首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Multiple tuned mass dampers (MTMD) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are taken into consideration for attenuating undesirable vibration of a structure under the ground acceleration. A study is conducted to search for the preferable MTMD which performs better and is easily manufactured from the five available models (i.e. MTMD‐1 – MTMD‐5), which comprise various combinations of the stiffness, mass, damping coefficient and damping ratio in the MTMD. The major objective of the present study then is to evaluate and compare the control performance of these five models. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled by adopting the mode reduced‐order approach. The optimum parameters of the MTMD‐1 – MTMD‐5 are investigated to reveal the influence of the important parameters on their effectiveness and robustness using a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, mass ratio and total number. The criteria selected for the optimum searching are the minimization of the maximum value of the displacement dynamic magnification factor (DDMF) and that of the acceleration dynamic magnification factor (ADMF) of the structure with the MTMD‐1 – MTMD‐5 (i.e. Min.Max.DDMF and Min.Max.ADMF). It is demonstrated that the optimum MTMD‐1 and MTMD‐4 yield approximately the same control performance, and offer higher effectiveness and robustness than the optimum MTMD‐2, MTMD‐3, and MTMD‐5 in reducing the displacement and acceleration responses of structures. It is further demonstrated that for both the best effectiveness and robustness and the simplest manufacturing, it is preferable to select the optimum MTMD‐1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
近年来,各地纷纷兴建大型火车站房,这类建筑中的楼盖大多为大跨、轻质和低阻尼结构,本文基于人体舒适度考虑,对这些大跨楼盖进行振动舒适度的分析。首先,建立某大型火车站房的整体有限元模型,研究这类建筑中大跨楼盖的振动特性;随后,对楼盖在各种不利工况人群荷载作用下的振动舒适度进行分析;最后,在已有研究的基础上,提出了大跨楼盖多重调谐质量阻尼器(Multiple Tuned Mass Dampers,简称MTMD)减振设计方法。结果表明,利用该方法设计MTMD减振系统,可以有效地控制大跨楼盖的竖向振动,各工况下的平均减振率可达34%,从而使结构在使用时满足人体舒适度的要求。  相似文献   

4.
The dynamic response of a wind turbine on monopile is studied under horizontal and vertical earthquake excitations. The analyses are carried out using the finite element program SAP2000. The finite element model of the structure is verified against the results of shake table tests, and the earthquake response of the soil model is verified against analytical solutions of the steady‐state response of homogeneous strata. The focus of the analyses in this paper is the vertical earthquake response of wind turbines including the soil‐structure interaction effects. The analyses are carried out for both a non‐homogeneous stratum and a deep soil using the three‐step method. In addition, a procedure is implemented which allows one to perform coupled soil‐structure interaction analyses by properly tuning the damping in the tower structure. The analyses show amplification of the ground surface acceleration to the top of the tower by a factor of two. These accelerations are capable of causing damage in the turbine and the tower structure, or malfunctioning of the turbine after the earthquake; therefore, vertical earthquake excitation is considered a potential critical loading in design of wind turbines even in low‐to‐moderate seismic areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Seismic capacity, including the ultimate load-carrying capacity and ultimate deformation capacity of precast segmental concrete double-column(PSCDC) piers with steel sleeve(SS) connection or grouted corrugated-metal duct(GCMD) connection, has been verified to be similar to those of cast-in-place(CIP) piers by quasi-static tests. However, the lack of knowledge of seismic response characteristics and damage process of PSCDC piers has limited their application in high-intensity seismic areas. Therefore, shake table tests, using variable types and intensities of seismic ground motions, were performed to investigate the seismic behavior of connection joints and to evaluate the seismic performance of PSCDC piers with SS and GCMD connections. Also, a finite element analysis(FEA) model was developed to study the influence of design parameters on the seismic behavior of the piers. The results showed that the main damage in PSCDC piers was caused by the cyclic opening and closing of connection joints. Under high-intensity ground motions, the PSCDC piers had a lower seismic performance than the CIP piers due to a significant decrease of their integrity and stiffness. The seismic performance of PSCDC piers is comparable to CIP piers when using an appropriate initial stress of the prestressing tendons.  相似文献   

6.
The concentrically braced frame (CBF) structure is one of the most efficient steel structural systems to resist earthquakes. This system can dissipate energy during earthquakes through braces, which are expected to yield in tension and buckle in compression, while all other elements such as columns, beams and connections are expected to behave elastically. In this paper, the performance of single‐storey CBFs is assessed with nonlinear time‐history analysis, where a robust numerical model that simulates the behaviour of shake table tests is developed. The numerical model of the brace element used in the analysis was calibrated using data measured in physical tests on brace members subjected to cyclic loading. The model is then validated by comparing predictions from nonlinear time‐history analysis to measured performance of brace members in full scale shake table tests. Furthermore, the sensitivity of the performance of the CBF to different earthquake ground motions is investigated by subjecting the CBF to eight ground motions that have been scaled to have similar displacement response spectra. The comparative assessments presented in this work indicate that these developed numerical models can accurately capture the salient features related to the seismic behaviour of CBFs. A good agreement is found between the performance of the numerical and physical models in terms of maximum displacement, base shear force, energy dissipated and the equivalent viscous damping. The energy dissipated and, more particular, the equivalent viscous damping, are important parameters required when developing an accurate displacement‐based design methodology for CBFs subjected to earthquake loading. In this study, a relatively good prediction of the equivalent viscous damping is obtained from the numerical model when compared with data measured during the shake table tests. However, it was found that already established equations to determine the equivalent viscous damping of CBFs may give closer values to those obtained from the physical tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Multiple tuned mass dampers (MTMDs) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the MTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the MTMD by conducting a numerical searching technique in two directions. The parameters include: the frequency spacing, average damping ratio, mass ratio and total number. The criterion selected for the optimization is the minimization of the maximum value of the dynamic magnification factor (DMF) of the structure with MTMD (i.e. Min.Max.DMF). In this paper, for the sake of comparison, the MTMD(II), which is made by keeping the mass constant and varying the stiffness and damping coefficient, and a single TMD are also taken into account. It is demonstrated that the optimum frequency spacing of the MTMD is the same as that of the MTMD(II) and the optimum average damping ratio of the MTMD is a little larger than that of the MTMD(II). It is also found that the optimum MTMD is more effective than the optimum MTMD(II) and the optimum single TMD with equal mass. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
This paper develops a two‐stage optimum design procedure for multiple tuned mass dampers (MTMD) to reduce structural dynamic responses with the limitation of MTMD's stroke. A new performance index, which is a linear combination of structural response ratio and MTMD stroke ratio by a weighting factor α, is proposed; α is in the range from 0 to 1.0. The larger the α, the more important the stroke. The case of α=1.0 indicates that MTMD is locked. The analytical results show that the MTMD's stroke can be significantly suppressed with little sacrifice of structural control effectiveness when an appropriate α is selected. To verify the design algorithm, a 360 kg‐MTMD composed of five TMD units arranged in parallel was fabricated. Shaking table tests of a large‐scale three‐story building with and without the MTMD under earthquake excitations were conducted at the National Center for Research on Earthquake Engineering (NCREE) in Taiwan. The experimental results show that MTMD is not only effective in mitigating the building responses but also is successful in suppressing its stroke. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
研究了非对称结构扭转振动多重调谐质量阻尼器(MTMD)控制的最优位置。本文采用的MTMD具有相同的刚度、阻尼,但质量不同。基于导出的设置MTMD时非对称结构扭转角位移传递函数,建立了扭转角位移动力放大系数解析式。MTMD最优参数的评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化。MTMD的有效性评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化与未设置MTMD时非对称结构最大扭转角位移动力放大系数的比值。基于定义的评价准则,研究了非对称结构的标准化偏心系数(NER)和扭转对侧向频率比(TTFR)对不同位置MTMD最优参数和有效性的影响。  相似文献   

10.
The five MTMD models, with natural frequencies being uniformly distributed around their mean frequency, have been recently presented by the first author. They are shown to have the near‐zero optimum average damping ratio (more precisely, for a given mass ratio there is an upper limit on the total number, beyond which the near‐zero optimum average damping ratio occurs). In this paper, the eight new MTMD models (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1~US‐MTMD3, UD‐MTMD1 and UD‐MTMD2), with the system parameters (mass, stiffness and damping coefficient) being, respectively, uniformly distributed around their average values, have been, for the first time here, proposed to seek for the MTMD models without the near‐zero optimum average damping ratio. The structure is represented by the mode‐generalized system corresponding to the specific vibration mode that needs to be controlled. Through minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure with the eight MTMD models (i.e. through the implementation of Min.Min.Max.DMF), the optimum parameters and values of Min.Min.Max.DMF for these eight MTMD models are investigated to evaluate and compare their control performance. The optimum parameters include the optimum mass spacing, stiffness spacing, damping coefficient spacing, frequency spacing, average damping ratio and tuning frequency ratio. The six MTMD models without the near‐zero optimum average damping ratio (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1, US‐MTMD2 and UD‐MTMD2) are found through extensive numerical analyses. Likewise, the optimum UM‐MTMD3 offers the higher effectiveness and robustness and requires the smaller damping with respect to the rest of the MTMD models in reducing the responses of structures subjected to earthquakes. Additionally, it is interesting to note, by comparing the optimum UM‐MTMD3 with the optimum MTMD‐1 recently investigated by the first author, that the effectiveness and robustness for the optimum UM‐MTMD3 is almost identical to that for the optimum MTMD‐1 (without inclusion of the optimum MTMD‐1 with the near‐zero optimum average damping ratio). Recognizing these performance benefits, it is preferable to employ the optimum UM‐MTMD3 or the optimum MTMD‐1 without the near‐zero optimum average damping ratio, when installing the MTMD for the suppression of undesirable oscillations of structures under earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
本文研究了土-结构动力相互作用对采取不同控制措施的结构控制效果的影响。文中首先建立了主动调谐质量阻尼器(ATMD)、半主动磁流变阻尼器(MR)和被动多重调谐质量阻尼器(MTMD)等三种结构控制措施在时域中的控制算法和控制律,然后基于子结构法,采用间接边界元方法,通过傅里叶变换,推导了分别安装三种结构控制措施的受控结构在频域中的运动方程,数值仿真分析了某36层高层建筑的地震反应及其控制效果。结果表明,当采用ATMD或MTMD控制时,考虑土-结构动力相互作用后结构地震反应有所减小;当采用MR控制时,考虑土-结构动力相互作用后结构地震反应有很大程度的减小。由此看来,在设计软土地基上高层结构的结构控制措施时,不考虑土-结构动力相互作用对结构控制效果的影响是偏于安全的。  相似文献   

12.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Active multiple tuned mass dampers (AMTMD) consisting of many active tuned mass dampers (ATMDs) with a uniform distribution of natural frequencies have been, for the first time, proposed for attenuating undesirable vibrations of a structure under the ground acceleration.The multiple tuned mass dampers (MTMD) in the AMTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The control forces in the AMTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the AMTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the AMTMD by conducting a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, total number and normalized acceleration feedback gain coefficient. The criterion, which can be stated as the minimization of the minimum values of the maximum dynamic magnification factors (i.e. Min.Min.Max.DMF), is chosen for the optimum searching. Additionally, for the sake of comparison, the results of the optimum MTMD (the passive counterpart of AMTMD) and ATMD are also taken into account in the present paper. It is demonstrated that the proposed AMTMD can be expected to significantly reduce the oscillations of structures under the ground acceleration. It is also shown that the AMTMD can remarkably improve the performance of the MTMD and has higher effectiveness than ATMD. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Multiple Tuned Mass Dampers (MTMD's) consisting of many tuned mass dampers (TMD's) with distributed natural frequencies are considered for suppressing effectively the harmonically forced single mode response of structures. The fundamental characteristics of MTMD's are investigated analytically with the parameters of the covering frequency range of MTMD's, the damping ratio of each TMD and the total number of TMD's. The effectiveness and the robustness of MTMD's are also discussed in comparison with those of the usual single TMD. It is found that there exists an optimum MTMD for the given total number of TMD's with the optimum frequency range and the optimum damping ratio and that the optimum MTMD is more effective than the optimum single TMD. As for the robustness, it is also clarified that a MTMD can be much more robust than a single TMD while keeping the same level of effectiveness as the optimum single TMD.  相似文献   

15.
This study proposes an innovative passive vibration mitigation device employing essentially nonlinear elastomeric springs as its most critical component. Essential nonlinearity denotes the absence (or near absence) of a linear component in the stiffness characteristics of these elastomeric springs. These devices were implemented and tested on a large‐scale nine‐story model building structure. The main focus of these devices is to mitigate structural response under impulse‐like and seismic loading when the structure remains elastic. During the design process of the device, numerical simulations, optimizations, and parametric studies of the structure‐device system were performed to obtain stiffness parameters for the devices so that they can maximize the apparent damping of the fundamental mode of the structure. Pyramidal elastomeric springs were employed to physically realize the optimized essentially nonlinear spring components. Component‐level finite element analyses and experiments were conducted to design the nonlinear springs. Finally, shake table tests using impulse‐like and seismic excitation with different loading levels were performed to experimentally evaluate the performance of the device. Experimental results demonstrate that the properly designed devices can mitigate structural vibration responses, including floor acceleration, displacement, and column strain in an effective, rapid, and robust fashion. Comparison between numerical and experimental results verified the computational model of the nonlinear system and provided a comprehensive verification for the proposed device. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper,the seismic effectiveness of a density-variable tuned liquid damper(DVTLD) with a sloping bottom is experimentally investigated through a series of shake table tests on a 1/4-scale,3-story frame structure and numerically simulated by a new semi-analytical model.Special attention was given to reducing the fi rst peak and maximum response under near-and far-fi eld ground motions,and the robustness of a density-variable control system consisting of multiple DVTLDs with closely-spaced frequencies....  相似文献   

17.
地震作用下钢框架高层结构的抗震性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
邢磊  贾宝新  邢锐 《地震工程学报》2019,41(6):1482-1487
钢框架高层建筑结构是当前高层建筑设计中使用最为广泛的技术,为提升其抗震性能,本文研究将调谐质量阻尼器安装在钢框架高层建筑结构顶部,考虑到建筑空间需求、防止集中荷载和提升控制效果等因素,在相同楼层或同顶部接近楼层中设置数个较小的、频率一致的子控制装置,通过设置调谐质量阻尼器受控结构等效阻尼比求极值的方法,获取最优刚度与最优阻尼系数;将获取的结果在有限元软件中进行模态分析获取模态质量,实现钢框架高层建筑结构扭转振动的减振控制。实验结果表明,地震荷载下,该方法使得建筑结构顶层角位移峰值和角加速度峰值分别降低50%和30%左右,建筑结构响应下降19%~26%,提高了高层建筑结构的稳定性。  相似文献   

18.
This paper presents an application of multiple tuned mass dampers (MTMDs) with non‐linear damping devices to suppress man‐induced vibrations of a 34m long pedestrian bridge. The damping force generated by each of these damping devices is simply a drag force from liquid acting on an immersed section. The quadratic non‐linear property of these devices was directly determined from free vibration tests of a simple laboratory set‐up. Dynamic models of the bridge and pedestrian loads were constructed for numerical investigation based on field measurement data. The control effectiveness of non‐linear MTMDs was examined along with its sensitivity against estimation errors in the bridge's natural frequency and magnitude of pedestrian load. The numerical results indicated that the optimum non‐linear MTMD system was as effective and robust as its linear counterpart. Then, a six‐unit non‐linear MTMD system was designed, constructed, and installed on the bridge. Field measurements after the installation confirmed the effectiveness of non‐linear MTMDs, and the measurement results were in good agreement with numerical predictions. After the installation, the average damping ratio of the bridge was raised from 0.005 to 0.036 and the maximum bridge accelerations measured during walking tests were reduced from about 0.80–1.30 ms?2 to 0.27–0.40 ms?2, which were within an acceptable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The optimal design and effectiveness of three control systems, tuned viscous mass damper(TVMD), tuned inerter damper(TID) and tuned mass damper(TMD), on mitigating the seismic responses of base isolated structures, were systematically studied. First, the seismic responses of the base isolated structure with each control system under white noise excitation were obtained. Then, the structural parameter optimizations of the TVMD, TID and TMD were conducted by using three different objectives. The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses, including the base shear of the BIS, the absolute acceleration of structural SDOF, and the relative displacement between the base isolation floor and the foundation. Finally, considering the superstructure as a structural MDOF, a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations. The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases, and the effectiveness of TID was always better than TMD with the same mass ratio. The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD. Furthermore, the TVMD, when compared with TMD and TID, had better activation sensitivity and a smaller stroke.  相似文献   

20.
This paper investigates the dynamic behavior and the seismic effectiveness of a non‐conventional Tuned Mass Damper (TMD) with large mass ratio. Compared with conventional TMD, the device mass is increased up to be comparable with the mass of the structure to be protected, aiming at a better control performance. In order to avoid the introduction of an excessive additional weight, masses already present on the structure are converted into tuned masses, retaining structural or architectural functions beyond the mere control function. A reduced order model is introduced for design purposes and the optimal design of a large mass ratio TMD for seismic applications is then formulated. The design method is specifically developed to implement High‐Damping Rubber Bearings (HDRB) to connect the device mass to the main structure, taking advantage of combining stiffness and noticeable damping characteristics. Ground acceleration is modeled as a Gaussian random process with white noise power spectral density. A numerical searching technique is used to obtain the optimal design parameter, the frequency ratio alpha, which minimizes the root‐mean‐square displacement response of the main structure. The study finally comprises shaking table tests on a 1:5 scale model under a wide selection of accelerograms, both artificial and natural, to assess the seismic effectiveness of the proposed large mass ratio TMD. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号