y, P2O5, and REE in comparison with elements of the PAAS (post Archean Australian shales). This indicates that average components of the upper continental crust were transported in the boundary interval, possibly caused by volcanic activity. Ce-negative shifting in NASC (North American Shales Composite)-normalized REE patterns is characteristic of this interval, and could be related to the deposition of siliceous rocks in Ce-depleted seawater. This was probably caused by an invasion of water mass with a Ce-negative anomaly into the previously existing water mass of the Paleo-Tethys. Weak negative Eu-anomalies in this interval are suggestive of plagioclase fractionation caused by acid volcanisms and the LREE/HREE ratios in the interval show a slightly light-REE enrichment. Organic black mudstones are characteristically intercalated in the interval. These rocks are usually regarded as a product of oceanic deterioration, but in pelagic conditions, organic materials were formed by high primary production that resulted from the active upwelling of ocean floor water currents with rich nutrients. This may have been caused by the inferred mixing of water masses of the Paleo-Tethys and of the Panthalassa in Early Triassic time which was regarded as an event synchronous with an increase in volcanic activity on highly matured island arcs and/or continents.  相似文献   

6.
Late Paleocene–middle Miocene pelagic limestone/chert sequences from the Mineoka Tectonic Belt, Boso Peninsula, central Japan, were biostratigraphically studied for planktic foraminifer fossils for the first time. The rock units are included as several isolated blocks tectonically within the ophiolitic mélange together with the Mio-Pliocene Honshu arc-derived terrigenous and Izu Arc-derived volcaniclastic materials. The pelagic sequences are grouped into the newly proposed Kamogawa Group which is subdivided into the Paleocene Nishi Formation, Eocene–Oligocene Heguri-Naka Limestone and early–middle Miocene Shirataki and Heguri Formations. This study of Kamogawa Group pelagic sequences throws new light on tectonic modeling of plate accretion to the unique trench–trench–trench (TTT)-type triple junction area off the Boso Peninsula. Different formations of the Kamogawa Group have different tectonic and paleogeographic significances for the oceanic plate with a seamount that was approaching the Izu and Honshu arcs during Pacific plate subduction, and that was accreted to the Honshu Arc during the middle Miocene.  相似文献   

7.
At the top of the Lower Permian Maokou Formation limestones are developed carbonaceous cherts(Plm3),which constitute the dominant seleniferous layer of the Yutangba Se deposit.The cherts contain as much Se as 1646×10?6 on average.In addition,they are rich in organic carbon,Al2O3,Si2O,but poor in S.In addition to Se,as well as Mo,Cd,V,and Co,etc are also highly enriched in the cherts.The chert samples are characterized by low ?REE,slight LREE enrichment,relatively heavy Si isotope enrichment,and insignificant variations in ? 30Si value within the range of 1.1‰-1.2‰.Generally,it can be judged from the major element,trace element and REE data and the Si isotopic characteristics that the Yutangba seleniferous cherts were formed in the shallow sea to semi-deep sea anoxic environments and their formation is controlled chiefly by bio-chemical processes.  相似文献   

8.
The Yarlung–Tsangpo Suture Zone (YTSZ), as the southernmost and youngest among the sutures that subdivides the Tibetan Plateau into several east–west trending blocks, marks where the Neo‐Tethys was consumed as the Indian continent moved northward and collided against the Eurasian continent. Mélanges in the YTSZ represent the remnants of the oceanic plate through subduction and collision. Mélanges are characterized by a highly sheared volcanoclastic or siliceous mudstone matrix including blocks of chert, claystone, and basalt. Detailed radiolarian analyses are conducted on the mélange near Zhongba County. Macroscopic, mesoscopic, and microscopic observations are combined in order to elucidate the relationships among age, lithology, and structure of blocks in the mélange. Reconstructed ocean plate stratigraphy includes Lower Jurassic limestone within the chert sequence accumulated at a depth near the CCD (Unit 2), Upper Jurassic thin‐bedded chert interbedded with claystone deposited in the wide ocean basin (Unit 3), and Lower Cretaceous chert with siliceous mudstone (Units 4 and 5), representing the middle parts of ocean plate stratigraphy. The results highlight the fabric of brecciated chert on mesoscopic scale, which is thought to be due to localized overpressure. The formation of mesoscopic and microscopic block‐in‐matrix fabrics in the mélange is proposed for the chert and siliceous mudstone bearing different extents of consolidation and competence during the progressive deformation of accreted sediments at shallow‐level subduction.  相似文献   

9.
Major element, trace element and Sr, Nd, Pb and O isotopic data for a Franciscan Mn-deposit suggest an origin by seafloor hydrothermal circulation. Based onQ-mode factor analysis the cherts and Mn-lenses of the Blue Jay mine formed from a combination of 4 components representing 1 biogenic, 1 hydrothermal, and 2 detrital sources. RbSr, UThPb and O isotopic systematics in the Mn-lenses were affected by input from the hydrothermal circulation of material leached from the underlying basalts. Nd isotopic compositions in both cherts and Mn-lenses are identical and within the range measured for Pacific Ocean water suggesting the REE were not mobilized by hydrothermal activity. Correlation of δ18O with SiO2 and MnO2 in the Mn-lenses implies the lenses formed by simple mixing of hydrothermally derived Mn-oxides with seawater and biogenic silica. δ18O of the cherts is both uniform and depleted relative to DSDP Jurassic cherts but similar to microquartz-bearing cherts of the Monterey Formation: this suggests that diagenetic activity exerted more control on oxygen isotope compositions then hydrothermal alteration or metamorphism. Finally, a well defined RbSr isochron of158 ± 5Myr was obtained for these cherts and opens the possibility of determining absolute radiometric ages for similar cherts throughout the geologic record.  相似文献   

10.
11.
Molecular evidence for life in the 3.5 billion year old Warrawoona chert   总被引:1,自引:1,他引:0  
The biological origin of organic matter in the oldest siliceous sediments (cherts) is still debated. To address this issue, the insoluble organic matter (kerogen) was isolated from a chert of the Warrawoona group. The chemical structure of the kerogen was investigated through a combination of analytical techniques including solid-state 13C nuclear magnetic resonance and pyrolysis. Although dominated by aromatic hydrocarbons, the pyrolysate comprises a homologous series of long chain aliphatic hydrocarbons characterized by odd-over-even carbon number predominance. This distribution is only consistent with a biological origin. As kerogen must be contemporaneous of the solidification of the chert, this observation should be regarded as an evidence for the presence of life on Earth, 3.5 By ago.  相似文献   

12.

In the Tarim Basin, black shale series at the bottom of Cambrian is one of the important marine facies hydrocarbon source rocks. This research focuses on the analysis of the isotope of noble gas of 11 cherts. The R/R a ratio of chert in the Keping area is 0.032–0.319, and 40Ar/36Ar is 338–430. In Quruqtagh the R/R a ratio is 0.44–10.21, and 40Ar/36Ar is 360–765. The R/R a ratio of chert increases with 40Ar/36Ar from the west to the east accordingly. They have evolved from the crust source area to the mantle source area in a direct proportion. Surplus argon 40ArE in chert is in direct proportion to the R/R a ratio, indicating that it has the same origin of excess argon as in fluid and mantle source helium. Comparison of the R/R a ratios between the west and the east shows that the chert in the eastern part formed from the activity system of the bottom hydrothermal venting driven by the mantle source, where the material and energy of crust and mantle had a strong interaction in exchange; whereas in the western part, chert deposited from the floating of hydrothermal plume undersea bottom, which is far away from the centre of activities of the hydrothermal fluid of ocean bottom. In addition, from noble gas isotope composition of chert, it is suggested that the ocean anoxia incident happened at the black shale of the Cambrian bottom probably because of the large-scaled ocean volcanoes and the following hydrothermal activities.

  相似文献   

13.
Sergei V.  Zyabrev 《Island Arc》1996,5(2):140-155
Abstract The Kiselyovsky subterrane is the northeastern section of the Kiselyovsko-Manominsky terrane, a distinguishable tectonic unit in the north of the Sikhote-Alin Range. The terrane has been treated as part of the accretionary wedge belonging to the Khingan-Okhotsk active continental margin, but its structure and stratigraphy have been poorly understood. This paper presents new data on the subterrane structure, lithology and radiolarian biostratigraphy. The following lithostratigraphic units are established in the terrane: a ribbon chert unit, a siliceous mudstone unit and a elastics unit. Abundant Valanginian to late Hauterivian-early Barremian radiolarian assemblages are obtained from the upper part of the chert unit in addition to the known Jurassic radiolarians. The radiolarian age of the lower part of the siliceous mudstone unit (red siliceous mudstone) is determined as early Hauterivian-early Aptian. The unit's upper part (greenish-gray siliceous mudstone and dark-gray silicified mudstone) and the clastics unit contain Albian-Cenomanian assemblages. The arrangement of the units is treated as a chert-elastics sequence, whose vertical lithologic variations indicate environmental changes from a remote ocean to a convergent margin, reflecting an oceanic plate motion towards a subduction zone. The subterrane structure is a stack of imbricated slabs composed of various lithostratigraphic units, and is complicated by folding. The structure's origin is related to subduction-accretion, which occurred in the Albian-Cenomanian. The data presented provide a unique basis for accretionary wedge terranes correlation in the circum-Japan Sea Region, and the Kiselyovsky subterrane is correlated in this study with the synchronous parts of the East Sakhalin, Hidaka and Shimanto terranes. The Albian-Cenomanian radiolarian assemblages were deposited in the Boreal realm, while Valanginian ones are Tethyan; this indicates a long oceanic plate travelling to the north. The former assemblages contain an admixture of older species, redeposited by bottom traction currents and turbidite flows in trench environments.  相似文献   

14.
The cherts formed from sodium silicate precursors in East African saline, alkaline lakes have δ18O values ranging from 31.1 to 44.1. The δ18O values correlate in general with lake salinities as inferred from geologic evidence, indicating that most chert was formed from its precursor in contact with lake water trapped at the time of deposition. A few of the analyzed cherts probably formed in contact with dilute meteoric water. From the widely varying δ18O values we conclude that precursors were transformed to chert in fluids of widely varying salinity and aNa+/aH+ ratio.  相似文献   

15.
The stratigraphical sequences composed of chert and basalt were found in the Daxinshan area of Simao and the Manbie area of Jinghong, southwestern Yunnan. The Middle Permian to ealiest Late Permian radiolarians, such as Follicucullus and Pseudoalbaillella, have been identified from the chert. The chert from the Manbie area of Jinghong is characterized by high SiO2content (over 92%), large ratios of MnO/TiO2 (2.15) and low ratios of Al/(Al+Fe+Mn) (≤0.1) and Ce/Ce*(0.4), which indicate that the chert was deposited in pelagic basin. The chert from the Daxinshan area of Simao, however, is characterized by low SiO2 content, low ratios of MnO/TiO2 (0.27) and high ratios of Al/(Al+Fe+Mn) (0.49) and Ce/Ce*(0.88), which imply that the chert was deposited in continental margin basin. The basalts from the both areas belong to tholeiite series, and the chemical compositions of their major, rare earth and trace elements show the characteristics of MORB. These results evidence that there are volcanic rocks and chert sequences representing pelagic basin and oceanic basin near continent. These sequences and the formerly reported island-arc volcanic rock sequences imply that the Daxinshan Formation in the Lancangjiang belt represents a sedimentary assemblage formed in active continental margin basin.  相似文献   

16.
In the Tarim Basin, black shale series at the bottom of Cambrian is one of the important marine facies hydrocarbon source rocks. This research focuses on the analysis of the isotope of noble gas of 11 cherts. The R/R a ratio of chert in the Keping area is 0.032–0.319, and 40Ar/36Ar is 338–430. In Quruqtagh the R/R a ratio is 0.44–10.21, and 40Ar/36Ar is 360–765. The R/R a ratio of chert increases with 40Ar/36Ar from the west to the east accordingly. They have evolved from the crust source area to the mantle source area in a direct proportion. Surplus argon 40ArE in chert is in direct proportion to the R/R a ratio, indicating that it has the same origin of excess argon as in fluid and mantle source helium. Comparison of the R/R a ratios between the west and the east shows that the chert in the eastern part formed from the activity system of the bottom hydrothermal venting driven by the mantle source, where the material and energy of crust and mantle had a strong interaction in exchange; whereas in the western part, chert deposited from the floating of hydrothermal plume undersea bottom, which is far away from the centre of activities of the hydrothermal fluid of ocean bottom. In addition, from noble gas isotope composition of chert, it is suggested that the ocean anoxia incident happened at the black shale of the Cambrian bottom probably because of the large-scaled ocean volcanoes and the following hydrothermal activities.  相似文献   

17.
The organic matter-rich strata of the Yurtusi Formation of Lower Cambrian are wildly spread and steady in the Tarim Basin, in which cherts are developed, companied with phosphorite. Al/(Al+Fe+Mn) ratio and Si/(Si+Al+Fe) ratio of cherts range from 0.0023 to 0.0046 and 0.965 to 0.98, respectively, suggesting that cherts are formed in submarine hydrothermal activity and far away from terrestrial. Trace elements, such as As, Hg, Pb, Zn, Cu, Co, P, V, Ba, etc., are markedly rich in organic matter-rich sedimentary rocks of which Ba/Sr ratios are between 21.2 and 158.1. Compared with modern hydrothermal sediments, their Ba/Sr ratios are similar, it indicates that the organic matter-rich strata have the geochemical feature of submarine hydrothermal sediments. The total content of rare earth elements (ЕREE) in cherts is from 8.81 to 56.682 μg/g, on average 31.41 μg/g and the ΕREE of cherts is between continental margin chert's and abyssal chert's. The LREE/HREE ratio of cherts varies from 1.01 to 3.56, which reveals the characteristics of hydrothermal sediments. There is positive correlation between the total organic content (TOC) and Ba/Sr ratio which is geochemical index of submarine hydrothermal activity, which indicates that the submarine hydrothermal activity obviously influences the richness of organic matter in the Yurtusi Formation.  相似文献   

18.
Tetsuji  Onoue  Hiroyoshi  Sano 《Island Arc》2007,16(1):173-190
Abstract   The Sambosan accretionary complex of southwest Japan was formed during the uppermost Jurassic to lowermost Cretaceous and consists of basaltic rocks, carbonates and siliceous rocks. The Sambosan oceanic rocks were grouped into four stratigraphic successions: (i) Middle Upper Triassic basaltic rock; (ii) Upper Triassic shallow-water limestone; (iii) limestone breccia; and (iv) Middle Middle Triassic to lower Upper Jurassic siliceous rock successions. The basaltic rocks have a geochemical affinity with oceanic island basalt of a normal hotspot origin. The shallow-water limestone, limestone breccia, and siliceous rock successions are interpreted to be sediments on the seamount-top, upper seamount-flank and surrounding ocean floor, respectively. Deposition of the radiolarian chert of the siliceous rock succession took place on the ocean floor in Late Anisian and continued until Middle Jurassic. Oceanic island basalt was erupted to form a seamount by an intraplate volcanism in Late Carnian. Late Triassic shallow-water carbonate sedimentation occurred at the top of this seamount. Accumulation of the radiolarian chert was temporally replaced by Late Carnian to Early Norian deep-water pelagic carbonate sedimentation. Biotic association and lithologic properties of the pelagic carbonates suggest that an enormous production and accumulation of calcareous planktonic biotas occurred in an open-ocean realm of the Panthalassa Ocean in Late Carnian through Early Norian. Upper Norian ribbon chert of the siliceous rock succession contains thin beds of limestone breccia displaced from the shallow-water buildup resting upon the seamount. The shallow-water limestone and siliceous rock successions are nearly coeval with one another and are laterally linked by displaced carbonates in the siliceous rock succession.  相似文献   

19.
Blocks and tectonic slices within the Mersin Mélange (southern Turkey), which are of Northern Neotethyan origin (Izmir–Ankara–Erzincan Ocean (IAE)), were studied in detail by using radiolarian, conodont, and foraminiferal assemblages on six different stratigraphic sections with well‐preserved Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mudstone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental intraplate settings. Trace element systematics suggest that these lavas were generated in a continental margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the end‐Guadalupian mass extinction event. All these findings indicate that a continental rift system associated with a possible mantle plume existed during the late Early to Late Permian period. This event was responsible for the rupturing of the northern Gondwanan margin related to the opening of the IAE Ocean. When the deep basinal features of the Early Permian volcano‐sedimentary sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Permian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.  相似文献   

20.
Abstract The abundance of magnetic microspherules in a Triassic-Jurassic continuous sequence of alternating chert and shale beds in the Mino accretionary complex, central Japan, was measured systematically. Depending on time, the magnetic microspherules extracted from shale beds change in abundance considerably from the minimum 0.9ppm/cm3 at latest Triassic ( ca 208Ma) and the maximum 75ppm/cm3 at late Early Jurassic ( ca 187Ma); however, the abundance is always higher approximately 10–100 (average 70) times than those from adjacent chert bed at any stratigraphic horizon. Such systematic difference reveals the origin of radiolarian bedded chert as cyclic-rapid accumulation of biogenic SiO2 under extremely slow accumulative environments of shale with probable aeolian dust in origin. The accumulation data for individual shale and chert beds were obtained based on the microspherule abundance and radiolarian biostratigraphy, i.e., ca 0.018g/cm2Ka for lower Jurassic shale beds and ca 1.9g/cm2Ka for adjacent chert beds.
Duration time to make a chert-shale couplet corresponds to a dominantly 15–20Ka interval (average 23 Ka) in Upper Triassic bedded cherts with a low paleolatitude, whereas a 40–45 Ka interval (average 42 Ka) in Lower Jurassic ones which may been formed in higher latitude than Triassics before the final accretion to the Asian continental margin. Depending on paleolatitude, the cyclicity of 23 and 42 Ka may correspond to Milankovitch cycles which have been well documented in deep-sea sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号