首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.  相似文献   

2.
Many of the relationships used in coupled land–atmosphere models to describe interactions between the land surface and the atmosphere have been empirically parameterized and thus are inherently dependent on the observational scale for which they were derived and tested. However, they are often applied at scales quite different than the ones they were intended for due to practical necessity. In this paper, a study is presented on the scale-dependency of parameterizations which are nonlinear functions of variables exhibiting considerable spatial variability across a wide range of scales. For illustration purposes, we focus on parameterizations which are explicit nonlinear functions of soil moisture. We use data from the 1997 Southern Great Plains Hydrology Experiment (SGP97) to quantify the spatial variability of soil moisture as a function of scale. By assuming that a parameterization keeps its general form the same over a range of scales, we quantify how the values of its parameters should change with scale in order to preserve the spatially averaged predicted fluxes at any scale of interest. The findings of this study illustrate that if modifications are not made to nonlinear parameterizations to account for the mismatch of scales between optimization and application, then significant systematic biases may result in model-predicted water and energy fluxes.  相似文献   

3.
This paper addresses the incorporation of high resolution topography, soils and vegetation information into the simulation of land surface processes in atmospheric circulation models (ACM). Recent work has concentrated on detailed representation of one-dimensional exchange processes, implicitly assuming surface homogeneity over the atmospheric grid cell. Two approaches that could be taken to incorporate heterogeneity are the integration of a surface model over distributed, discrete portions of the landscape, or over a distribution function of the model parameters. However, the computational burden and parameter intensive nature of current land surface models in ACM limits the number of independent model runs and parameterizations that are feasible to accomplish for operational purposes. Therefore, simplications in the representation of the vertical exchange processes may be necessary to incorporate the effects of landscape variability and horizontal divergence of energy and water. The strategy is then to trade off the detail and rigor of point exchange calculations for the ability to repeat those calculations over extensive, complex terrain. It is clear the parameterization process for this approach must be automated such that large spatial databases collected from remotely sensed images, digital terrain models and digital maps can be efficiently summarized and transformed into the appropriate parameter sets. Ideally, the landscape should be partitioned into surface units that maximize between unit variance while minimizing within unit variance, although it is recognized that some level of surface heterogeneity will be retained at all scales. Therefore, the geographic data processing necessary to automate the distributed parameterization should be able to estimate or predict parameter distributional information within each surface unit.  相似文献   

4.
The Common Land Model (CLM) is one of the most widely used land surface models (LSMs) due to the practicality of its simple parameterization scheme and its versatility in embracing a variety of field datasets. The improved assessment of land surface water and energy fluxes using CLM can be an alternative approach for understanding the complex land–atmosphere interactions in data‐limited regions. The understanding of water and energy cycles in a farmland is crucial because it is a dominant land feature in Korea and Asia. However, the applications of CLM to farmland in Korea are in paucity. The simulations of water and energy fluxes by CLM were conducted against those from the tower‐based measurements during the growing season of 2006 at the Haenam site (a farmland site) in Korea without optimization. According to the International Geosphere–Biosphere Programme (IGBP) land cover classification, a homogeneous cropland was selected initially for this study. Although the simulated soil moisture had a similar pattern to that of the observed, the former was relatively drier (at 0·1 m3 m?3) than the latter. The simulated net radiation showed good agreement with the observed, with a root mean squared error (RMSE) of 41 W m?2, whereas relatively large discrepancies between the simulation and observation were found in sensible (RMSE of 66 W m?2) and latent (RMSE of 60 W m?2) heat fluxes. On the basis of the sensitivity analysis, soil moisture was more receptive to land cover and soil texture parameterizations when compared to soil temperature and turbulent fluxes. Despite the uncertainty in the predictive capability of CLM employed without optimization, the initial performance of CLM suggests usefulness in a data‐limited heterogeneous farmland in Korea. Further studies are required to identify the controls on water and energy fluxes with an improved parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
近地层能量闭合度对陆面过程模式影响   总被引:1,自引:0,他引:1       下载免费PDF全文
大量近地层观测试验表明,利用涡动相关法观测的湍流通量小于近地层可利用能量,即近地层能量是不闭合的,这种不闭合度一般为20%甚至更高.而陆面过程模式是基于地气间能量平衡建立,并且模式中的湍流边界层参数化方案通常根据实际观测的湍流通量来确定,因此能量不闭合必将对陆面过程模式造成一定的影响.本文利用2007年春季SACOL站的近地层观测资料,依据能量守恒将能量不闭合中的残余能量通过波文比分配到观测的湍流通量中,即修正涡动相关法观测的湍流通量使得近地层能量达到平衡;之后分别利用观测和修正的湍流通量,建立了能量不闭合和闭合情形下的湍流参数化方案,借助陆面过程模式SHAW,通过数值模拟和对比分析方法考察近地层能量闭合度对陆面过程模式的影响.研究结果表明近地层能量闭合对陆面过程模式有显著的影响:在陆面过程数值模拟中,当应用近地层能量不闭合的湍流通量形成的湍流参数化方案时,陆面过程模式会明显高估地表长波辐射及土壤温度;但当应用修正湍流通量使得近地层能量达到闭合形成的湍流参数化方案后,在不改变任何地表土壤物理生化属性的情况下,陆面过程模式能较好地模拟地表长波辐射和土壤温度.  相似文献   

6.
Water and energy fluxes at and between the land surface, the subsurface and the atmosphere are inextricably linked over all spatio‐temporal scales. Our research focuses on the joint analysis of both water and energy fluxes in a pre‐alpine catchment (55 km2) in southern Germany, which is part of the Terrestrial Environmental Observatories (TERENO). We use a novel three‐dimensional, physically based and distributed modelling approach to reproduce both observed streamflow as an integral measure for water fluxes and heat flux and soil temperature measurements at an observation location over a period of 2 years. While heat fluxes are often used for comparison of the simulations of one‐dimensional land surface models, they are rarely used for additional validation of physically based and distributed hydrological modelling approaches. The spatio‐temporal variability of the water and energy balance components and their partitioning for dominant land use types of the study region are investigated. The model shows good performance for simulating daily streamflow (Nash–Sutcliffe efficiency > 0.75). Albeit only streamflow measurements are used for calibration, the simulations of hourly heat fluxes and soil temperatures at the observation site also show a good performance, particularly during summer. A limitation of the model is the simulation of temperature‐driven heat fluxes during winter, when the soil is covered by snow. An analysis of the simulated spatial fields reveals heat flux patterns that reflect the distribution of the land use and soil types of the catchment. The water and energy partitioning is characterized by a strong seasonal cycle and shows clear differences between the selected land use types. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

7.
Land surface interacts strongly with the atmosphere at all scales. This has a considerable impact on the hydrologic cycle and the climate. Therefore, in order to produce realistic simulations with climate models, their land-surface processes must be parameterized accurately. Because continental surfaces are usually extremely heterogeneous over the resolvable scales considered in these models, surface parameterizations based on the big leaf-big stoma approach (that assume grid-scale homogeneity) fail to represent the land-atmosphere interactions that occur at much smaller scales.A parameterization based on a statistical-dynamical approach is suggested here. With this approach, each surface grid element of the numerical model is divided into homogeneous land patches (i.e., patches with similar internal heterogeneity). Assuming that horizontal fluxes between the different patches within a grid element are small as compared to the vertical fluxes, patches of the same type located at different places in the grid can be regrouped into one subgrid surface class. Then, for each one of the subgrid surface classes, probability density functions (pdf) are used to characterize the variability of the different parameters of the soil-plant-atmosphere system. These pdf are combined with the equations of the model that describe the dynamic and the energy and mass conservations in the atmosphere.The potential application of this statistical-dynamical parameterization is illustrated by simulating (i) the development of an agricultural area in an arid region and (ii) the process of deforestation in a tropical region. Both cases emphasize the importance of land-atmosphere interactions on regional hydrologic processes and climate.  相似文献   

8.
The variation in soil texture, surface moisture or vertical soil moisture gradient in larger scale atmospheric models may lead to significant variations in simulated surface fluxes of water and heat. The parameterization of soil moisture fluxes at spatial scales compatible with the grid size of distributed hydrological models and mesoscale atmospheric models ( 100 km2) faces principal problems which relate to the underlying microscopic or field scale heterogeneity in soil characteristics.

The most widely used parameterization in soil hydrology, the Darcy-Richards (DR) equation, is gaining increasing importance in mesoscale and climate modelling. This is mainly due to the need to introduce plant-interactive soil water depletion and stomatal conductance parameterizations and to improve the calculation of deep percolation and runoff. Covering a grid of several hundreds of square kilometres, the DR parameterization in soil-vegetation-atmosphere-transfer schemes (SVATs) is assumed to be scale-invariant. The parameters describing the non-linear, area-average soil hydraulic functions in this scale-invariant DR-equation should be treated as calibration-parameters, which do not necessarily have a physical meaning. The saturated hydraulic conductivity is one of the soil parameters to which the models show very high sensitivity. It is shown that saturated hydraulic conductivity can be scaled in both vertical and horizontal directions for large flow domains.

In this paper, a distinction is made between effective and aggregated soil parameters. Effective parameters are defined as area-average values or distributions over a domain with a single, distinct textural soil type. They can be obtained by scaling or inverse modelling. Aggregated soil parameters represent grid-domains with several textural soil types. In soil science dimensional methods have been developed to scale up soil hydraulic characteristics. With some specific assumptions, these techniques can be extrapolated from classical field-scale problems in soil heterogeneity to larger domains, compatible with the grid-size of large scale models. Particularly promising is the estimation of effective soil hydraulic parameters from area averaging measurements through inverse modelling of the unsaturated flow.

Techniques to scale and aggregate the soil characteristics presented in this paper qualify for direct or indirect use in large scale meteorological models. One of the interesting results is the effective behaviour of the reference curve, which can be obtained from similar media scaling. If the conclusions of this paper survive further studies, a relatively simple method will become available to parameterize soil variability at large scales. The inverse technique is found to provide effective soil parameters which perform well in predicting both the area-average evaporation and the area-average soil moisture fluxes, such as subsurface runoff. This is not the case for aggregated soil parameters. Obtained from regression relationships between soil textural composition and hydraulic characteristics, these aggregated parameters predict evaporation fluxes well, but fail to predict water balance terms such as percolation and runoff. This is a serious drawback which could eventually hamper the improvement of the representation of the hydrological cycle in mesoscale atmospheric models and in GCMs.  相似文献   


9.
Soil heterogeneity plays an important role in determining surface runoff generation mechanisms. At the spatial scales represented by land surface models used in regional climate model and/or global general circulation models (GCMs) for numerical weather prediction and climate studies, both infiltration excess (Horton) and saturation excess (Dunne) runoff may be present within a studied area or a model grid cell. Proper modeling of surface runoff is essential to a reasonable representation of feedbacks in the land–atmosphere system. In this paper, a new surface runoff parameterization that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell is presented. The new parameterization takes into account of effects of soil heterogeneity on Horton and Dunne runoff. A series of numerical experiments are conducted to study the effects of soil heterogeneity on Horton and Dunne runoff and on soil moisture storage under different soil and precipitation conditions. The new parameterization is implemented into the current version of the hydrologically based variable infiltration capacity (VIC) land surface model and tested over three watersheds in Pennsylvania. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere–land coupling system. Significant underestimation of the surface runoff and overestimation of subsurface runoff and soil moisture could be resulted if the Horton runoff mechanism were not taken into account. Also, the results show that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation. An assumption of time-invariant spatial distribution of potential infiltration rate may result in large errors in surface runoff and soil moisture. In addition, the total surface runoff from the new parameterization is less sensitive to the choice of the soil moisture shape parameter of the distribution.  相似文献   

10.
—The influence of soil moisture and vegetation variation on simulation of monsoon circulation and rainfall is investigated. For this purpose a simple land surface parameterization scheme is incorporated in a three-dimensional regional high resolution nested grid atmospheric model. Based on the land surface parameterization scheme, latent heat and sensible heat fluxes are explicitly estimated over the entire domain of the model. Two sensitivity studies are conducted; one with bare dry soil conditions (no latent heat flux from land surface) and the other with realistic representation of the land surface parameters such as soil moisture, vegetation cover and landuse patterns in the numerical simulation. The sensitivity of main monsoon features such as Somali jet, monsoon trough and tropical easterly jet to land surface processes are discussed.¶Results suggest the necessity of including a detailed land surface parameterization in the realistic short-range weather numerical predictions. An enhanced short-range prediction of hydrological cycle including precipitation was produced by the model, with land surface processes parameterized. This parameterization appears to simulate all the main circulation features associated with the summer monsoon in a realistic manner.  相似文献   

11.
S. Pohl  P. Marsh 《水文研究》2006,20(8):1773-1792
Arctic spring landscapes are usually characterized by a mosaic of coexisting snow‐covered and bare ground patches. This phenomenon has major implications for hydrological processes, including meltwater production and runoff. Furthermore, as indicated by aircraft observations, it affects land‐surface–atmosphere exchanges, leading to a high degree of variability in surface energy terms during melt. The heterogeneity and related differences when certain parts of the landscape become snow free also affects the length of the growing season and the carbon cycle. Small‐scale variability in arctic snowmelt is addressed here by combining a spatially distributed end‐of‐winter snow cover with simulations of variable snowmelt energy balance factors for the small arctic catchment of Trail Valley Creek (63 km2). Throughout the winter, snow in arctic tundra basins is redistributed by frequent blowing snow events. Areas of above‐ or below‐average end‐of‐winter snow water equivalents were determined from land‐cover classifications, topography, land‐cover‐based snow surveys, and distributed surface wind‐field simulations. Topographic influences on major snowmelt energy balance factors (solar radiation and turbulent fluxes of sensible and latent heat) were modelled on a small‐scale (40 m) basis. A spatially variable complete snowmelt energy balance was subsequently computed and applied to the distributed snow cover, allowing the simulation of the progress of melt throughout the basin. The emerging patterns compared very well visually to snow cover observations from satellite images and aerial photographs. Results show the relative importance of variable end‐of‐winter snow cover, spatially distributed melt energy fluxes, and local advection processes for the development of a patchy snow cover. This illustrates that the consideration of these processes is crucial for an accurate determination of snow‐covered areas, as well as the location, timing, and amount of meltwater release from arctic catchments, and should, therefore, be included in hydrological models. Furthermore, the study shows the need for a subgrid parameterization of these factors in the land surface schemes of larger scale climate models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The Pantanal wetland is one of the least explored regions of South America. It is characterized by an outstanding flora and fauna adapted to a seasonal flood pulse controlled by a dry and a wet season within each year. The resulting inundation covers in average an area of approximately 150 000 km2 and is seen as the most important driver for ecological integrity. Evaporation from the large floodplain is supposed to influence the climate of the whole continent. The regional groundwater is connected to the surface water and plays an important role for the characteristic flooding regime by regulating the wetland's water table. The water balance assessment of the wetland and the internal water exchange between surface and groundwater is therefore of high relevance for the conservation of the Pantanal biodiversity. Despite of its importance, water balance studies including groundwater–surface water interactions based on field data are rarely undertaken. This is mainly due to the remoteness and difficulty in accessing this area, which results in lack of data. In our study, we developed a new tracer‐based model to simulate the spatio–temporal surface and subsurface fluxes for a range of water bodies. The model was able to simulate these fluxes considering a dynamic simulation of inflow and outflow using a newly collected 2‐year dataset of water levels, stable water isotopes and chloride collected from several water bodies in the northern Pantanal region. Quantitative differences between water bodies according to their location in the floodplain were determined by the flooding regime and connectivity as well as site‐specific characteristics, such as hydraulic conductivity and water depth. Our model simulated water balance fluxes with a Nash–Sutcliffe efficiency of 0.61, whereas it simulated stable water isotopic compositions better than chloride. We present the first study based on field data for the Pantanal, which is able to quantify water balances fluxes. Because their representation in global climate and land cover products is insufficient, our simulation results are valuable for validating large‐scale models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Theoretical studies dealing with aggregation of surface parameters at small scale are reviewed. Finding effective parameters for surface resistance is possible for most cases by taking simple geometric or arithmetic averages of the component resistances. The use of more sophisticated techniques such as the blending height improves the calculations. Resistances for heat and water vapour behave differently in heterogeneous terrain. A simple surface energy balance model is adapted to show the behaviour of the roughness length of heat and water vapour in heterogeneous terrain. It is suggested that this simple parameterization can adequately take into account the effect of variation in surface cover on the fluxes of heat and water vapour.  相似文献   

14.
A large‐scale groundwater flow and transport model is developed for a deep‐seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three‐dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of 39Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two‐dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep‐seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.  相似文献   

15.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   

16.
In this study, a parameterization method based on Landsat‐7 Enhanced Thematic Mapper (ETM) data and field observations is presented and tested for deriving the regional land surface variables, vegetation variables and land surface heat fluxes over a heterogeneous landscape. As a case study, the method and two Landsat‐7 ETM images are applied to the Jiddah area of Saudi Arabia. The regional distribution maps of surface reflectance, normalized difference vegetation index, modified soil adjusted vegetation index (MSAVI), vegetation coverage, leaf area index, surface temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux have been determined over the Jiddah area. The derived results have been validated by using the ‘ground truth’. The results show that the more reasonable regional distributions of land surface variables (surface reflectance, surface temperature), vegetation variables (MSAVI and vegetation coverage), net radiation, soil heat flux and sensible heat flux can be obtained by using the method proposed in this study. Further improvement of the method is also discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
In climate models, the land–atmosphere interactions are described numerically by land surface parameterization (LSP) schemes. The continuing improvement in realism in these schemes comes at the expense of the need to specify a large number of parameters that are either directly measured or estimated. Also, an emerging problem is whether the relationships used in LSPs are universal and globally applicable. One plausible approach to evaluate this is to first minimize uncertainty in model parameters by calibration. In this paper, we conduct a comprehensive analysis of some model diagnostics using a slightly modified version of the Simple Biosphere 3 model for a variety of biomes located mainly in the Amazon. First, the degree of influence of each individual parameter in simulating surface fluxes is identified. Next, we estimate parameters using a multi‐operator genetic algorithm applied in a multi‐objective context and evaluate simulations of energy and carbon fluxes against observations. Compared with the default parameter sets, these parameter estimates improve the partitioning of energy fluxes in forest and cropland sites and provide better simulations of daytime increases in assimilation of net carbon during the dry season at forest sites. Finally, a detailed assessment of the parameter estimation problem was performed by accounting for the decomposition of the mean squared error to the total model uncertainty. Analysis of the total prediction uncertainty reveals that the parameter adjustments significantly improve reproduction of the mean and variability of the flux time series at all sites and generally remove seasonality of the errors but do not improve dynamical properties. Our results demonstrate that error decomposition provides a meaningful and intuitive way to understand differences in model performance. To make further advancements in the knowledge of these models, we encourage the LSP community to adopt similar approaches in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Multiscale analysis of vegetation surface fluxes: from seconds to years   总被引:2,自引:0,他引:2  
The variability in land surface heat (H), water vapor (LE), and CO2 (or net ecosystem exchange, NEE) fluxes was investigated at scales ranging from fractions of seconds to years using eddy-covariance flux measurements above a pine forest. Because these fluxes significantly vary at all these time scales and because large gaps in the record are unavoidable in such experiments, standard Fourier expansion methods for computing the spectral and cospectral statistical properties were not possible. Instead, orthonormal wavelet transformations are proposed and used. The are ideal at resolving process variability with respect to both scale and time and are able to isolate and remove the effects of missing data (or gaps) from spectral and cospectral calculations. Using the spectra, we demonstrated unique aspects in three appropriate ranges of time scales: turbulent time scales (fractions of seconds to minutes), meteorological time scales (hour to weeks), and seasonal to interannual time scales corresponding to climate and vegetation dynamics. We have shown that: (1) existing turbulence theories describe the short time scales well, (2) coupled physiological and transport models (e.g. CANVEG) reproduce the wavelet spectral characteristics of all three land surface fluxes for meteorological time scales, and (3) seasonal dynamics in vegetation physiology and structure inject strong correlations between land surface fluxes and forcing variables at monthly to seasonal time scales. The broad implications of this study center on the possibility of developing low-dimensional models of land surface water, energy, and carbon exchange. If the bulk of the flux variability is dominated by a narrow band or bands of modes, and these modes “resonate” with key state and forcing variables, then low-dimensional models may relate these forcing and state variables to NEE and LE.  相似文献   

19.
P. MARSH  J. W. POMEROY 《水文研究》1996,10(10):1383-1400
Models of surface energy balance and snow metamorphism are utilized to predict the energy and meltwater fluxes at an Arctic site in the forest–tundra transition zone of north-western Canada. The surface energy balance during the melt period is modelled using an hourly bulk aerodynamic approach. Once a snowcover becomes patchy, advection from the bare patches to the snow-covered areas results in a large spatial variation in basin snowmelt. In order to illustrate the importance of small-scale, horizontal advection, a simple parameterization scheme using sensible heat fluxes from snow free areas was tested. This scheme estimates the maximum horizontal advection of sensible heat from the bare patches to the snow-covered areas. Calculated melt was routed through the measured snowcover in each landscape type using a variable flow path, meltwater percolation model. This allowed the determination of the spatial variability in the timing and magnitude of meltwater release for runoff. Model results indicate that the initial release of meltwater first occurred on the shallow upland tundra sites, but meltwater release did not occur until nearly two weeks later on the deep drift snowcovers. During these early periods of melt, not all meltwater is available for runoff. Instead, there is a period when some snowpacks are only partially contributing to runoff, and the spatial variation of runoff contribution corresponds to landscape type. Comparisons of melt with and without advection suggests that advection is an important process controlling the timing of basin snowmelt.  相似文献   

20.
This paper presents some statistical evaluations of the surface energy and soil water balance fluxes, for a prairie-type canopy, using the Earth model with a double-reservoir system for the management of the soil water reserve and the regulation of actual evapotranspiration. The mean values of these fluxes are estimated from energy and water balance simulations done on a 30-year climatic reference period (1951-1980). From values of these fluxes calculated for each meteorological synoptic station, mappings of net radiation, actual evapotranspiration, drainage and conduction fluxes have been made over French territory. Lastly, a few conclusions pertaining to the spatial variability of fluxes and to the partition of rainfall between run-off and drainage on the one hand and replenishment of the soil water reserve on the other hand are drawn from these preliminary results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号