首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 921 毫秒
1.
秦宇  杨博逍  李哲  赫斌  杜海龙 《湖泊科学》2017,29(4):991-999
河流是连接大陆和海洋两大碳库的桥梁,在全球碳循环中的作用举足轻重.金沙江作为长江的上游段,对区域碳循环及区域化学风化的影响非常重要.于2015年8月8-18日对金沙江下游水-气界面CO_2与CH_4通量特征进行监测与分析.采用顶空平衡法结合薄边界层模型估算法计算表层水体CO_2与CH_4的分压以及水-气界面的交换通量,并分析环境变量与其之间的相关性.研究发现,金沙江下游表层水体p(CO_2)平均值为2724.84±477.18μatm,表层水体p(CH_4)平均值为59.96±6.74μatm;水-气界面CO_2通量平均值为2.24±0.50 mmol/(m2·h),CH_4通量平均值为0.000163±0.00009 mmol/(m2·h),通量与分压趋势基本保持一致.表层水体p(CO_2)与溶解性无机碳浓度、碱度均呈显著正相关,而p(CH_4)与水温、叶绿素a浓度均呈显著正相关,CO_2通量与p(CO_2)、溶解性无机碳浓度、碱度均呈正相关,CH_4通量与p(CH_4)、风速均呈正相关,其他环境因素对通量的影响不明显,仍需进一步研究.金沙江下游水-气界面CH_4扩散通量较低,而CO_2扩散通量在世界主要河流中属于中等水平.  相似文献   

2.
弄清深水湖泊夏季水温分层及其对水体各理化指标的影响对于湖泊的保护和治理有重要意义.以云南阳宗海为例,在夏季选择湖泊内有代表性的6个样点,以1 m为间隔对每个样点不同水深的水温、藻蓝蛋白、DO、pH和叶绿素a含量进行同步测定,同时在实验室测定TP.结果表明:(1)夏季晴天阳宗海上午没有明显的分层,中午开始慢慢形成4层,随后转化到3层,在14:00时达到分层相对稳定,稳定时温跃层出现在水深9~13 m处,湖表层与深水层的最大温差为7.8℃;(2)随着水温出现分层,DO和pH呈现出与水温分层相似的垂直分层结构,而这种分层过程基本上与水温成层过程同步;(3)藻类和浮游植物随水温分层而逐渐成层,但有迟滞性,迟滞时间约2 h;(4)TP对水温分层不敏感,只有接近湖底的水体总磷浓度才明显升高,9 m以上的水层总磷浓度分布均匀,水温的分层与消失过程不影响上层水的总磷浓度,全湖泊的总磷平均浓度为0.033±0.03 mg/L.  相似文献   

3.
为揭示岩溶湿地表层水体二氧化碳分压(pCO2)的时空分布规律及其扩散通量,以我国最大的岩溶湿地贵州威宁草海为研究对象,分别于2019年7月(丰水期)和12月(枯水期)通过网格布点法,系统采集草海表层湿地水体,测定水样理化指标和离子组成,利用PHREEQCI软件计算水体pCO2,并基于Cole提出的气体扩散模型估算水-气界面二氧化碳(CO2)的扩散通量.结果表明:草海湿地表层水体丰水期pCO2的变化范围为0.44~645.65μatm,平均值为(55.94±124.73)μatm;枯水期变化范围为35.48~707.95μatm,平均值为(310.46±173.54)μatm;丰水期水体整体pCO2低于枯水期,空间上两期水体均呈现东部区域及河流入湖口处pCO2较高,而中西部区域pCO2欠饱和的特征.水-气界面CO2的扩散通量在丰水期变化范围为-43.27~27.16 mmol/(m2·d),平均值(-34.49±12.93)mmol/(m2·d),枯水期变化范围为-33.36~28.15 mmol/(m2·d),平均值(-8.02±15.85)mmol/(m2·d),与其他岩溶湖库相比,水生植物丰富的草海在两个极端水文期CO2扩散通量相对较低,总体表现为大气CO2的汇.  相似文献   

4.
商景阁  张路  张波  范成新 《湖泊科学》2010,22(5):708-713
以中国长足摇蚊(Tanypus chinensis)幼虫对沉积物的生物扰动过程为研究对象,运用稳定同位素示踪及同位素配对技术,深入探讨长足摇蚊幼虫扰动对太湖梅梁湾沉积物硝酸盐界面迁移、溶解氧侵蚀深度及沉积物反硝化速率及两种不同反硝化过程(非耦合反硝化(DW)和耦合反硝化(DN))的影响.摇蚊幼虫扰动后,添加15N两种处理沉积物氧气消耗速率由355.49±131.49μmol/(m2.h)变化为546.39±261.41μmol/(m2.h),而未添加15N两种处理由313.57±61.63μmol/(m2.h)变化为554.17±184.36μmol/(m2.h),硝酸盐界面迁移结果表明:扰动显著加强了水体硝酸盐向沉积物迁移的速率,加强沉积物作为上覆水中NO3-N汇的作用,摇蚊幼虫扰动组的硝酸盐迁移速率从-33.75±29.25μmol/(m2.h)提高到-210.14±117.25μmol/(m2.h).同位素添加实验发现,摇蚊幼虫底栖扰动能显著提高沉积物总反硝化速率,与对照组相比,总反硝化速率从31.83±8.79μmol/(m2.h)上升到228.98±54.09μmol/(m2.h),增加了约6倍左右.利用同位素配对法计算对两种不同反硝化过程进行区分,发现非耦合反硝化速率从15.78±8.51μmol/(m2.h)上升到182.96±45.22μmol/(m2.h),耦合反硝化速率从16.04±5.63μmol/(m2.h)增加到46.01±8.97μmol/(m2.h),预示着底栖生物扰动能同时增加耦合和非耦合两种反硝化过程,而非耦合反硝化过程的增加强度远大于耦合反硝化.  相似文献   

5.
福建山仔水库不同季节表层沉积物内源磷负荷分析   总被引:4,自引:0,他引:4  
对山仔水库沉积物各形态磷的季节性特征以及夏、冬季磷释放速率进行研究.结果表明,该水库表层沉积物含有较丰富的磷,4个季节各采样点表层沉积物总磷含量范围为(521.23±7.60)~(1255.54±11.03)μg/g,夏季各采样断面中总磷含量及各形态磷含量均高于其他季节.表层沉积物磷以无机磷为主,且主要赋存形态为铁/铝结合态磷.活性较大的铁/铝结合态磷和有机磷占总磷量的77%~90%.柱状样模拟实验结果表明:夏季溶解性磷释放平均速率范围在1.66~2.49 mg/(m2·d),冬季溶解性磷释放平均速率范围为0.69~1.29 mg/(m2·d),夏季各采样点表层沉积物磷释放速率约为冬季的2倍.由于水温分层,夏季沉积物释放的溶解性磷主要滞留在上覆层,但夏季暴雨天气可能导致水温分层破坏,沉积物释放的溶解性磷对水体将产生重要影响;冬季由于水温分层破坏导致上、下水层混合,沉积物释放的溶解性磷被带到上层,对上覆水体水质的影响不容忽视.  相似文献   

6.
青藏高原高寒灌丛生长季和非生长季CO_2通量分析   总被引:2,自引:4,他引:2  
采用涡度相关法对青藏高原高寒灌丛CO2通量的观测表明,青藏高原高寒灌丛生长季和非生长季节CO2通量变化特征差异极为显著.生长季节(5~9月)08:00~19:00为CO2净吸收,19:00~08:00为CO2净排放,CO2通量峰值一般出现在12:00左右,6~9月CO2净吸收峰值分别为0.71,1.19,1.46,0.67gCO2·m?2·h?1;相对于温度,生长季CO2通量振幅更受光合有效辐射变化的影响;就月变化模式而言,8月是生长季CO2净吸收最高月份,月净吸收量达到247gCO2·m?2,整个生长季CO2净吸收的总量达583gCO2·m?2.非生长季节(1~4月及10~12月)CO2通量变化振幅极小,最大CO2净排放通量为0.30gCO2·m?2·h?1(4月),除11:00~18:00左右少量的CO2净排放以外,其余时段CO2通量均接近于零;非生长季CO2通量日变化规律,尤其是白昼CO2通量与土壤温度变化呈显著的正相关关联;4月是全年CO2净排放的最高月份,全月净排放量为105gCO2·m?2,整个非生长季CO2净排放为356gCO2·m?2.  相似文献   

7.
三峡水库澎溪河CO2、CH4气泡释放通量初探   总被引:1,自引:1,他引:0  
李哲  张呈  刘靓  郭劲松  方芳  陈永柏 《湖泊科学》2014,26(5):789-798
气泡释放是天然水体中水-气交换的重要途径之一.采用改进的倒置漏斗型气泡通量监测装置于2012年3-8月期间对三峡支流澎溪河高阳平湖库湾水域进行气泡释放通量的监测研究.研究期间,研究水域CH4气泡释放通量变化范围为0.01 ~ 23288.64 μmol/(m2·d);CO2气泡释放通量变化范围为0~799.89 μmol/(m2·d).不同常规采样点CH4、CO2气泡释放通量均呈现出高度的时空异质性特征.但CH4气泡释放通量显著高于CO2气泡释放通量,且二者释放过程具有同步性.同国外已有水库监测结果相比,澎溪河回水区高阳平湖库湾水域CH4、CO2气泡释放通量位于中等水平.CH4气泡释放通量约为同期CH4扩散通量的0~ 1893.90%,超量释放下CH4气泡释放通量可达同水域CH4扩散通量的6270.5%±390.0%.CO2气泡释放通量仅占同期扩散通量绝对值的0~ 21.74‰,超量释放下,CO2气泡释放通量亦仅为同期扩散通量绝对值的40.33‰ ±0.93‰.CH4气泡释放通量在支流库湾水域对总通量的贡献不可忽视.  相似文献   

8.
为查明三峡水库蓄水初期典型支流水-气界面CO_2和CH_4通量的日变化特征,采用LGR在线分析仪-通量箱法,于2015年9月初在库腹一级支流草堂河回水区开展连续24 h的定位观测.结果表明,24 h监测期内,支流库湾水-气界面CO_2通量变幅为-81.642~180.991 mg/(m~2·h),呈"昼吸夜放"特征,均值为17.346 mg/(m~2·h),总体为释放特征;CH_4全天均表现为释放状态,释放通量均值为0.064 mg/(m~2·h),呈"昼弱夜强"变化.相关分析结果表明,CH_4和CO_2释放通量与风速呈正相关,与表层水温、溶解氧浓度、叶绿素a浓度呈负相关,说明风速物理扰动、浮游植物光合作用是控制草堂河水-气界面气体通量最重要的环境因素.同时,干-支流相互作用形成的特殊水环境(如异重流、水温分层)也与水-气界面温室气体通量过程密切相关,但是其作用机制更为复杂,应开展进一步系统观测和深入研究.  相似文献   

9.
东太湖水温变化与水-沉积物界面热通量初探   总被引:1,自引:0,他引:1  
曾野  朱金格  王艳平  胡维平 《湖泊科学》2018,30(6):1599-1609
水温对沉水植被的生长和分布具有重要作用,水-沉积物界面热通量对浅水湖泊水温变化的影响值得关注.东太湖是我国东部典型的草型浅水湖区,采用自2013年11月至2015年10月对东太湖湖心进行的不同深度水体及沉积物温度高频观测数据,结合东太湖表层沉积物的热力学性质计算了水-沉积物界面热通量,分析了东太湖水温和水-沉积物界面热通量的变化特征并探讨了其影响因素.结果表明:东太湖各深度水体日升温过程随水深增加后延,升温过程夏季延长,冬季缩短;表层水温日变幅最大,底层水温日变幅次之,沉积物温度日变幅最小,各深度温度日变幅夏季最小、冬季最大;春季和夏季升温过程中各深度日均温变化沿水深存在约1天的延迟,秋季和冬季无此现象;2015年与2014年东太湖温度变化趋势相同,同比月均温差与气温差呈线性相关.沉积物8:00-19:00向水体放热增加或从水体吸热减少,19:00至次日8:00放热减少或吸热增加;3-9月从水体吸热,为热汇,10月至次年2月向水体放热,为热源,沉积物全年为湖泊热源;逐日水-沉积物界面热通量每月6至15日存在相对年变幅较小幅度的正弦式波动.水温和水-沉积物界面热通量的变化主要受太阳辐射和气温的影响,二者对气象参数的响应具有迟滞现象;水-沉积物界面热通量与水温呈负相关,其变化相对水温迟滞,水-沉积物界面热交换的主要作用为缓冲湖泊水体的热量变化;夏季,沉水植物能降低湖泊各层水温和垂向水温差.  相似文献   

10.
青藏高原高寒草原生态系统土壤CO_2排放及其碳平衡   总被引:15,自引:4,他引:15  
青藏高原海拔高,气压低,太阳辐射强,气候寒冷,其主体部分为海拔4000m以上的高寒地区.由于严酷的自然条件的限制,对高海拔地区的土壤CO2排放的研究非常少,尤其对海拔4500m以上的高寒草原生态系统土壤的CO2排放研究更不多见.本试验采用静态箱式法,通过对高原高寒草原生态系统(西藏:班戈县,90.01°E,31.23°N,海拔4800m)土壤CO2排放的2周年的定点观测,结果表明:青藏高原高寒草原生态系统土壤CO2排放的日变化呈现单峰曲线,CO2排放最高点出现在当地时间的14︰00左右,最低点出现在当地时间的凌晨5︰00左右,在夏季这种特征尤其明显;高寒草原生态系统土壤CO2排放亦呈现明显的季节变化,夏季增强,冬季明显减弱;根据计算,高寒草原生态系统土壤CO2排放年日平均值和年总量分别为21.39mgCO2·m?2·h?1和187.46gCO2·m?2·a?1,结合高寒草地净生产量的观测结果,表明青藏高寒草原生态系统是碳汇.  相似文献   

11.
We investigated the partial pressure of carbon dioxide (pCO(2)) in Jiaozhou Bay (JZB), which is surrounded by the economically developed city of Qingdao, during two cruises undertaken in November, 2007 (autumn) and February, 2008 (winter). Results indicated that sea surface pCO(2) in autumn varied between 315 and 720 μatm, with an average level of 418 μatm. In winter the sea surface pCO(2) ranged from 145 to 315 μatm with an average of 249 μatm, which is below atmospheric pCO(2). Despite seasonal temperature variation between autumn and winter, it was noted that biological process (production and respiration) were responsible for both spatial and seasonal variation during these seasons. We found that Jiaozhou Bay served as a net atmospheric CO(2) source in autumn (November) (2.87 mmol m(-2)d(-1)), while in winter (February) it served as a net sink (-16.22 mmol m(-2)d(-1)).  相似文献   

12.
The Tibetan Plateau, the Roof of the World, is the highest plateau with a mean elevation of 4000 m. It is characterized by high levels of solar radiation, low air temperature and low air pressure compared to other regions around the world. The alpine grassland, a typical ecosystem in the Tibetan Plateau, is distributed across regions over the elevation of 4500 m. Few studies for carbon flux in alpine grassland on the Tibetan Plateau were conducted due to rigorous natural conditions. A study of soil respiration under alpine grassland ecosystem on the Tibetan Plateau from October 1999 to October 2001 was conducted at Pangkog County, Tibetan Plateau (31.23°N, 90.01°E, elevation 4800 m). The measurements were taken using a static closed chamber technique, usually every two weeks during the summer and at other times at monthly intervals. The obvious diurnal variation of CO2 emissions from soil with higher emission during daytime and lower emission during nighttime was discovered. Diurnal CO2 flux fluctuated from minimum at 05:00 to maximum at 14:00 in local time. Seasonal CO2 fluxes increased in summer and decreased in winter, representing a great variation of seasonal soil respiration. The mean soil CO2 fluxes in the alpine grassland ecosystem were 21.39 mgCO2 · m-2 · h-1, with an average annual amount of soil respiration of 187.46 gCO2 · m-2 · a-1. Net ecosystem productivity is also estimated, which indicated that the alpine grassland ecosystem is a carbon sink.  相似文献   

13.
The effects of environmental factors on carbon flux were analyzed, the spatial and temporal variation of carbon flux was studied at the two heights of 23 m and 39 m with the eddy covariance technique, and the carbon budget was evaluated for evergreen coniferous plantation in the red earth hilly area during the year 2003. The results showed that photosynthetically active radiation (PAR) and soil temperature are essential factors strongly affecting the net ecosystem exchange (NEE); in the daytime, the response of NEE to PAR shows a rectangular hyperbola trend, and in the nighttime, the significant correlation was observed between soil temperature and soil respiration which was filtered using friction velocity. This ecosystem appeared as a carbon sink along the whole year of 2003, and the carbon flux showed the obvious seasonal fluctuation and diurnal variability. The seasonal peak of NEE occurred in May and June with the daily sum about 0.61-0.67 mg · CO2 · m-2 · s-1. For the severe drought in the mid-summer, the daily sum was 0.40-0.44 mg · CO2 · m-2 · s-1 in July which was only 2/3 of that in the last two months. For the lasted drought of the year, the nadir of NEE happened in the winder with the daily sum about -0.29 to -0.35 mg · CO2 · m-2 · s-1. The sink intensity of the ecosystem was about -0.553 to -0.645 kg · Cm-2 per year in 2003.  相似文献   

14.
三峡水库澎溪河水-气界面CO2、CH4扩散通量昼夜动态初探   总被引:6,自引:2,他引:4  
李哲  姚骁  何萍  王钦  郭劲松  陈永柏 《湖泊科学》2014,26(4):576-584
三峡水库温室气体效应近年来备受关注.为揭示三峡水库典型支流澎溪河水-气界面CO2和CH4通量的昼夜动态规律,明晰短时间尺度下该水域温室气体释放的影响因素,在2010年6月至2011年5月的一个完整水文周年内,选择4个具有代表性的时段(2010年8、11月和2011年2、5月)对澎溪河高阳平湖水域开展昼夜跟踪观测.结果表明:2010年8、11月和2011年2、5月4次采样的CO2日总通量值分别为-8.34、73.94、28.13和-20.12 mmol/(m2·d),相应的CH4日总通量值分别为2.22、0.11、0.32和7.16 mmol/(m2·d),不同时期昼夜变化明显.研究水域CO2和CH4通量过程不具同步性:CO2昼夜通量变化可能更显著地受到水柱光合/呼吸过程的影响,但瞬时气象过程(水汽温差、瞬时风速等)在高水位时期亦可对CO2通量产生显著影响;CH4昼夜通量变化与水温条件改变更为密切.  相似文献   

15.
三峡水库澎溪河消落区土-气界面CO2和CH4通量初探   总被引:1,自引:0,他引:1  
李哲  张利萍  王琳  郭劲松  高旭  方芳  蒋滔 《湖泊科学》2013,25(5):674-680
水库近岸湿地(消落区)温室气体(CO2、CH4)产汇是水库温室气体效应问题的重要组成部分.本文以三峡水库支流澎溪河的白家溪、养鹿两处大面积消落区为研究对象,于2010年6 9月水库低水位运行期间,对近岸消落区土-气界面CO2、CH4通量进行监测.白家溪消落区土-气界面CO2通量均值为12.38±2.42 mmol/(m2·h);CH4通量均值为0.0112±0.0064 mmol/(m2·h).养鹿消落区CO2、CH4通量均值分别为10.54±5.17、0.14±0.16 mmol/(m2·h).总体上,6 9月土-气界面CO2通量呈增加趋势,而CH4通量水平呈现显著的递减趋势.消落区土地出露后植被恢复,在一定程度上促进了土壤有机质含量的增加,使得6 9月CO2释放通量的总体趋势有所增加.消落区退耕后,其甲烷氧化菌的活性得到恢复,加之在土地出露曝晒过程中土壤透气性增强,使得消落区土壤对大气中CH4吸收氧化潜势增强.尽管如此,仍需进一步的研究以明晰消落区土-气界面CO2、CH4产汇的主要影响因素.  相似文献   

16.
固定化氮循环细菌修复城市湖泊水体脱氮效果及N2O排放   总被引:4,自引:0,他引:4  
利用从镇江金山湖天然水体中筛选分离出的土著氨化、亚硝化、硝化和反硝化细菌,将氮循环细菌固定化后在金山湖示范工程区进行水体脱氮净化效果研究.结果表明,运行一段时间后水质明显得到改善,氨氮、亚硝酸盐氮、硝酸盐氮以及总氮浓度均显著下降,氨氮浓度指标达到国家水质Ⅰ类标准,总氮浓度指标达到水质Ⅱ类标准.同时,对湖泊水体的N_2O气体排放通量进行了检测,结果显示,随着实验的进行,金山湖区的N_2O气体排放通量逐渐升高,4月份的平均值为23,51μg/(m~2·h)、5月份的平均值为29.52μg/(m~2·h)、6月份的平均值为59.10μg/(m~2·h).水质氮素指标以及N_2O气体排放通量数据说明利用微生物固定化载体强化净化技术对城市湖泊水质净化具有显著效果和重要意义.  相似文献   

17.
中国大陆科学钻探主孔动态地温测量   总被引:8,自引:2,他引:6       下载免费PDF全文
介绍了大陆科学钻探主孔完钻后4次的钻井测温数据,地温梯度随深度的变化趋势,系统的热导率测试结果及其温压校正. 地温测量显示,浅部(100m以上)的4次测量结果有较大的区别,而100m以下测量温度趋于一致.在900~1600m井段,温度略有波动,可能存在地下水活动.到了深部,温度与深度呈现良好的线性关系. 在0~500m,500~2700m,2700~3600m及3600m以下这4个井段范围内,地温梯度随深度降低或增加的趋势交替变化,平均地温梯度248±34℃/km. 198块岩芯样品测试结果表明,热导率变化范围在1711~36 W/(m·K),平均2716±0403 W/(m·K). 依据实测的温度-深度进行温压校正后,热导率为1989~3652 W/(m·K),平均2808±0363 W/(m·K). 热导率随深度的变化趋势与地温梯度的变化趋势并不能完全相互补偿,表明影响地温梯度的其他因素不容忽视. 大陆科学钻探温度测量,为今后进一步研究超高压变质带深部地热场及其地球动力学含义提供了可靠的基础数据.  相似文献   

18.
为探明中国北方浅水湖泊乌梁素海冰封期水体溶解氧平衡的内在机理,于2021年1—2月在湖心处布设了一台水质在线监测浮标,收集到包括溶解氧等在内的水质数据. 通过对溶解氧数据的小波降噪处理,结合气象资料,模拟分析了冰生长及稳定期内水体溶解氧的变化趋势,定性分析了水体溶解氧的平衡机理. 结果表明:湖泊的日均最高产氧速率为7.19 mg/(L ·d),最低产氧速率为2.01 mg/(L ·d); 日均最高耗氧速率为7.13 mg/(L ·d),最低耗氧速率为2.37 mg/(L ·d). 24 h的单位时间平均最高产氧速率为0.55 mg/(L ·h),最低产氧速率为0 mg/(L ·h); 单位时间平均最高耗氧速率为0.36 mg/(L ·h),最低耗氧速率为0.08 mg/(L ·h). 由此说明小时间尺度下溶解氧的补充消耗不均衡导致了大时间尺度下的溶解氧不平衡,进而产生了冬季湖泊的亏氧现象. 通过进一步溶解氧驱动因素与水环境因子响应关系的分析发现,浊度、水温与产氧速率呈显著负相关,叶绿素a与产氧速率和耗氧速率均呈显著正相关,表明了这些限制性水环境因子在一定程度上影响了冰下水体的溶解氧平衡.  相似文献   

19.
To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00.Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1.19, 1.46 and 0.67 g CO2m-2 h-1 for June, July, August and September, respectively. Diurnal fluctuation of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m-2. The total CO2 uptake by the ecosystem was up to 583 g CO2 m-2 for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m-2 h-1 in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 efflux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 efflux appeared in April, with a value of 105 g CO2 m-2. The total net CO2 efflux for the whole non-growing season was 356 g CO2 m-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号