首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
207Pb/204Pb-206Pb/204Pb whole meteorite isochrons for Richardton (H5) and Farmington (L5) are presented and give Pb-Pb ages of 4.545 ± 0.010 and 4.620 ± 0.010 Ga respectively (errors ± 2σ). The Pb-Pb isochron for Farmington passes below the Can?on Diablo troilite composition, which may therefore not be the initial Pb composition for this meteorite.All samples show an apparent excess radiogenic lead for single-stage (closed-system) evolution when Can?on Diablo troilite is used for the initial lead composition. Evidence is presented to show that the apparent excess Pb cannot be explained by terrestrial contamination. There is no unique isotopic composition for initial lead that yields concordant ages at 4.55 Ga for all samples for either meteorite. The data likewise cannot be reconciled to Can?on Diablo initial lead through any of the conventional two- and three-stage evolution models.The apparent excess Pb, with respect to a Can?on Diablo troilite composition and a single-stage closed-system history, and the apparent inhomogeneous initial Pb isotopic compositions, appear to be real. This may be an indication that the U-Pb systems in these meteorites are disturbed, but this disturbance cannot be described consistently by any of the conventional episodic evolution models.  相似文献   

2.
The isotopic composition of lead was determined for two carbonaceous, two H, and two L chondrites. All are falls. The206Pb/204Pb ratios cover a range from 9.45 to 37.33; the207Pb/204Pb ratios range from 10.39 to 26.10. The isotopic data define a207Pb/206Pb age of 4.635 AE. Uranium and lead concentration data indicate that the isotopic lead ages for the Bruderheim chondrite are concordant within approximately 20%. This contrasts with lead data in the literature for chondrites, which consistently indicate discordant isotopic lead ages due to large excesses of radiogenic lead by factors of two or more. The isotopic lead ages for Pultusk may be concordant; those for a sample of Richardton are not. The lack of concordance for Richardton is not due to the analytical procedures, rather it is likely a result of the handling history of the chondrite prior to analysis.The L-3 chondrite, Mezo-Madaras contains such a high concentration of lead - 5.27 PPM - that accurate ratios for primordial lead can be obtained. These are 206Pb/204Pb= 9.310;207Pb/204Pb= 10.296, values which are in close agreement with a recently reported measurement on lead in troilite from the Canyon Diablo iron meteorite.  相似文献   

3.
Selective chemical dissolution has been used to study the distribution of Pb and Tl in an ultrafine ?20-μm matrix separate of Allende. The matrix was exposed to high-purity reagents ranging from H2O, then HCl of increasing concentration and finally HF-HCl mixtures. A total of 17 extractions were obtained, each for a minimum period of 10 days. The isotopic compositions of the Pb released during the slow dissolution of the matrix fall into four distinct groups. The first, consisting of four extractions, released a component of terrestrial Pb isotopic composition with a total abundance of about 1 ppb. The next six extractions, which contained the bulk of the indigenous Pb and Tl corresponding to 96% and 94%, respectively, of the total matrix abundance, was of a reasonably homogeneous Pb isotopic composition with mean ratios of206Pb204Pb= 10.00and207Pb204Pb= 10.74. In the final seven extractions, the released Pb falls into two higher isotopic groupings and probably results from the dissolution of debris from chondrules and inclusions. The apparent age of the internal matrix isochron is4562 ± 14 My. The release of Pb and Tl shows a reasonable correlation with the matrix dissolution. This indicates that the Pb and Tl reside predominantly within the matrix phases rather than as a localised phase. The Tl isotopic composition of two matrix fractions and whole meteorite were measured and found to be indistinguishable from the terrestrial205Tl/203Tl ratio. Measurement of a terrestrial reagent standard in the range 1–10 ng Tl gave, for 20 analyses, a mean205Tl/203Tl ratio of2.38907 ± 0.00102 (2σ).The estimate of terrestrial Pb contamination is considerably lower than the 6–300 ppb assumed in some recent studies in order to explain the phenomenon of apparent excess radiogenic Pb in chondrites. The problem of terrestrial Pb pollution and the evidence which argues against a relatively severe and homogeneous Pb contamination of meteorites, is briefly considered. The apparent initial isotopic composition of the bulk of the indigenous Pb in the Allende matrix was found to be206Pb204Pb= 9.57and207Pb204Pb= 10.47. This is of a higher composition than the Pb in the Can?on Diablo troilite phase and further indicates that the phenomenon of apparent excess radiogenic Pb in chondrites is real.  相似文献   

4.
We report an imaging method of zircon U-Pb dating with NanoSIMS 50 L, which overcomes the significant U-Pb fractionation as the pit was sputtered deeper during conventional spot mode analysis and can be applied to irregular small grains or heterogeneous areas of zircon. The U-Pb and Pb-Pb ages can be acquired simultaneously for 2 μm×2 μm(for small grains) or 1 μm×9 μm(for zoned grains), together with Zr, Y and other trace elements distributions. Using zircon M257 as standard, the U-Pb ages of other zircon standards, including Qinghu, Plesovice, Temora and 91500, were measured to(2σ) as158.8±0.8, 335.9±3.4, 412.0±12 and 1067±12 Ma, respectively, consistent with the recommended values within the analytical uncertainties. Tiny zircon grains in the impact melt breccia of the lunar meteorite SaU 169 were also measured in this study,with a Pb-Pb age of 3912±14 Ma and a U-Pb age of 3917±17 Ma, similar to previous results reported for the same meteorite.The imaging method was also applied to determine U-Pb age of the thin overgrowth rims of Longtan metamorphic zircon, with a Pb-Pb age of 1933±27 Ma and a U-Pb age of 1935±25 Ma, clearly distinct from the Pb-Pb age of 2098±61 Ma and the U-Pb age of 2054±40 Ma for detrital cores.  相似文献   

5.
Approximation of terrestrial lead isotope evolution by a two-stage model   总被引:13,自引:0,他引:13  
Parameters on which models for terrestrial lead isotope evolution are based have recently been revised. These parameters are the isotopic composition of troilite lead, the age of the meteorite system and the decay constants of uranium and thorium. As a result, the normal single-stage model in which the age of the earth is taken to be that of the meteorite system is now untenable.A two-stage model has been constructed which permits the age of the earth to be that of the meteorite system and which also yields good model ages for samples of all ages. The new model postulates that lead developed initially from a primordial composition assumed to be that of troilite lead beginning at 4.57 b.y. ago. The average values of 238U/204Pb and 232Th/204Pb for this first stage were 7.19 and 32.21 respectively. At approximately 3.7 b.y. ago differentiation processes brought about the conditions of a second stage, in which 238U/204Pb ≈ 9.74 and 232Th/204Pb ≈ 37.19 in those portions of the earth which took part in mixing events, giving rise to average lead.  相似文献   

6.
A logical and coherent account of U-Pb systematics is sketched out and its application to lunar basalt data is discussed. It is demonstrated that the concept (introduced by Tera and Wasserburg, [1]) that initial207Pb/206Pb may provide a new chronometer for early lunar evolution is superfluous, in that it provides no information not also yielded by the well-established concordia diagram. The essential redundancy of the207Pb/206Pb-238U/206Pb diagram vis-a-vis the concordia diagram is also demonstrated.  相似文献   

7.
Equations are derived for the estimation of errors and error correlations for various types of U-Pb isotope data, taking into account ion-beam instabilities, run-to-run variability in mass-discrimination, uncertainties in Pb and U concentrations, and uncertainties in initial-Pb and blank-Pb amount and isotopic composition. Equations are also given for the calculation of concordia intercept errors.  相似文献   

8.
The Earth's mantle contains a mixture of primordial noble gases, in particular solar-type helium and neon, and radiogenic rare gases from long-lived U, 232Th, 40K and short-lived 129I, 244Pu. Rocks derived from deep mantle plume magmatism like on Hawaii or Iceland contain a higher proportion of primordial nuclides than rocks from the shallow upper mantle, e.g. mid ocean ridge basalts (MORBs). This is widely regarded as the key evidence for survival of a less degassed and more “primitive” reservoir within the lower mantle. We present an evaluation of noble gas composition showing the shallow mantle to have about five times more radiogenic (relative to primordial) isotopes than Hawaii/Iceland-type plume reservoirs, no matter if short- or long-lived decay systems are considered. This fundamental property suggests that both MORB and plume-type noble gases are mixtures of: (1) a homogeneous radiogenic component present throughout most of the mantle and (2) a uniform primordial noble gas component with very minor radiogenic ingrowth. This conclusion depends crucially on the observed excess of radiogenic Xe in plume-derived rocks, and is only valid if this Xe excess is inherent to the plume sources.Possible sources of the primordial component of mantle plume reservoirs—and possibly also the MORB mantle—could be mantle reservoirs that remained relatively isolated over most of Earth's history (“blobs”, a deep abyssal layer, or the D” layer), but these need a considerable concentration of primordial gases to compensate U, Th, K decay over 4.5 Ga. Earth's core is evaluated as an alternative viable source feeding primordial nuclides into mantle reservoirs: even low metal-silicate partitioning coefficients allow sufficient primordial noble gases to be incorporated into the early forming core, as the undifferentiated proto-Earth was initially gas-rich. Massive mantle degassing soon after core formation then provides the opposite concentration gradient that allows primordial noble gases reentering the mantle at the core-mantle boundary, probably via partial mantle melts. Another possible source of primordial noble gases in Earth's mantle are subducted sediments containing extraterrestrial dust with solar He and Ne, but this supply mechanism crucially depends on largely unconstrained parameters. The latter two scenarios do not require the preservation of a “primitive” mantle reservoir over 4.5 Ga, and can potentially better reconcile increasing geochemical evidence of recycled lithospheric components in mantle plumes and seismic evidence for whole mantle convection.  相似文献   

9.
We report new Sm-Nd, Lu-Hf, and Pb-Pb mineral and whole-rock isotope data for the basaltic shergottite Zagami, as well as Pb-Pb whole-rock isotope data for the basaltic shergottite Los Angeles, the lherzolitic shergottite Dar-al-Gani 476 (DaG 476), and the clinopyroxenite Nakhla. In agreement with previous findings, our new Sm-Nd and Lu-Hf mineral ages on the Martian meteorite Zagami are young (155 and 185 Ma, respectively). The 207Pb/206Pb-204Pb/206Pb compositions of the insoluble fractions of shergottites (Zagami, Los Angeles, and literature data for Shergotty and EETA79001) form an excellent alignment indicative of a 4.0 Ga crystallization age. The range of Pb isotope compositions observed in the leachates of these samples attests to negligible contamination of the shergottites by terrestrial Pb and argues against mixing relationships. The age of 4.048 ± 0.017 Ga (MSWD = 1.5) provided by the Pb isotope compositions of the Zagami whole-rock and residues is therefore taken to date the crystallization of this rock, which, so far, was believed to be only ∼ 180 Ma old. Based on this result, we argue that the lithosphere of Mars is extremely old and that most mineral ages were reset recently by acidic aqueous solutions percolating through the Martian surface. This interpretation is consistent with photographic interpretations of erosional features on Mars. It also relieves the constraint imposed by the presence of anomalies of 142Nd and 182W (both products of extinct radioactive nuclides) that the Martian mantle should have preserved primordial isotopic heterogeneities, thus allowing for the planet interior to be actively convecting.  相似文献   

10.
11.
New lead isotope data for calc-alkaline volcanic rocks from New Zealand and the Lesser Antilles, combined with published data for Japan and the Andes, show that the spread of isotopic composition in each volcanic arc region is small (2–4% range in Pb206/Pb204) compared to the range of values observed (8%). Pb207 and Pb206 increase systematically from Japan to the Andes to New Zealand to the Caribbean. Likewise Pb208 and Pb206 are positively correlated, but there is evidence of long term (108 m.y.) differences of Th/U between the regions studied. The apparent U/Pb ratios of Peruvian, New Zealand and Caribbean calc-alkaline volcanics do not differ greatly from the apparent ratio for the single stage growth curve for stratiform Pb ores. In contrast the apparent U/Pb ratios for Japanese calc-alkaline volcanics are distinctly lower. Although the Japanese Pb has model ages near zero, the other volcanic arcs have negative (future) model ages, the Caribbean samples being most extreme in this respect. Published oceanic volcanic and sediment lead isotopic composition data and the new results are consistent with a model of volcanic arc evolution in which oceanic sediments are dragged into the mantle, mixed to some degree with mantle material, and partially melted to form calc-alkaline magmas. Either constant continental volume or continental growth are compatible with this process. The mixing of two separate « frequently mixed » leads is the minimum complexity required to explain volcanic are leads. Mathematically there are probably no single-stage leads but isotopic homogenization during earth history has caused lead isotopes to closely approximate a single stage growth. The use of lead isotopic composition as a « tracer » suggests that mantle — crust geochemical evolution involves an exchange of material and is not simply a one-way process. The Pb isotopic composition of the Auckland, New Zealand alkali basalts is apparently the result of incomplete mixing of two leads to give a linear array of Pb207/Pb204-Pb206/Pb204 data with negative slope.  相似文献   

12.
Determinations of40Ar/39Ar and U-Th-Pb are reported for three clasts from the Abee (E4) enstatite chondrite, which has been the object of extensive consortium investigations. The clasts give40Ar/39Ar plateau ages and/or maximum ages of 4.5 Gy, whereas two of the clasts give average ages of 4.4 Gy. Within the range of 4.4–4.5 Gy these data do not resolve any possible age differences among the three clasts.206Pb measured in these clasts is only ~1.5–2.5% radiogenic, which leads to relatively large uncertainties in the Pb isochron age and in the207Pb/206Pb model ages. The Pb data indicate that the initial207Pb/206Pb was no more than 0.08±0.07% higher than this ratio in Can?on Diablo troilite. The U-Th-Pb data are consistent with the interpretation that initial formation of these clasts occurred 4.58 Gy ago and that the clasts have since remained closed systems, but are contaminated with terrestrial Pb. The40Ar/39Ar ages could be gas retention ages after clast formation or impact degassing ages. The thermal history of Abee deduced from Ar data appears consistent with that deduced from magnetic data, and suggests that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, and experienced no appreciable subsequent heating.  相似文献   

13.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzonitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (∼230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of development of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

14.
We report on extensive isotopic studies of Pb, Sr and Xe and on chemical abundance measurements of K, Rb, Sr, Ba, Nd, Sm, U and Th for total meteorite and mineral separates of the Angra dos Reis achondrite. U-Pb, Th-Pb and Pb-Pb ages are concordant at 4.54 AE for the total meteorite and for high-purity whitlockite in Angra dos Reis. This establishes Angra dos Reis as an early planetary differentiate which has not been disturbed for these systems since 4.54 AE ago. Measured87Sr/86Sr in pyroxene and whitlockite for Angra dos Reis (ADOR) are distinctly below BABI by two parts in 104 and only one part in 104 above the lowest87Sr/86Sr (ALL) measured in an Allende inclusion. The difference in ADOR-ALL corresponds to an interval of condensation in the solar nebula of ~3 m.y. If26Al was the heat source for the magmatism on the parent planets of Angra dos Reis and the basaltic achondrites (BABI) then the relatively large difference in87Sr/86Sr, BABI - ALL, must be the result of planetary evolution rather than condensation over ~10 m.y. Xe isotopic measurements confirm the presence of large amounts of244Pu-produced fission Xe and show that244Pu was enriched in the whitlockite relative to the pyroxene by a factor of ~18. We present chemical element enrichment factors between the whitlockite and the fassaitic pyroxene in Angra dos Reis. The enrichment factors demonstrate close analogy between the rare earth elements and their actinide analogs. The enrichment factor for Pu is intermediate to the enrichment factors of Nd and Sm.  相似文献   

15.
Cosmogenic neon in sodium-rich oligoclase feldspar from the ordinary chondrites St. Severin and Guaren?a is characterized by an unusually high22Ne/21Ne = 1.50 ± 0.02. This high ratio is due to the cosmogenic22Ne/21Ne production ratio in sodium which is 2.9 ± 0.3, two to three times the production ratio in any other target element. The relative production rate of21Ne per gram sodium is one quarter the production rate per gram magnesium. The striking enrichment of22Ne relative to21Ne in sodium arises from enhanced indirect production from23Na via22Na.The unusual composition of cosmogenic neon in sodium and sodium-rich minerals explains the high22Ne/21Ne ratios observed in inclusions of the Allende carbonaceous chondrite, and observed during low-temperature extraction of neon from ordinary chondrites. The isotopic composition of cosmogenic neon released during the stepwise heating of a trapped gas-rich meteorite containing sodium-rich phases can be expected to vary, and use of a constant cosmogenic neon composition to derive the composition of the trapped gas may not be justified. Preferential loss of this22Ne-enriched cosmogenic neon from meteoritic feldspar can result in a 2–3% drop in the measured cosmogenic22Ne/21Ne ratio in a bulk meteorite sample. This apparent change in composition can lead to overestimation of the minimum pre-atmospheric mass of the meteorite by a factor of two.  相似文献   

16.
Leads in basaltic suites from seven oceanic islands form linear arrays on206Pb/204Pb versus207Pb/204Pb diagrams. These arrays are more reasonably interpreted as secondary isochrons than as mixing lines, because of their systematic relationship. Separate two-stage histories calculated for the leads from each island indicate that the source materials for the magmas were derived from a single primary reservoir with present238U/204Pb of 7.91 ± 0.04 by secondary enrichment in U/Pb at different times from 2.5 to 1 Ga ago. This is confirmed by a plot of isochron slope versus intercept, on which the points describing each island's Pb-Pb array all lie very near a single straight line. The isochrons for the Canary Islands and Hawaii, at least, are significantly different. The208Pb/204Pb versus206Pb/204Pb relationships are less coherent. The lead isotopic characteristics are consistent with a model in which lead in the oceanic island magmas is derived from ancient subducted oceanic crust. In particular, this explains the close relationship between lead in mid-ocean ridge and oceanic island basalts without invoking mixing.  相似文献   

17.
A new analysis of the isotope systematics of sulphide common leads can be made on the basis of examining the deriations of the data from a simple single-stage evolution. Δt, the age discrepancy between the single-stage lead model age and the geologic age, increases systematically from 3.8 Ga to the present. This trend appears to reflect an increase in the μ of the primitive mantle due to incorporation of a large portion of the earth's lead into the core, early in the earth's evolution. Leads associated with shale-hosted lead-zinc deposits show a rapid increase in Δt beginning at 2.5 to 2.0 Ga. This deviation of shale-hosted leads from the general trend is interpreted as a response to concentration of uranium in organic-rich shales subsequent to the evolution of an oxidizing atmosphere. Comparison of common leads in alkali feldspars with the volcanogenic sulphide data suggests that they have a similar evolution of Δt with time. Numerical simulations reveal that even substantial increases in real μ over the last 2.0 Ga are not reflected in significant increases in the single-stage model μs.  相似文献   

18.
Common and radiogenic Pb isotopic compositions of plagioclase and anti-perthitic feldspars from granulite-facies lower crustal xenoliths from the Labait Volcano on the eastern margin of the Tanzanian Craton have been measured via laser ablation MC-ICP-MS. Common Pb in plagioclase and a single stage Pb evolution model indicate that the lower crust of the Tanzanian Craton was extracted from mantle having a 238U/204Pb of 8.1 ± 0.3 and a 232Th/238U of 4.3 ± 0.1 at 2.71 ± 0.09 Ga (all uncertainties are 2σ). Since 2.4 Ga, some orthoclase domains within anti-perthites have evolved with a maximum 238U/204Pb of 6 and 232Th/238U of 4.3. The spread in Pb isotopic composition in the anti-perthitic feldspars yields single crystal Pb–Pb isochrons of ~ 2.4 Ga, within uncertainty of U–Pb zircon ages from the same sample suite. The Pb isotopic heterogeneities imply that these granulites resided at temperatures < 600 °C in the lower crust of the Tanzanian Craton from ca. 2.4 Ga to the present. In concert with the chemistry of surface samples, mantle xenoliths, and lower crustal xenoliths, our data imply that the cratonic lithosphere in Tanzania formed ca. ~ 2.7 Ga, in a convergent margin setting, and has remained undisturbed since 2.7 Ga.  相似文献   

19.
The abundances of nine rare earth elements (REE) in phosphate separates from three ordinary chondrites, Saint Séverin (LL6), Bruderheim (L6) and Richardton (H5), were measured by instrumental neutron activation analysis. All REE except europium are enriched in the phosphate minerals (merrillite and chlorapatite) by factor of 200–300 relative to the chondritic average, whereas Eu is enriched by a factor of 40–50. Electron microprobe analysis showed no significant differences in phosphate mineral composition among the three chondrites studied, though the relative proportions of two minerals varied.According to our data, REE are enriched by almost the same factor in merrillite and chlorapatite in the Bruderheim and, with less certainty, in the other two chondrites. This behavior of REE contrast with that of the actinoid elements, Th, U and Pu, which are also enriched in phosphate but are fractionated between merrillite and chlorapatite. Since Pu and REE show different fractionation behavior in chondritic phosphates, it may be difficult to use REE as stand-ins for Pu in244Pu chronology.  相似文献   

20.
Nitrogen and noble gases were measured in samples of a glass inclusion and the surrounding basaltic matrix from the antarctic shergottite EETA 79001. A nitrogen component trapped in the glass, but not present in the matrix, has a δ15N value at least as high as +190‰. Ratios of40Ar/14N and15N/14N in the glass are consistent with dilution of a martian atmospheric component (δ15N = 620 ± 160‰,40Ar/14N= 0.33 ± 0.03) by either terrestrial atmosphere adsorbed on the samples or by indigenous nitrogen from the minerals of the rock. Trapped noble gases in the glass reproduce, within error, the elemental and isotopic compositions measured in Mars' atmosphere by Viking, and are in general agreement with previous measurements except for much lower abundances of neutron-generated krypton and xenon isotopes. The most reasonable explanation at the present time for the noble gas pattern and the isotopically heavy nitrogen is that a sample of martian atmosphere has been trapped in the EETA 79001 glass, and that this meteorite, and thus the shergottites and probably the nakhlites and chassignites as well, originated on Mars.Nitrogen in the non-glassy matrix of EETA 79001 amounts to less than 0.5 ppm and has a spallation-corrected δ15N value in the range 0 to ?20‰; it may reflect indigenous nitrogen in the basalt or a mixture of indigenous and adsorbed terrestrial nitrogen. Spallogenic noble gases yield single-stage exposure ages between 400,000 and 900,000 years, depending on irradiation geometry. Trapped argon may have an unusually low36Ar/38Ar ratio. Trapped krypton, except for a small excess at80Kr, is smoothly mass-fractionated with respect to either terrestrial or chondritic Kr. The trapped xenon composition is consistent with addition of neutron-capture, radiogenic and fissiogenic isotopes to a base composition resembling terrestrial atmospheric Xe. The elemental84Kr/132Xe ratio of 25 is close to the terrestrial value and very different from the chondritic ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号