首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.  相似文献   

2.
Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non- desingularized technique. Free surface and seabed surface profiles are represented by continuous panels rather than a discretization by isolated points. These panels are positioned exactly on the fluid boundary surfaces and therefore no desingularization technique is required. Space increment method is applied for both free surface source and seabed source arrangements to reduce computational cost and improve numerical efficiency. Fourth order Runge-Kutta iteration scheme is adopted on the free surface updating at every time step. The finite water depth effect is studied quantitatively for a series of cylinders with different B/T ratios. The accuracy and efficiency of the proposed model are validated by comparison with published numerical results and experimental data. Numerical results show that hydrodynamic coefficients vary for cylinder bodies with different ratios of B/T. For certain set of B/T ratios the effect of finite water depth increases quickly with the increase of motion frequency and becomes stable when frequency is relatively large. It also shows that water depths have larger hydrodynamic effects on cylinder with larger breadth to draft ratios. Both the heave added mass and damping coefficients increase across the frequency range with the water depths decrease for forced heave motion. The water depths have smaller effects on sway motion response than on heave motion response.  相似文献   

3.
Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwater is solved using the finite-depth Green function and boundary element method, in which the Green function is solved by integral method. The Response-Amplitude Operator(RAO) of wave pressure is acquired according to the Longuet-Higgins' wave model and the linear Bernoulli equation. Furthermore, the wave pressure's response spectrum is calculated according to the wave spectrum by discretizing the frequency domain. The wave pressure's characteristic value corresponding to certain cumulative probability is determined according to the Rayleigh distribution of wave heights. The numerical results and field test results are compared, which indicates that the wave pressure calculated in random seas agrees with that of field measurements. It is found that the bigger angle between legs will cause the bigger pressure response, while the increase in leg length does not influence the pressure significantly. The pressure at the side of head sea is larger than that of back waves. When the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases clearly, while at the side of head sea, the situation is more complicated and there seems no obvious tendency. The concentration of wave energy around low frequency(long wavelength) will induce bigger wave pressure, and more attention should be paid to this situation for the structure safety.  相似文献   

4.
In the framework of 3D potential flow theory, Bessho form translating-pulsating source Green’s function in frequency domain is chosen as the integral kernel in this study and hybrid source-and-dipole distribution model of the boundary element method is applied to directly solve the velocity potential for advancing ship in regular waves. Numerical characteristics of the Green function show that the contribution of local-flow components to velocity potential is concentrated at the nearby source point area and the wave component dominates the magnitude of velocity potential in the far field. Two kinds of mathematical models, with or without local-flow components taken into account, are adopted to numerically calculate the longitudinal motions of Wigley hulls, which demonstrates the applicability of translating-pulsating source Green’s function method for various ship forms. In addition, the mesh analysis of discrete surface is carried out from the perspective of ship-form characteristics. The study shows that the longitudinal motion results by the simplified model are somewhat greater than the experimental data in the resonant zone, and the model can be used as an effective tool to predict ship seakeeping properties. However, translating-pulsating source Green function method is only appropriate for the qualitative analysis of motion response in waves if the ship geometrical shape fails to satisfy the slender-body assumption.  相似文献   

5.
A Constrained Interpolation Profile(CIP)-based model is developed to predict the mooring force of a two- dimensional floating oil storage tank under wave conditions, which is validated against to a newly performed experiment. In the experiment, a box-shaped floating oil storage apparatus is used. Computations are performed by an improved CIP-based Cartesian grid model, in which the THINC/SW scheme(THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A multiphase flow solver is adopted to treat the water-air-body interactions. The Immersed Boundary Method(IBM) is implemented to treat the body surface. Main attention is paid to the sum force of mooring line and velocity field around the body. It is found that the sum force of the mooring line increases with increasing wave amplitude. The body suffers from water wave impact and large body motions occur near the free surface. The vortex occurs near the sharp edge, i.e., the sharp bottom corners of the floating oil storage tank and the vortex shedding can be captured by the present numerical model. The present model could be further improved by including turbulence model which is currently under development. Comparison between the computational mooring forces and the measured mooring forces is presented with a reasonable agreement. The developed numerical model can predict the mooring line forces very well.  相似文献   

6.
A VOF-based numerical model for breaking waves in surf zone   总被引:2,自引:0,他引:2  
This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean flow, and (he k-s equations for turbulence kinetic energy k and turbulence dissipation rate e. To track a free surface, the volume of fluid (VOF) function, satisfying the advection equation was introduced. In the numerical treatment, third-order upwind difference scheme was applied to the convection terms of the RANS equations in order to reduce the effect of numerical viscosity. The shoaling and breaking processes of a periodic wave train on gently sloping beaches were modeled. The computed wave heights of a sloping beach and the distribution of breaking wave pressure on a vertical wall were compared with laboratory data.  相似文献   

7.
This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a submerged porous bar based on linear potential theory. The whole study domain is divided into multiple sub-regions in relation to the structures. The velocity potential in each sub-region is written as a series solution by the separation of variables. A partially reflecting boundary condition is used to describe the partial reflection of a vertical wall. Unknown expansion coefficients in the series solutions are determined by matching velocity potentials among different sub-regions. The analytical solution is verified by an independently developed multi-domain boundary element method(BEM) solution and experimental data. The wave run-up and wave force on the partially reflecting vertical wall are estimated and examined, which can be effectively reduced by the submerged porous bar. The horizontal space between the vertical wall and the submerged porous bar is a key factor, which affects the sheltering function of the porous bar. The wave resonance between the porous bar and the vertical wall may disappear when the vertical wall has a low reflection coefficient. The present analytical solution may be used to determine the optimum parameters of structures at a preliminary engineering design stage.  相似文献   

8.
Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.  相似文献   

9.
Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity-pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.  相似文献   

10.
针对传统海浪建模方法中存在海洋表面真实感差、计算复杂的问题,本文进行了基于光滑粒子流体动力学算法(SPH)与移动立方体算法(MC)相结合的海浪建模仿真研究。通过基于空间网格的粒子分配,建立了粒子群单向列表存储结构,在海浪粒子物理量计算时,实现了其光滑核半径内粒子群的快速检索,并基于拉格朗日流体控制方程,进行了海浪粒子受力分析及状态计算;在模拟海浪与环境障碍物碰撞时,将碰撞问题简化为粒子在一定时间段内所经过的路径与障碍物表面三角面片是否相交来进行判定,并假设粒子为理想刚体,采用改进的欧拉方法实现了粒子新位置的动态计算;为增强海浪流体模拟的真实感,在移动立方体节点密度动态计算基础上,依据确定的海浪表面密度阈值,耦合MC算法进行了海浪表面的动态提取,从而实现了海浪三维表面建模与动态演变仿真。通过模拟验证了该算法的时效性与可行性,可为海洋环境信息三维可视化提供一定的参考。  相似文献   

11.
有限元法与伪谱法混合求解弹性波动方程   总被引:6,自引:0,他引:6  
在地震波场数值模拟中,有限差分法、有限元法和伪谱法都是常用的基本方法,但它们各有不同的适应性和优缺点,如有限差分法、有限元法都存在减弱网格频散和提高计算效率的矛盾,而伪谱法的网格频散小且计算效率高.有限差分法和伪谱法在处理地表结构复杂或地表剧烈起伏以及地下结构复杂的情况时存在较大的难度,而有限元法可较为理想地拟合起伏地表和任意弯曲界面,且可方便地处理自由边界条件和界面边界条件.尝试将有限元法和伪谱法相结合,形成地震波场数值模拟的一种混合方法,利用二者的优点,克服二者的缺点,达到既减弱网格频散又提高计算精度和效率的目的.并采用所谓的‘过度区域‘技术解决两种不同算法的衔接问题.模拟实例表明,给出的混合模拟方法不失为弹性波场数值模拟的一种有效方法.  相似文献   

12.
Abstract The author‘s combined numerical model consisting of a third generation shallow water wave model and a 3-D tide-surge model with wave-dependent surface wind stress were used to study the influence of waves on fide-surge motion. For the typical weather case, in this study, the magnitude and mechanism of the influence of waves on tide-surges in the Bohai Sea were revealed for the first time. The results showed that although consideration of the wave-dependent surface wind stresses raise slightly the traditional surface wind stress, due to the accumulated effects, the computed results are improved on the whole. Storm level maximum modulation can reach 0.4 m. The results computed by the combined model agreed well with the measured data.  相似文献   

13.
An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-β method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.  相似文献   

14.
本文是边界元法在地下水补给量计算中应用的一次尝试,它成功地把边界元法应用到考虑有垂向补给或排泄的实际水文地质问题中。文中详细地推导了考虑有垂向补给或排泄均质各向同性承压含水层非稳定流边界元法的计算公式,结合长春市八里堡群井开采试验的水位观测资料计算了河流边界的补给量;分析了目前边界元法在水文地质计算中出现的时间积分和面积积分问题,在这两个问题的解决上做了些改进;结合简单水文地质模型给出了边界元法的精确度。  相似文献   

15.
WIND WAVES SIMULATION IN THE NORTH AREA OF THE SOUTH CHINA SEA   总被引:1,自引:1,他引:1  
A third generation wave model was developed to simulate wind waves in the South China Sea near Hong Kong. The model solves the energy conservation equation of the two dimensional wave spectrum by directly computing the nonlinear energy interaction among waves of different frequencies, thus avoiding the imposition of restrictions on the shape of the predicted spectra. The use of an upwind difference scheme in the advective terms produces an artificial diffusion which partly compensates the dispersive effect due to the phase velocity differences among various wave components. The use of a semi-implicit scheme for the source terms together with a special treatment of the high frequency tail of the spectrum allows a large time integration step. Verification of the model was done for wave hindcasting studies under conditions of two typhoons and two cold fronts in the north part of the South China Sea near Hong Kong . The model results agree well with the field measurements except that the presence of a dista  相似文献   

16.
Submersible buoy systems are widely used for oceanographic research,ocean engineering and coastal defense.Severe sea environment has obvious effects on the dynamics of submersible buoy systems.Huge tension can occur and may cause the snap of cables,especially during the deployment period.This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods.By applying the lumped mass approach,a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force,tension force and impact force between components of submersible buoy system and seabed.Numerical integration method is used to solve the differential equations.The simulation output includes tension force,trajectory,profile and dropping location and impact force of submersible buoys.In addition,the deployment experiment of a simplified submersible buoy model was carried out.The profile and different nodes' velocities of the submersible buoy are obtained.By comparing the results of the two methods,it is found that the numerical model well simulates the actual process and conditions of the experiment.The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy.The study results will help to understand the conditions of submersible buoy's deployment,operation and recovery,and can be used to guide the design and optimization of the system.  相似文献   

17.
土壤分层信息,特别是表土层结构,对土地生产力具有重要影响,是评价土壤质量的一个重要指标。为了快速、准确地获取土壤分层信息,本文利用探地雷达对分层土壤进行了回波信号采集,并分别在时域和频域分析土壤层位置和层厚信息。首先在信号预处理的基础上,借助包络检波方法确定在土壤分层界面在时域上的位置;然后获取电磁波速度,得到土壤分层厚度。考虑到土壤介电常数与电磁波在土壤中传播速度的相关性,采用短时傅里叶变换方法(Short-time Fourier Transform,STFT)获取各土壤层时频域特征值,并利用回归分析建立特征值与介电常数之间的数学关系,实现对各土壤层的介电常数估算,从而计算出电磁波传播速度,进而确定土壤各层厚度。为验证算法的有效性,分别对理想模拟实验环境和农田环境进行了探地雷达实验,结果表明利用包络检波对探地雷达回波信息进行分析,土壤层检出率达到94.5%,借助STFT谱分析进行探地雷达回波速度估计,对于70 cm深度以上土层厚度计算误差大都保持在10%以下,但随着土壤深度的增加,误差变大。总体来说,本方法能有效识别浅层土壤的分层信息,可应用于实际生产中耕层厚度的估测。  相似文献   

18.
1 IntroductionWiththedevelopmentofcomputingtechniquestheresearchofinverseproblemshasextensivelybeenusedinmanyscientificfields .Th  相似文献   

19.
湖水与地下水交互作用对于水资源合理开发与利用有着重要意义。基于温度示踪的原理,采用解析法、数值法2种方法,分析了湖床底部埋深0~0.4 m湖水与浅层地下水交互关系,并与水动力学方法进行了对比。结果表明,2018年5月20日至28日,湖水与地下水之间的垂向渗流速度为2×10-7~1×10-6 m/s,且在埋深0.4 m时大于埋深0.2 m处。降水会对解析法的结果造成一定影响,0.4 m处受到降雨影响表现为一定的滞后性。无降雨干扰情况下,数值法与水动力学方法估算结果较为吻合,且3种方法的计算结果处于同一数量级。同时,湖床沉积物体积热容和孔隙度2种参数对计算结果影响较大。在半干旱地区湖水与地下水交互研究中,数据较完备时,数值模拟法是更好的选择。   相似文献   

20.
This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient. In this method, the shallow water wave equation is introduced into the cost function of the multigrid three-dimensional variation data assimilation method as the weak constraint term, the surface current and the bottom friction coefficient are defined as the analytical variables, and the high spatiotemporal resolution surface radial flow observed by the high-frequency ground wave radar is used to optimize the surface current and bottom friction coefficient. This method can effectively consider the spatiotemporal correlation of radar data and extract multiscale information from surface radial flow data from long waves to short waves. Introducing the shallow water wave equation into the cost function as a weak constraint condition can adjust both the momentum and mass fields simultaneously to obtain more reasonable analysis information. The optimized bottom friction coefficient is introduced into the regional ocean numerical model to carry out numerical experiments. The test results show that the bottom friction coefficient obtained by this method can effectively improve the accuracy of the numerical simulation of sea surface height in the offshore area and reduce the simulation error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号