首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water-level fluctuations in closed-basin lakes can be used to reconstruct past hydrological changes, and the recognition of spatially coherent patterns in lake behavior provides evidence for changes in climate. The geological records of water level in many lakes, particularly those in arid regions, are by nature incomplete. The fragmentary nature of the data poses special problems for comparison of records and identification of regions where lakes behave similarly. An unconventional method of assessing similarity in the behavior of lakes is used with multidimensional scaling to place lakes in a low-dimensional space. Weights are used to reflect the amount of information available for each particular comparison. The similarity measure is based on evidence for changes in lake depth between successive time intervals and on independent evidence for the direction of change at any given time. Groups (clusters) of lakes in the low-dimensional space are identified by mutual proximity. The method was applied to a set of 65 Late Quaternary lake-level records from North America. About one-third of the lakes had too little weight to be placeable, about one-third were in clusters, and about one-third showed unique behavior. Those lakes which clustered showed four distinct types of record, characteristic of well-defined geographic regions. This ability to distinguish spatially coherent patterns on internal evidence alone strengthens the basis for using lake-level records for regional palaeoclimatic reconstructions.  相似文献   

2.
In the central Great Plains of North America, loess stratigraphy suggests that climate during the late Pleistocene was cold and dry. However, this record is discontinuous, and there are few other records of late-Pleistocene conditions. Cobb Basin, located on the northern edge of the Nebraska Sand Hills, contains lacustrine sediments deposited during Marine Isotope Stage 3, beginning approximately 45,000 cal yr BP and continuing for at least 10,000 yr. The lake was formed by a dune dam blockage on the ancient Niobrara River, and its deposits contain a diatom record that indicates changes through time in lake depth driven by changes in effective moisture. During the earliest stages of lake formation, the climate was arid enough to mobilize dunes and emplace dune sand into a blocking position within the Niobrara streambed. Diatom assemblages suggest that lake-level was shallow at formation, increased substantially during a wet interval, and then became shallow again, as arid conditions resumed. By about 27,000 cal yr BP the lake was filled, and a shallow ephemeral river occupied the basin.  相似文献   

3.
西藏安多的湖泊变化与环境   总被引:25,自引:3,他引:25  
沈永平  徐道明 《冰川冻土》1994,16(2):173-180
钻孔和剖面资料表明,西藏安多地区两个较大的现代湖泊,错那湖和兹格塘错湖至迟形成于35kaB.P.。早期两源相连,水位较高。随后因气候变干,湖面下降,但在20-17kaB.P.期间湖面又重新升高,并保持相对稳定。自17kaB.P.以后,湖面急剧下降,矿化度随这提高,钙质胶结物出现。在此过程中,因湖面阶段性的相对稳定所形成的10道砂坝堤,反映了该区气候波动的特征。  相似文献   

4.
《Quaternary Science Reviews》1999,18(4-5):611-630
The Late Quaternary environmental history of the Konya plain, in south central Turkey, is used to examine sediment facies changes in a shallow non-outlet basin which has experienced major climatically driven changes in lake extent. Two principal types of sedimentary archive are used to reconstruct a palaeoenvironmental record, namely alluvial sequences on the Çarşamba alluvial fan and sediments from residual lakes. The latter have been used to investigate broader climatic and vegetational histories via palaeolimnological techniques including pollen, diatom and stable isotope analysis. These changes are dated here by radiometric techniques including radiocarbon (AMS and conventional), OSL, and U–Th. Chronological agreement is generally good between the different dating techniques, although typically there is greatly reduced precision beyond ca. 25 ka. Lake sediment cores investigated have basal ages beyond the range of 14C dating, but contain hiatuses as a result of subsequent alternation between phases of lacustrine sedimentation and aeolian deflation. In contrast to most deepwater non-outlet lake systems, the Konya basin may have been occupied by a single extensive lake for as little as 10% of Late Quaternary time, mainly around the time of the LGM. This lake highstand was followed by an important arid interval. In the absence of unbroken chronostratigraphic sequences, palaeohydrological investigation of shallow non-outlet lakes may require analysis of basin-wide changes in sedimentation rather than reliance on single core records. Stratigraphic continuity in such sedimentary environments cannot be assumed, and requires independent chronological control through radiometric dating.  相似文献   

5.
A 2200-yr long, high-resolution (∼5 yr) record of drought variability in northwest Montana is inferred from diatoms and δ18O values of bio-induced carbonate preserved in a varved lacustrine core from Foy Lake. A previously developed model of the diatom response to lake-level fluctuations is used to constrain estimates of paleolake levels derived from the diatom data. High-frequency (decadal) fluctuations in the de-trended δ18O record mirror variations in wet/dry cycles inferred from Banff tree-rings, demonstrating the sensitivity of the oxygen-isotope values to changes in regional moisture balance. Low frequency (multi-centennial) isotopic changes may be associated with shifts in the seasonal distribution of precipitation. From 200 B.C. to A.D. 800, both diatom and isotope records indicate that climate was dry and lake level low, with poor diatom preservation and high organic carbon: nitrogen ratios. Subsequently, lake level rose slightly, although the climate was drier and more stable than modern conditions. At A.D. 1200, lake level increased to approximately 6 m below present elevation, after which the lake fluctuated between this elevation and full stage, with particularly cool and/or wetter conditions after 1700. The hydrologic balance of the lake shifted abruptly at 1894 because of the establishment of a lumber mill at the lake's outlet. Spectral analysis of the δ18O data indicates that severe droughts occurred with multi-decadal (50 to 70 yr) frequency.  相似文献   

6.
The timing of high lake-level stands during the Late Pleistocene in western China remains controversial. Here we report new results from Megalake Tengger based on a study of palaeo-shorelines and a drill core from Baijian Lake in the northwestern Tengger Desert. Multiple dating methods, based on luminescence signals (quartz optically stimulated luminescence, K-feldspar post infrared-infrared stimulated luminescence) and electron spin resonance signals of quartz, were used to date beach sands from palaeo-shoreline profiles at altitudes of ~1310 m (+20 m above lake level), ~1320 m (+30 m) and ~1350 m (+60 m), and from the top 20 m of sandy sediments from the drill core obtained from the modern beach of Baijian Lake. The dating results show that high lake-level stands associated with the previously reported Megalake Tengger (~1310–1320 m) occurred during the late Early to Middle Pleistocene, which is much earlier than previously reported. In addition, no geomorphological evidence of shorelines and sedimentary evidence from the drill core profile were found to support the previously reported Late Pleistocene lake levels. Our results indicate that the exact age of the previously reported ‘high lake level event’ in a large part of northwestern China during the Late Pleistocene needs to be re-evaluated.  相似文献   

7.
青海湖是我国最大的内陆湖盆,对气候变化十分敏感,而滩坝是青海湖滨浅湖带最为发育的沉积类型之一,其滩坝分布规律对晚更新世以来的古气候演化具有重要指示意义。在对青海湖一郎剑剖面进行实地考察的基础之上,对滩坝的分布规律及沉积特征进行精细解剖。通过分析总结前人相关测年数据,并与青海湖滩坝分布规律进行对比,发现青海湖湖平面升降对滩坝分布有明显的控制作用,建立了18 ka以来青海湖滩坝的演化过程,并将近18 ka以来青海湖湖平面升降史分为4个阶段:(1)更新世末温湿期,湖平面在海拔3 197~3 202 m附近波动;(2)全新世冷干期,湖平面近乎干涸;(3)全新世大暖期,湖平面处于全新世以来的最高值,约为3 212 m;(4)全新世凉湿期,湖平面回落到3 200 m附近,并在近2. 5 ka湖平面加速下降。在晚更新世和晚全新世时,湖平面在海拔3 202 m附近波动时间较长,在该海拔范围内,形成了规模较大的复合滩坝;在早全新世,青海湖平面最低,多发育风成黄土和潟湖沉积;在中全新世,湖平面最高,形成了距离现今湖平面最远的数列单体滩坝。  相似文献   

8.
Little is known about the response of terrestrial East Antarctica to climate changes during the last glacial-interglacial cycle. Here we present a continuous sediment record from a lake in the Larsemann Hills, situated on a peninsula believed to have been ice-free for at least 40,000 yr. A mutli-proxy data set including geochronology, diatoms, pigments and carbonate stable isotopes indicates warmer and wetter conditions than present in the early part of the record. We interpret this as Marine Isotope Stage 5e after application of a chronological age-depth model and similar ice core evidence. Dry and cold conditions are inferred during the last glacial, with lake-level minima, floristic changes towards a shallow water algal community, and a greater biological receipt of ultraviolet radiation. During the Last Glacial Maximum and Termination I the lake was perennially ice-covered, with minimal snowmelt in the catchment. After ca. 10,500 cal yr B.P., the lake became seasonally moated or ice-free during summer. Despite a low accumulation rate, the sediments document some Holocene environmental changes including neoglacial cooling after ca. 2450 cal yr B.P., and a gradual increase in aridity and salinity to the present.  相似文献   

9.
Variations in fossil diatom assemblages and their relationship with global and Indian monsoon climate changes for the last 600,000 yr were investigated using a core of ancient lake (Paleo-Kathmandu Lake) sediments drilled at the Kathmandu Basin, Nepal Himalaya. Chronological scales of the core were constructed by tuning pollen wet and dry index records to the SPECMAP δ18O stack record. Examinations of biogenic silica contents and fossil diatom assemblages revealed that variations in productivity and compositions of diatom assemblages were closely linked with global and Indian monsoon climate changes on glacial and interglacial time scales. When summer monsoonal rainfall increased during interglacials (interstadials), diatom productivity increased because of increased inputs of terrestrial nutrients into the lake. When summer monsoonal rainfall reduced and/or winter monsoonal aridification enhanced during glacials (stadials), productivity of the diatoms decreased and lake-level falling brought about changes in compositions of diatom assemblages. Monospecific assemblages by unique Cyclotella kathmanduensis and Puncticulata versiformis appeared during about 590 to 390 ka. This might be attributed to evolutionary fine-tuning of diatom assemblages to specific lake environmental conditions. Additionally, low-amplitude precessional variations in monsoon climate and less lake-level changes may have also allowed both species to dominate over the long periods.  相似文献   

10.
Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia. Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity to gain more knowledge about environmental changes in the West Siberian interior during the Holocene and about the evolution of the lake itself. Sediment cores obtained from the Yarkov sub-basin of the lake in 2008 have been comprehensively studied by a number of approaches including sedimentology and AMS dating, pollen, diatom and chironomid analyses (with statistical interpretation of the results), mineralogy of authigenic minerals and geochemistry of plant lipids (biomarker analysis.). Synthesis of new results presented here and published data provides a good justification for our hypothesis that Lake Chany is very young, no older than 3.6 ka BP. Before that, between 9 and 3.6 ka BP, the Chany basin was a swampy landscape with a very low sedimentation rate; it could not be identified as a water body. In the early lake phase, between 3.6 and 1.5 ka BP, the lake was shallow, 1.2–3.5 m in depth, and it rose to its modern size, up to 6.5 m in depth, during the last millennium. Our data reveal important changes in the understanding of the history of this large endorheic lake, as before it was envisioned as a large lake with significant changes in water level since ca. 14 ka BP. In addition to hydrology, our proxies provide updates and details of the regional vegetation and climate change since ca. 4 ka BP in the West-Siberian forest-steppe and steppe. As evolution of the Chany basin is dependent on hydroclimatic changes in a large region of southern West Siberia, we compare lake-level change and climate-change proxies from the other recently and most comprehensively studied lakes of the region.  相似文献   

11.
12.
The Great Basin of the western U.S. contains a rich record of Late Pleistocene and Holocene lake‐level fluctuations as well as an extensive record of human occupation during the same time frame. We compare spatial‐temporal relationships between these records in the Lahontan basin to consider whether lake‐level fluctuations across the Pleistocene‐Holocene transition controlled distribution of archaeological sites. We use the reasonably well‐dated archaeological record from caves and rockshelters as well as results from new pedestrian surveys to investigate this problem. Although lake levels probably reached maximum elevations of about 1230–1235 m in the different subbasins of Lahontan during the Younger Dryas (YD) period, the duration that the lakes occupied the highest levels was brief. Paleoindian and Early Archaic archaeological sites are concentrated on somewhat lower and slightly younger shorelines (_1220–1225 m) that also date from the Younger Dryas period. This study suggests that Paleoindians often concentrated their activities adjacent to large lakes and wetland resources soon after they first entered the Great Basin. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
Decadal–centennial‐scale climate variability in coastal Antarctica remains poorly understood due to the limited number of highly resolved, well‐dated records. We present a 900‐year, decadal‐scale reconstruction based on sedimentary diatoms from Lake Abi in Lützow–Holm Bay, East Antarctica. Hydrological change is inferred from diatom ecological preferences in conjunction with an existing regional training set and implies that lake water specific conductivity, depth and nitrogen availability are the key drivers of diatom assemblage change. Lake Abi underwent a series of subtle environmental changes related to these environmental variables, possibly driven by changes in catchment snow melt and the duration of seasonal ice cover. Ordination is used to trace the major patterns of change in the diatom community, with notable shifts identified between 470 and 400 and at ~350 cal a BP (where present = CE 1950). The frequency of environmental variability at Lake Abi is broadly consistent with a record of the Interdecadal Pacific Oscillation during the last millennium, but contrasts with the apparent climate stability elsewhere in eastern Antarctica. Further research is required to constrain the limnological and ecological responses of lakes in coastal Antarctica to obtain more rigorous palaeoclimate reconstructions from these sites of immense potential.  相似文献   

14.
The Caspian Sea, the largest isolated lake in the world, witnessed drastic lake-level variations during the Quaternary. This restricted basin appears very sensitive to lake-level variations, due to important variations in regional evaporation, precipitation and runoff. The amplitude, frequency and drivers of these lake-level changes are still poorly documented and understood. Studying geological records of the Caspian Sea might be the key to better comprehend the complexity of these oscillations. The Hajigabul section documents sediment deposited on the northern margin of the Kura Basin, a former embayment of the Caspian Sea. The 2035 m thick, well-exposed section was previously dated by magneto-biostratigraphic techniques and provides an excellent record of Early Pleistocene environmental, lake-level and climate changes. Within this succession, the 1050 m thick Apsheronian regional stage, between ca 2·1 Ma and 0·85 Ma, represents a particular time interval with 20 regressive sequences documented by sedimentary and palaeontological changes. Sequences are regressing from offshore to coastal, lagoonal or terrestrial settings and are bounded by abrupt flooding events. Sediment reveals a low energy, wave-dominated, reflective beach system. Wave baselines delimiting each facies association appear to be located at shallower bathymetries compared to the open ocean. Water depth estimations of the wave baselines allow reconstruction of a lake-level curve, recording oscillations of ca 40 m amplitude. Cyclostratigraphic analyses display lake-level frequency close to 41 kyr, pointing to allogenic forcing, dominated by obliquity cycles and suggesting a direct or indirect link with high-latitude climates and environments. This study provides a detailed lake-level curve for the Early Pleistocene Caspian Sea and constitutes a first step towards a better comprehension of the magnitude, occurrence and forcing mechanisms of Caspian Sea lake-level changes. Facies models developed in this study regarding sedimentary architectures of palaeocoastlines affected by repeated lake-level fluctuations may form good analogues for other (semi-)isolated basins worldwide.  相似文献   

15.
《Quaternary Science Reviews》2003,22(8-9):823-837
Some syntheses of lake-level data for the Last Glacial Maximum (LGM) in East Africa (10°N and 30°S, East of 25°E) show apparently wetter conditions than present for some basins, whereas palaeovegetation reconstruction indicates a generally dry climate. PMIP GCM simulations for the LGM support both scenarios for this region when run under different boundary conditions. Here, we compare three new records from lakes in the data-poor southern part of East Africa; Lake Malawi, Lake Massoko, and Lake Rukwa. We also re-assess previously published lake-level data and apply a salinity transfer function to the diatom record from Lake Manyara. Our results show that in contrast to previous interpretations, these lakes were at least as low as today at the LGM and are thus in agreement with the palaeovegetation data. Relative drought across East Africa is best simulated by GCMs that use computed SSTs rather than the higher CLIMAP values. Lower SSTs and the presence of the Northern Hemisphere ice sheets must have been dominant over any monsoon precipitation rise caused by astronomically induced summer insolation enhancement in the southern African tropics.  相似文献   

16.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
《Quaternary Science Reviews》1999,18(10-11):1151-1171
We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes—one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ∼90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.  相似文献   

18.
A large number of lacustrine sedimentary records indicate that global warming is the main factor leading to significant changes in diatom communities in lakes of the northern hemisphere.However,due to the intensification of human activities since 1850,some scholars have emphasized that the increasing lake trophic level may be the main reason for the changes in diatom communities.The debate is ongoing.In order to avoid falling into the complex relationship between diatom changes and the seasonal cycle that characterizes lakes in mid and high latitudes,we chose a lake located at a low latitude,where the relationship between diatoms and temperature is not indirect but direct.The diatom record spans the past ca.100 years and reveals that the abundance of Aulacoseira granulata increased from 1900 until 1985, replacing the previously dominant Aulacoseira ambigua.These changes are in agreement with the increasing trend in global temperature.Since 1985,the percentages of the small-celled Discostella stelligera and the benthic diatom Navicula heimansioides have increased,while Aulacoseira granulata has decreased.This latest shift is caused by further global warming.We conclude that warming is the main factor leading to changing diatom communities in Douhu Lake.  相似文献   

19.
西藏纳木错过去200年来的环境变化*   总被引:6,自引:6,他引:6       下载免费PDF全文
文章通过纳木错浅钻沉积硅藻研究,结合青藏高原湖泊现代硅藻-电导率转换函数,对过去200年来的湖水盐度(电导率)变化进行了定量重建。纳木错在小冰期冷期为淡水环境;小冰期结束后,湖水盐度开始增加;至20世纪60年代中期以来,盐度增加幅度更加明显。过去100年来湖水盐度的增加与钻孔粒度变化所揭示的入湖径流量的增多,反映了增温背景下湖泊水文的响应特点。温度的上升,一方面引起了流域冰雪融水补给量的增加,但另一方面,湖泊水量平衡明显偏负,说明小冰期结束以来,尤其是最近40年,冰融水的增加并不足以弥补湖泊水量的负平衡。由此提出蒸发量在湖泊水量平衡中起重要作用,温度是影响湖泊水文变化的关键因子。区域湖泊综合对比结果进一步表明,不同湖泊盐度和水文变化趋势一致,反映了封闭湖泊对区域气候变化的共同响应特点。  相似文献   

20.
《Quaternary Science Reviews》2007,26(13-14):1838-1860
The degree to which different lakes within a landscape respond coherently (in unison) to external drivers such as climate change and soil development is uncertain. Presentation of multi-proxy, geochemical and palaeoecological data from individual lakes in the form of fluxes minimizes distortions resulting from variable sedimentation rates and changes in sediment composition. We use the accumulation rates of magnetic minerals, total organic C and N, terrestrial and aquatic biomarkers, graminoid epidermis, pollen, green algae, diatoms and diatom C in four small lakes, situated between 2350 and 4595 m a.s.l. on the NE flank of Mt. Kenya, East Africa, to reconstruct changes in C cycling over the last 38 ka. The results conflict with earlier models of landscape and lake development, showing: (1) that glacial–interglacial changes in vegetation cannot be interpreted as simple, altitudinal shifts in the modern vegetation belts; and (2) that limnological changes were not coherent. Rapid variations in climate, water level, erosion and nutrient input overwhelmed long-term, successional trends in lake sedimentation and C accumulation since the Last Glacial Maximum. The results also reveal previously unrecognized features of the palaeoenvironmental record, such as the rapid degradation of organic matter in diatoms and the occurrence of a productive, fire-prone montane grassland during the highly seasonal, monsoonal climate of the Lateglacial and early Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号