首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Empirical orthogonal functions (EOFs) or principal components were used to extract the significant modes of shoreline variability from several data sets collected at three very different locations. Although EOFs have proven to be a valuable tool in the analysis of nearshore data, most applications have focused on the ability of the technique to describe cross-shore or profile variability. Here however, EOFs were used to help identify the dominant modes of longshore shoreline variability at Duck, North Carolina, the Gold Coast, Australia, and at several locations within the Columbia River Littoral Cell in the U.S. Pacific Northwest. In part one of this analysis, characteristic patterns of shoreline variability identified by the EOF analysis are described in detail. At each site, the dominant modes consisting of the first four eigenfunctions were found to describe nearly 95% of the total shoreline variability. At both Duck and the Gold Coast, several interesting longshore periodic features suggestive of sand waves were identified, while boundary effects related to natural headlands and navigational structures/entrances dominated the Pacific Northwest data sets.  相似文献   

2.
This paper compares the shoreline responses immediately shoreward of two adjacent schemes of segmented shore parallel rubble mound breakwaters undergoing the same forcing by waves and tides. Scheme one consists of four longer, emergent breakwaters that have produced tidal tombolos in their lee. Scheme two consists of five shorter, lower breakwaters that are submerged at higher tides with salients in the breakwater's lee. Empirical orthogonal function analysis was used to decompose a video derived shoreline dataset into the dominant modes of shoreline change for both schemes. The two schemes showed similar modes of change. The primary mode of change for both schemes was the cross-shore growth and shrinking of the salients/tombolos. The secondary mode of change was the longshore movement of the salients/tombolos. For all modes of change, the dominant length scale was dictated by the breakwater dimensions and locations. A new manifestation of hydrodynamic parameters is introduced: the cumulative integral of the de-meaned parameters. This parameterisation allowed for meaningful correlation of the temporal EOF components with forcing parameters and identification of the important influence of the tide on observed morphodynamic change. Clear differences were observed between the shoreline responses measured in schemes one and two; including differences in bay erosion/accretion; and the longshore translation of salients/tombolos. The beaches in scheme two showed behavioural patterns similar to unprotected beaches which were not observable in scheme one. It is postulated that these differences are caused both by the different breakwater designs and by variation in longshore sediment supply.  相似文献   

3.
This contribution describes the development, calibration and verification of a 1-D behaviour-orientated shoreline prediction model. The model primarily encapsulates shoreline displacement forced by wave-driven cross-shore sediment transport. Hysteresis effects are shown to be important and are included in the model, whereby present shoreline change is influenced by past hydro-/morpho-dynamic conditions. The potential magnitude of shoreline change increases with incident wave power and the degree of disequilibrium. The latter disequilibrium term (Ωeq  Ω) is expressed in terms of the time-evolving equilibrium (Ωeq) and instantaneous (Ω) dimensionless fall velocities and dictates the direction of shoreline movement. Following Wright et al. (1985) the equilibrium fall velocity is defined as a function of the weighted antecedent conditions and is a proxy for the evolving beach state. The decay rate of the weighting function used to compute Ωeq is a model free parameter determined by calibration against measured data, which physically reflects the degree of observed ‘memory’ of the system. The decay in amplitude of this weighting function with time is controlled by a ‘memory decay’ term (ϕ), where the weighting reaches 10%, 1% and 0.1% at ϕ, 2ϕ and 3ϕ days prior to the current calculation time. The model is applied to two multi-year (6 + years) data sets incorporating hourly wave and weekly shoreline measurements, from two contrasting energetic sites in SE Australia. The first is the relatively dissipative, straight Gold Coast (QLD) and the second is a more intermediate embayed beach at Narrabeen (NSW). The model shows significant skill at hindcasting shoreline change at both sites, predicting approximately 60% of the total shoreline variability. The Gold Coast shoreline is dominated by a strong seasonal signal. Conversely, at the Narrabeen embayment, shoreline variability (and morphology) is more dynamic, responding at storm frequency. Evidence suggests that there is a strong coherence between the shoreline position and morphodynamic state and that both have response times characterised by ϕ. It is hypothesised that optimised ϕ values in the shoreline model physically relate to the efficiency of sediment exchanges between the shoreface and offshore bars and the prevalence of one- or two-dimensional horizontal circulation. The general success of this new shoreline model for hindcasting the observed shoreline behaviour at two distinctly different open-coast sites suggests that this approach may be suitable for broader application.  相似文献   

4.
The proposed numerical model simulates the short-term temporal changes in shoreline position due to a structure interrupting the longshore sediment flux. The impacts of both the groin-type construction and underwater trench of arbitrary orientation relative to the shore are discussed. In order to estimate the sediment mass trapped by the structure, a submodel of the longshore sediment transport induced by a random wave field is developed. The contribution of the surface roller in momentum balance as well as in sediment suspension is included. The shoreline changes are computed from the equation deduced from the mass conservation. The perturbations in the longshore sediment discharge caused by a structure are assumed to concentrate within some boundary area of which the spatial scale is proportional to the structure's length until the latter is exceeded by the width of the sediment flux. It is shown in particular that the total effect of a long trench (channel) and a pier in its nearshore part results in general shoreline recession except for the vicinity of a pier. The model is tested against the laboratory data of Baidei et al. (1994) and applied to the Baidara Bay coast (Kara Sea) where a pipeline would be designed.  相似文献   

5.
《Marine Geology》2007,236(1-2):15-26
The South American coast between Brazil and Venezuela is affected by longshore migrating mud banks derived from the fine-grained Amazon sediment discharge. Onshore mud migration prevails over shallow ‘bank’ areas alternating alongshore with deeper ‘inter-bank’ areas. The transport on the inner shelf, and attachment to the shoreline, of this migrating mud has been attributed mainly to wind waves. However, the lack of in situ data on waves hampers understanding of the relationship between waves and mud dynamics. A 44-yr record (1960–2004) of the ERA-40 wave dataset generated by the European Centre for Medium-Range Weather Forecasts (ECMWF) was used, in conjunction with field investigations in French Guiana, to define both event-scale and longer-term patterns of mud mobilisation induced by waves. The ratio H03 / T2, combining wave height H and period T, and the angle of wave incidence α, were singled out as the most relevant parameters for describing wave forcing. Typical ‘bank’ and ‘inter-bank’ profiles and corresponding mud densities, and a 3-month record of changes in the thickness of the fluid mud layer in an estuarine navigation channel were monitored by echo-sounding from October 2002 to January 2003. An 80-day record of bed-level changes in the intertidal zone was obtained from August to November 2004 using a pressure transducer. The results on the wave regime of French Guiana confirm a distinctly seasonal pattern, and highlight an increase in H03 / T2 over the 44-yr period related to an increase in trade-wind velocities determined from corresponding trends in Atlantic wind pseudo-stress off the South American coast. Wave forcing over bank areas leads to the liquefaction of a 1–3 m-thick layer of mud that is transported onshore (and alongshore by the longshore component of wave energy). The episodic nature of high wave energy events generally results in the formation of mud bar features from the shoreward mobilisation of gel-like fluid mud. The effect of waves on mud is particularly marked following long periods of low energy, and especially at the onset of the high wave energy season (October to May), when even moderate wave energy events can lead to significant mobilisation of mud.Significant phases of increased wave energy are attended by higher long-term (annual) rates of longshore mud bank migration but the correlation is rather poor between the wave forcing parameter H03 / T2 and migration rates because stronger wave forcing is generally associated with low angles of wave incidence. This suggests a complementary role of other hydrodynamic mechanisms, such as geostrophic and tidal currents, in longshore mud bank migration.  相似文献   

6.
Sixty-one Global Positioning System (GPS), sub-aerial beach surveys were completed at 7 km long Ocean Beach, San Francisco, CA (USA), between April 2004 and March 2009. The five-year time series contains over 1 million beach elevation measurements and documents detailed changes in beach morphology over a variety of spatial, temporal, and physical forcing scales. Results show that seasonal processes dominate at Ocean Beach, with the seasonal increase and decrease in wave height being the primary driver of shoreline change. Storm events, while capable of causing large short-term changes in the shoreline, did not singularly account for a large percentage of the overall observed change. Empirical orthogonal function (EOF) analysis shows that the first two modes account for approximately three-quarters of the variance in the data set and are represented by the seasonal onshore/offshore movement of sediment (60%) and the multi-year trend of shoreline rotation (14%). The longer-term trend of shoreline rotation appears to be related to larger-scale bathymetric change. An EOF-based decomposition technique is developed that is capable of estimating the shoreline position to within one standard deviation of the range of shoreline positions observed at most locations along the beach. The foundation of the model is the observed relationship between the temporal amplitudes of the first EOF mode and seasonally-averaged offshore wave height as well as the linear trend of shoreline rotation. This technique, while not truly predictive because of the requirement of real-time wave data, is useful because it can predict shoreline position to within reasonable confidence given the absence of field data once the model is developed at a particular site.  相似文献   

7.
The effect of using time-averaged wave statistics in a simple empirical model for shoreline change is investigated. The model was first calibrated with a six-year time series of hourly wave conditions and weekly shoreline position at the Gold Coast, Australia. The model was then recalibrated with the hourly waves averaged over intervals up to 1 year. With wave averaging up to 2 days, model performance was approximately constant (squared correlation r2 ~ 0.61–0.62), with only small changes in the values of empirical model parameters (e.g. the beach response coefficient c varied by less than 4%). With between 2 and 40 day averaging, individual storms are not resolved; model skill decreased only modestly (r2 ~ 0.55), but c varied erratically by up to 40% of the original value. That is, optimal model coefficients depend on wave averaging, an undesirable result. With increased averaging (> 40 days) seasonal variability in the wave field is not resolved well and model skill declined markedly. Thus, temporal averaging of wave conditions increases numerical efficiency, but over-averaging degrades model performance and distorts best-fit values of model free parameters.  相似文献   

8.
A data-driven model has been developed to analyse the long-term evolution of a sandbank system and to make ensemble predictions in a period of 8 years. The method uses a combination of empirical orthogonal function (EOF) analysis, (to define spatial and temporal patterns of variability), jack-knife resampling, (to generate an ensemble of EOFs), a causal auto-regression technique, (to extrapolate the temporal eigenfunctions), and straightforward statistical analysis of the resulting ensemble of predictions to determine a ‘forecast’ and associated uncertainty. The methodology has been applied to a very demanding site which includes a curved shoreline and a group of mobile nearshore sandbanks. The site is on the eastern coast of the UK and includes the Great Yarmouth sandbanks and neighbouring shoreline. A sequence of 33 high quality historical survey charts reaching back to 1848 have been used to analyse the patterns and to predict morphological evolution of the sandbank system. The forecasts demonstrate an improved skill relative to an assumption of persistence, but suffer in locations where there are propagating features in the morphology that are not well-described by EOFs.  相似文献   

9.
Longshore sediment transport estimation using a fuzzy inference system   总被引:1,自引:0,他引:1  
Accurate prediction of longshore sediment transport in the nearshore zone is essential for control of shoreline erosion and beach evolution. In this paper, a hybrid Adaptive-Network-Based Fuzzy Inference System (ANFIS), Fuzzy Inference System (FIS), CERC, Walton–Bruno (WB) and Van Rijn (VR) formulae are used to predict and model longshore sediment transport in the surf zone. The architecture of ANFIS consisted of three inputs (breaking wave height), (breaking angle), (wave period) and one output (longshore sediment transport rate). For statistical comparison of predicted and measured sediment transport, bias, root mean square error and scatter index are used. The longshore sediment transport rate (LSTR) and wave characteristics at a 4 km-long beach on the central west coast of India are used as case studies. The CERC, WB and VR methods are also applied to the same data. Results indicate that the errors of the ANFIS model in predicting wave parameters are less than those of the empirical formulas. The scatter index of the CERC, WB and VR methods in predicting LSTR is 51.9%, 27.9% and 22.5%, respectively, while the scatter index of the ANFIS model in the prediction of LSTR is 17.32%. A comparison of results reveals that the ANFIS model provides higher accuracy and reliability for LSTR estimation than the other techniques.  相似文献   

10.
A probabilistic model ( -model) was developed to describe the propagation and transformation of individual waves (wave by wave approach). The individual waves shoal until an empirical criterion for breaking is satisfied. Wave height decay after breaking is modelled by using an energy dissipation method. Wave-induced set-up and set-down and breaking-associated longshore currents are also modelled. Laboratory and field data were used to calibrate and verify the model. The model was calibrated by adjusting the wave breaking coefficient (as a function of local wave steepness and bottom slope) to obtain optimum agreement between measured and computed wave height. Four tests carried out in the large Delta flume of Delft Hydraulics were considered. Generally, the measured H1/3-wave heights are reasonably well represented by the model in all zones from deep water to the shallow surf zone. The fraction of breaking waves was reasonably well represented by the model in the upsloping zones of the bottom profile. Verification of the model results with respect to wave-induced longshore current velocities was not extensive, because of a lack of data. In case of a barred profile the measured longshore velocities showed a relatively uniform distribution in the (trough) zone between the bar crest and the shoreline, which could to some extent be modelled by including space-averaging of the radiation force gradient, horizontal mixing and longshore water surface gradients related to variations in set-up. In case of a monotonically upsloping profile the cross-shore distribution of the longshore current velocities is reasonably well represented.  相似文献   

11.
《Coastal Engineering》1999,37(1):1-36
Seasonally open tidal inlets usually occur in microtidal, wave-dominated coastal environments where strong seasonal variations of streamflow and wave climate are experienced. These inlets are closed to the ocean for a number of months every year due to the formation of sand bars across their entrances. The annual closure of these inlets inhibits ocean access for boats and could also cause deterioration of water quality in the estuary/lagoon connected to the inlet. As these estuaries/lagoons are commonly used as harbours or recreational facilities there is increased interest in keeping the inlets permanently open. A process-based numerical model capable of simulating inlet closure is invaluable in terms of identifying the natural processes governing inlet closure. As a further step, this type of model could also be used to determine the effect of any proposed engineering solutions to keep the inlet open on the adjacent beaches. A morphodynamic model capable of simulating the seasonal closure of inlets, which includes both longshore (LST) and cross-shore transport (CST) processes, was developed in this study. Application of the model to two idealised scenarios indicated that cross-shore processes govern inlet behaviour when LST rates were low. The Dean's criterion [Dean, R.G., 1973. Heuristic models of sand transport in the surf zone. Proc. Conf. on Eng. Dynamics in the Surf Zone, Sydney, pp. 208–214.] for on–offshore transport was employed to show that, for small offshore wave incidence angles, onshore transport aided inlet closure when the offshore wave steepness (Ho/Lo) was less than the critical wave steepness (Ho/Lo)crit, while offshore transport helped to keep the inlet open when (Ho/Lo) was greater than (Ho/Lo)crit. LST was found to be the dominant process leading to inlet closure when (Ho/Lo) was much larger than (Ho/Lo)crit or when the offshore wave incidence angle was large.  相似文献   

12.
13.
A local-scale phase-resolving wave transformation model with CGWAVE is established in connection with a regional-scale coupled STWAVE-ADCIRC wave-current model for its application in the Half Moon Bay, Grays Harbor. Wave transformation from offshore to the harbor entrance is simulated by the STWAVE model which includes wave-current interaction. The STWAVE results provide incident wave conditions for the local-scale CGWAVE model at its outer boundary. A simple method is developed to take into ac- count the lateral variation of wave height in constructing the model's wave boundary conditions. The model was validated for three wave condition cases which yielded good agreement with field data. The validated model was applied to predicting nearshore waves in the Half Moon Bay and longshore transport parameters along the wave breaking line for the existing condition and three engi- neering alternatives. A comparative analysis indicated that storm waves that have a combination of long period and large height are the most destructive to the crenulate shoreline in the Half Moon Bay; both 152 m jetty extension (Alt. 2) and diffraction mound enlargement ( Alt. 3) would significantly reduce breaking wave height and longshore transport potential in the southwest comer of Half Moon Bay.  相似文献   

14.
Nearshore environments in Flathead Lake, Montana, USA, were described as dissipative or reflective on the basis of: the surf similarity parameter , grain size, morphology, number of breaking waves and angle of wave incidence. The relative resistance to foreshore and backshore erosion caused by anthropogenic lake level regulation was compared between these two nearshore configurations. Reflective systems were characterized by dynamic gravel beach faces and steep inshore shelves armored by wave-washed cobble. In contrast, dissipative systems were characterized by sand-sized substratum, broad flat inshore shelves and the presence of multiple linear bars approximately 350 m offshore. Five decades of regulated lake levels have resulted in extensive shoreline erosion (970 ha on the north shore of the lake) and a general reshaping of both types of nearshore environments, although dissipative shorelines eroded faster (5.7 m/year maximum and 2.0 m/year average). The presence of docks and other man-made structures on reflective beaches accelerated erosion by intercepting longshore gravel transport. This analysis provided a physical basis for understanding the effects of lake level regulation on shoreline ecology and management.  相似文献   

15.
A numerical model is developed to compute the shoreline planform in a crenulate bay beach. The new model combines polar and Cartesian coordinates and can be used effectively to compute a hooked zone shoreline in the lee of upcoast headland. The model is calibrated using laboratory data with an incident wave angle ranging from 25° to 60°. The results of calibration and verification suggest that the ratio of the sediment transport parameters by wave and longshore current in this model is close to unity, and the computed shoreline planforms for the hooked and unhooked zones are in good agreement with the ones measured, especially when a bay is close to static equilibrium. In addition, the bay shape calculated by the present model is similar to that given by the well-known empirical parabolic equation for a bay in static equilibrium. The process of bay shape development from a straight beach to a static equilibrium bay is studied using laboratory experiments and the present numerical model. The temporal variations in the computed longshore sediment transport at different locations within a bay beach are analyzed. From this the decrease in the sediment transport becomes apparent while a bay beach changes its shape from straight toward a state of equilibrium. Based on this experience, it may be concluded that the present numerical model can produce a temporal change in the shoreline planform of a crenulate bay beach from a transition state to static equilibrium subject to seasonal wave action.  相似文献   

16.
Spatial variation in the photophysiology of symbiotic dinoflagellates (zooxanthellae) of the scleractinian coral Pocillopora damicornis was examined along an environmental gradient in the Whitsunday Islands (Great Barrier Reef) at two depths (3 m and 6 m). Chlorophyll a fluorescence of photosystem II (PSII) and PAR-absorptivity measurements were conducted using an Imaging-PAM (pulse-amplitude-modulation) fluorometer. Most photophysiological parameters correlated with changes in environmental conditions quantified by differences in water quality along the gradient. For example, maximum quantum yield (Fv/Fm) increased and PAR-absorptivity decreased as water quality improved along the gradient from nearshore reefs (low irradiance, elevated nutrients and sediments) to outer islands (high irradiance, low nutrients and sediments). For apparent photosynthetic rate (PSmax) and minimum saturating irradiance (Ek), the direction of change differed depending on sampling depth, suggesting that different mechanisms of photo-acclimatisation operated between shallow and deep corals. Deep corals conformed to typical patterns of light/shade acclimatisation whereas shallow corals exhibited reduced PSmax and Ek with improving water quality coinciding with greater heat dissipation (NPQ241). Furthermore, deep corals on nearshore reefs exhibited elevated Q241 in comparison to outer islands possibly due to effects of sedimentation and/or pollutants rather than irradiance. These results highlight the importance of mesoscale sampling to obtain useful estimates of the variability of photophysiological parameters, particularly if such measures are to be used as bioindicators of the condition of coral reefs.  相似文献   

17.
Understanding sediment movement in coastal areas is crucial in planning the stability of coastal structures, the recovery of coastal areas, and the formation of new coast. Accretion or erosion profiles form as a result of sediment movement. The characteristics of these profiles depend on the bed slope, wave conditions, and sediment properties. Here, experimental studies were performed in a wave flume with regular waves, considering different values for the wave height (H0), wave period (T), bed slope (m), and mean sediment diameter (d50). Accretion profiles developed in these experiments, and the geometric parameters of the resulting berms were determined. Teaching–learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms were applied to regression functions of the data from the physical model. Dimensional and dimensionless equations were found for each parameter. These equations were compared to data from the physical model, to determine the best equation for each parameter and to evaluate the performances of the TLBO and ABC algorithms in the estimation of the berm parameters. Compared to the ABC algorithm, the TLBO algorithm provided better accuracy in estimating the berm parameters. Overall, the equations successfully determined the berm parameters.  相似文献   

18.
The paper analyses long-term variability of wave climate near Poland for the 1958–2002 period. With spectral and cross-spectral analysis, linear regression and singular spectrum analysis the modes of long-term variability were quantified for the most energetic months (November–February). For monthly indices of North Atlantic Oscillation from 1950 until 2006, it was established that the long-term trends of NAO and significant wave height demonstrate a gentle coupling. For Januaries this relationship is strongest and dates back to 1960, for Februaries a certain consistency appears since 1975. For Novembers and Decembers no statistically discernible coupling was found. Thus, the Baltic Sea appears to be the easternmost NAO-affected region, despite its separation from the Atlantic. The hydrodynamic variability also includes a non-trivial oscillation in the January wave energy records with T=8 years. The same periodicity was identified with the multi-channel SSA technique in the long-term shoreline data of a neighboring beach. The study shows that even almost entirely isolated water bodies are becoming exposed to global climatic phenomena and accelerated erosion of sandy beaches, typical for the South Baltic region. On the other hand, the 8-year hydrodynamic cycle can be viewed as the driver of long-term shoreline evolution.  相似文献   

19.
ABSTRACT

Chilika, a lagoon along the east coast of India, is undergoing transformation due to frequent shoreline change near inlet(s). Shoreline change near inlet includes change in position and shape of inlet, inlet channel length, and spit growth/erosion. These variable features of lagoon inlet(s) critically depend on alongshore sediment transport (LST) and discharge (water and sediment) from the lagoon to the sea. The LST and the processes responsible for sand spit growth/erosion, considered as important attributes of inlet stability, are the subject matter of the present investigation and hence the study assumes importance. The study includes integration of observational and modeling framework. Observations include nearshore wave, bathymetry, beach profile, shoreline and sediment grain size of spits while numerical modeling includes simulation of the wave using MIKE 21 Spectral Wave model and LST simulation using LITtoral DRIFT. The results indicate that the predominant wave directions as S and SSE, which induces round the year south to north alongshore transport with significant seasonal variation in magnitude. The estimated LST closely matches with previous studies near Chilika inlet and for other locations along the Odisha coast. Besides temporal variability, the study reveals spatial variability in alongshore transport near Chilika inlet and considers it as one of the important attributes along with northward spit growth for inlet migration/closure/opening.  相似文献   

20.
An edge wave is a kind of surface gravity wave basically travelling along a shoaling beach. Based on the periodic assumption in the longshore direction, a second order ordinary differential equation is obtained for numerical simulation of the cross-shore surface elevation. Given parameters at the shoreline, a cross-shore elevation profile is obtained through integration with fourth-order Runge-Kutta technique. For a compound slope, a longshore wavenumber is obtained by following a geometrical approach and solving a transcendental equation with an asymptotic method. Numerical results on uniform and compound sloping beaches with different wave periods, slope angles, modes and turning point positions are presented. Some special scenarios, which cannot be predicted by analytical models are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号