首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Explicit integration procedures have been widely adapted and applied to hybrid simulations of the seismic response of structures due to their simplicity. However, these procedures are only conditionally stable and have limited recent applications of hybrid simulations to simple structural models with few degrees of freedom. A novel integration procedure is proposed herein, in which a fully implicit formulation is applied to solve the equation of motion for the hybrid model, but defaults to an explicit or noniterative formulation in steps that fail to converge. The advantages to this approach are the ensured continuity of the simulation and the reduced accumulation of errors that occur during consecutive explicit steps that may lead to instability. The implicit procedure is applied by loading the experimental substructures beyond the expected displacement for the current step, then using the displacements and forces measured through the load path in the iterative implicit scheme. This approach captures the instantaneous behaviour of experimental substructures without physically imposing iterations. Numerical and experimental simulations demonstrate the effectiveness of the proposed integration scheme for multi‐degree‐of‐freedom models, especially in utilization of longer time steps that exceed stability limits of explicit methods, prevention of excitation of higher modes, and testing of stiff systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
地球深部圈层及沉积盆地是一种分区非均匀介质系统,其中不规则地层边界(含起伏地表)对地震波的主要特征有显著影响,而地层的随机非均匀性则主要影响地震波的散射和衰减特征.为了精确刻画不规则地层边界对地震波的反射、透射效应以及非均质体散射引起的地震波衰减效应,全局广义R/T递推传播矩阵法(GGRTM)被提出并逐步发展成为继有限元和有限差分方法之后的另一种复杂介质高精度地震波传播半解析求解方法.在已有的此类方法中,不规则边界均匀地层GGRTM法的优势在于对不规则地层边界的反射和透射效应的准确模拟,而非均质地层薄板化GGRTM法则能准确描述非均质体散射对地震波衰减的影响.本文吸收这两种已有方法的优势,提出了一种考虑非均匀介质、不规则边界的全局广义R/T递推传播矩阵混合方法,并将其用于对边界不规则、层内非均质的复杂模型的二维SH波场模拟.随后在本文方法与边界元法对比研究的基础上讨论了方法的模拟精度.研究结果表明本文提出的混合法是一种解决复杂模型高精度地震模拟的有效方法.  相似文献   

4.
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.  相似文献   

5.
Substructure hybrid simulation has been actively investigated and applied to evaluate the seismic performance of structural systems in recent years. The method allows simulation of structures by representing critical components with physically tested specimens and the rest of the structure with numerical models. However, the number of physical specimens is limited by available experimental equipment. Hence, the benefit of the hybrid simulation diminishes when only a few components in a large system can be realistically represented. The objective of the paper is to overcome the limitation through a novel model updating method. The model updating is carried out by applying calibrated weighting factors at each time step to the alternative numerical models, which encompasses the possible variation in the experimental specimen properties. The concept is proposed and implemented in the hybrid simulation framework, UI‐SimCor. Numerical verification is carried out using two‐DOF systems. The method is also applied to an experimental testing, which proves the concept of the proposed model updating method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A fully implicit iterative integration procedure is presented for local and geographically distributed hybrid simulation of the seismic response of complex structural systems with distributed nonlinear behavior. The purpose of this procedure is to seamlessly incorporate experimental elements in simulations using existing fully implicit integration algorithms designed for pure numerical simulations. The difficulties of implementing implicit integrators in a hybrid simulation are addressed at the element level by introducing a safe iteration strategy and using an efficient procedure for online estimation of the experimental tangent stiffness matrix. In order to avoid physical application of iterative displacements, the required experimental restoring force at each iteration is estimated from polynomial curve fitting of recent experimental measurements. The experimental tangent stiffness matrix is estimated by using readily available experimental measurements and by a classical diagonalization approach that reduces the number of unknowns in the matrix. Numerical and hybrid simulations are used to demonstrate that the proposed procedure provides an efficient method for implementation of fully implicit numerical integration in hybrid simulations of complex nonlinear structures. The hybrid simulations presented include distributed nonlinear behavior in both the numerical and experimental substructures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
高精度有限差分地震波正演方法   总被引:7,自引:0,他引:7  
三维地震模拟不仅可以更精确地研究地震波的传播规律,而且是三维地震资料处理和解释的工具。本文采用精细积分法用于求解波动方程.对波动方程在空间采用差分格式,时间域采用积分法求解析的方法。文中详细论述了精细积分法的数值方法,并给出了计算公式。理论分析和数值算例的结果表明了用这种混合方法得到的解与精确解十分吻合,比有限差分法具有更高的精度。文中给出的地震波正演模拟算例说明了该方法适用于复杂地表和复杂构造地质体。  相似文献   

8.
The time-integration algorithm is an indispensable element to determine response of the boundary of the numerical as well as physical parts in a hybrid test. Instability of the time-integration algorithm may directly lead to failure of the test, so stability of an integration algorithm is particularly important for hybrid testing. The explicit algorithms are very popular in hybrid testing, because iteration is not needed. Many unconditionally stable explicit-algorithms have been proposed for hybrid testing. However, the stability analysis approaches used in all these methods are valid only for linear systems. In this paper, a uniform formulation for energy-consistent time integrations, which are unconditionally stable, is proposed for nonlinear systems. The solvability and accuracy are analyzed for typical energy-consistent algorithms. Some numerical examples and the results of a hybrid test are provided to validate the effectiveness of energy-consistent algorithms.  相似文献   

9.
We present a comparison of methods for the analysis of the numerical substructure in a real‐time hybrid test. A multi‐tasking strategy is described, which satisfies the various control and numerical requirements. Within this strategy a variety of explicit and implicit time‐integration algorithms have been evaluated. Fully implicit schemes can be used in fast hybrid testing via a digital sub‐step feedback technique, but it is shown that this approach requires a large amount of computation at each sub‐step, making real‐time execution difficult for all but the simplest models. In cases where the numerical substructure poses no harsh stability condition, it is shown that the Newmark explicit method offers advantages of speed and accuracy. Where the stability limit of an explicit method cannot be met, one of the several alternatives may be used, such as Chang's modified Newmark scheme or the α‐operator splitting method. Appropriate methods of actuator delay compensation are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Compensation of delay and dynamic response of servo‐hydraulic actuators is critical for stability and accuracy of hybrid experimental and numerical simulations of seismic response of structures. In this study, current procedures for compensation of actuator delay are examined and improved procedures are proposed to minimize experimental errors. The new procedures require little or no a priori information about the behavior of the test specimen or the input excitation. First, a simple approach is introduced for rapid online estimation of system delay and actuator command gain, thus capturing the variability of system response through a simulation. Second, an extrapolation procedure for delay compensation, based on the same kinematics equations used in numerical integration procedures is examined. Simulations using the proposed procedures indicate a reduction in high‐frequency noise in force measurements that can minimize the excitation of high‐frequency modes. To further verify the effectiveness of the compensation procedures, the artificial energy added to a hybrid simulation as a result of actuator tracking errors is measured and used for demonstrating the improved accuracy in the simulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Real‐time hybrid testing is an experimental technique for evaluating the dynamic responses of structural systems under seismic loading. Servo‐hydraulic actuators, by nature, induce inevitable time delay between the command and the achieved displacements. This delay would lead to incorrect test results and even cause instability of the system; therefore, delay compensation is critical for stability and accuracy of hybrid simulations of structural dynamic response. In this paper, a dual delay compensation strategy is proposed by a combination of a phase lead compensator and a restoring force compensator. An outer‐loop feed‐forward phase lead compensator is derived by introducing the inverse model in the z domain. The adaptive law based on the gradient algorithm is used to estimate the system delay in the format of parametric model during the test. It is shown mathematically that the parameter in the delay estimator is guaranteed to converge. The restoring force compensator is adopted to improve the accuracy of experimental results especially when the structure is subjected to high frequency excitations. Finally, analytical simulations of an inelastic SDOF structure are conducted to investigate the feasibility of the proposed strategy. The accuracy of the dual compensation strategy is demonstrated through several shaking table tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
传统利用灰色关联分析方法对地震波动强度变化进行数学建模分析与仿真时,对地震波动强度变化的数列进行仿真分析时,忽略了地震波动强度的时间属性对结果的影响,导致分析结果准确性较低。本论述提出新的地震波动强度变化数学建模分析与仿真方法,通过地震波动强度序列的经验分布确定门限自回归模型的门限值,依据该门限值、AIC最小准则以及最小残差平方等方法获取地震波动强度序列的门限自回归模型,分析自回归模型的极限环和振荡的属性特点,得到地震波动强度变化的初步数值模拟结果。本论述构建了基于均生函数的地震波动强度序列的数学模型,通过均生函数数学建模方法拟合地震波动强度时间序列,依据时间序列基于双评分准则选取拟合周期,实现地震波动强度的数值仿真。实验结果表明,所提方法对地震波动强度变化模型具有较高的准确性和稳定性。  相似文献   

13.
地层衰减定量模拟的地震物理模拟方法   总被引:2,自引:0,他引:2       下载免费PDF全文
Q值是描述地层衰减特征的重要地震物理参数,研究Q值对提高地震资料分辨率,提高地震成像精度具有重要意义.本文从地震物理模拟中模型材料的动力学特征出发,提出了一种地层衰减定量模拟的地震物理模拟方法.通过铝样验证了衍射校正方法的准确性,利用有机玻璃实验分析了不同测量方法求取Q值的测量精度问题,从而优选测量方法;然后基于复合材料的实验数据,建立复合材料配比与各物理参数之间的函数关系,利用该函数关系指导地层衰减定量模拟.结合单层地震物理模型和近地表地震物理模型,研究了模拟地震记录及其频谱特征与野外实际情况之间的相似性,基于建立的函数关系研究分析了地层衰减定量模拟的准确性.实验结果表明,基于地震衰减定量模拟方法构建近地表地震物理模型时,模型中模拟参数不仅与设计参数保持很好的一致性,同时具有很高的准确性,模拟地层的频谱衰减特征与野外地层保持一致.  相似文献   

14.
The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.  相似文献   

15.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated dynamic earthquake loads. Particularly for experimental seismic collapse simulation of structures, hybrid testing can be an attractive alternative to earthquake simulators due to the limited capacity of most facilities and the difficulties and risks associated with a collapsing structure on a shaking table. The benefits of hybrid simulation through collapse can be further enhanced through accurate and practical substructuring techniques that do not require testing the entire structure. An innovative substructuring technique for hybrid simulation of structures subjected to large deformations is proposed to simplify the boundary conditions by overlapping the domains between the numerical and experimental subassemblies. The advantages of this substructuring technique are the following: it requires only critical components of the structure to be tested experimentally; it reduces the number of actuators at the interface of the experimental subassemblies; and it can be implemented using typically available equipment in laboratories. Compared with previous overlapping methods that have been applied in hybrid simulation, this approach requires additional sensing in the hybrid simulation feedback loop to obtain internal member forces, but provides significantly better accuracy in the highly nonlinear range. The proposed substructuring technique is verified numerically and validated experimentally, using the response of a four‐story moment‐resisting frame that was previously tested to collapse on an earthquake simulator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Real‐time hybrid simulation represents a powerful technique capable of evaluating the structural dynamic performance by combining the physical simulation of a complex and rate‐dependent portion of a structure with the numerical simulation of the remaining portion of the same structure. Initially, this paper shows how the stability of real‐time hybrid simulation with time delay depends both on compensation techniques and on time integration methods. In particular, even when time delay is exactly known, some combinations of numerical integration and displacement prediction schemes may reduce the response stability with conventional compensation methods and lead to unconditional instability in the worst cases. Therefore, to deal with the inaccuracy of prediction and the uncertainty of delay estimation, a nearly exact compensation scheme is proposed, in which the displacement is compensated by means of an upper bound delay and the desired displacement is picked out by an optimal process. Finally, the advantages of the proposed scheme over conventional delay compensation techniques are shown through numerical simulation and actual tests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Real‐time hybrid simulation provides a viable method to experimentally evaluate the performance of structural systems subjected to earthquakes. The structural system is divided into substructures, where part of the system is modeled by experimental substructures, whereas the remaining part is modeled analytically. The displacements in a real‐time hybrid simulation are imposed by servo‐hydraulic actuators to the experimental substructures. Actuator delay compensation has been shown by numerous researchers to vitally achieve reliable real‐time hybrid simulation results. Several studies have been performed on servo‐hydraulic actuator delay compensation involving single experimental substructure with single actuator. Research on real‐time hybrid simulation involving multiple experimental substructures, however, is limited. The effect of actuator delay during a real‐time hybrid simulation with multiple experimental substructures presents challenges. The restoring forces from experimental substructures may be coupled to two or more degrees of freedom (DOF) of the structural system, and the delay in each actuator must be adequately compensated. This paper first presents a stability analysis of actuator delay for real‐time hybrid simulation of a multiple‐DOF linear elastic structure to illustrate the effect of coupled DOFs on the stability of the simulation. An adaptive compensation method then proposed for the stable and accurate control of multiple actuators for a real‐time hybrid simulation. Real‐time hybrid simulation of a two‐story four‐bay steel moment‐resisting frame with large‐scale magneto‐rheological dampers in passive‐on mode subjected to the design basis earthquake is used to experimentally demonstrate the effectiveness of the compensation method in minimizing actuator delay in multiple experimental substructures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The time delay resulting from the servo hydraulic systems can potentially destabilize the real‐time dynamic hybrid testing (RTDHT) systems. In this paper, the discrete‐time root locus technique is adopted to investigate the delay‐dependent stability performance of MDOF RTDHT systems. Stability analysis of an idealized two‐story shear frame with two DOFs is first performed to illustrate the proposed method. The delay‐dependent stability condition is presented for various structural properties, time delay, and integration time steps. Effects of delay compensation methods on stability are also investigated. Then, the proposed method is applied to analyze the delay‐dependent stability of a single shaking table RTDHT system with an 18‐DOF finite element numerical substructure, and corresponding RTDHTs are carried out to verify the theoretical results. Furthermore, the stability behavior of a finite element RTDHT system with two physical substructures, loaded by twin shaking tables, is theoretically and experimentally investigated. All experimental results convincingly demonstrate that the delay‐dependent stability analysis on the basis of the discrete‐time root locus technique is feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
谱比法地震衰减层析反演方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
由于地下介质对地震波能量有强烈的吸收作用,降低了地震资料的分辨率以及地震资料处理、解释的精度,因此选择合适的参数对地层吸收衰减情况进行有效描述是对地下构造进行高分辨率、高精度处理及解释的有效途径。目前品质因子Q是对岩石弹性参数进行有效描述的重要参数之一。用品质因子Q来衡量地震波能量在介质中传播的吸收衰减情况,是目前提高地震资料分辨率的有效方法,同时也是提高含油气地层解释精度的有效途径。近些年,许多学者提出了多种计算Q值的方法,其中谱比法是在实际中应用最为广泛的Q值估计方法。本文在前人方法的基础上,对谱比法进行了改进,并结合走时层析方法反演Q值,充分利用谱比法在精度、稳定性等方面的优势以及走时层析方法计算效率高的优点,不仅可以提高反演的精度而且能够保证反演的稳定性,提高计算效率。通过模型试算证明谱比法衰减层析方法能有效估计Q值变化情况,具有较好的发展前景。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号