首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present J , H and K -band spectroscopy of Cygnus A, spanning 1.0–2.4 μm in the rest-frame and hence several rovibrational H2, H recombination and [Fe  ii ] emission lines. The lines are spatially extended by up to 6 kpc from the nucleus, but their distinct kinematics indicate that the three groups (H, H2 and [Fe  ii ]) are not wholly produced in the same gas. The broadest line, [Fe  ii ] λ 1.644, exhibits a non-Gaussian profile with a broad base (FWHM≃1040 km s−1), perhaps because of the interaction with the radio source. Extinctions to the line-emitting regions substantially exceed earlier measurements based on optical H recombination lines.
Hard X-rays from the quasar nucleus are likely to dominate the excitation of the H2 emission. The results of Maloney, Hollenbach & Tielens are thus used to infer the total mass of gas in H2 v=1–0 S(1)-emitting clouds as a function of radius, for gas densities of 103 and 105 cm−3, and stopping column densities N H=1022–1024 cm−2. Assuming azimuthal symmetry, at least 2.3×108 M of such material is present within 5 kpc of the nucleus, if the line-emitting clouds see an unobscured quasar spectrum. Alternatively, if the bulk of the X-ray absorption to the nucleus inferred by Ueno et al. actually arises in a circumnuclear torus, the implied gas mass rises to ∼1010 M. The latter plausibly accounts for 109 yr of mass deposition from the cluster cooling flow, for which within this radius.  相似文献   

2.
We report on the discovery of a narrow-emission-line object at z  = 0.672 detected in a deep ASCA survey. The object, AXJ 0341.4–4453, has a flux in the 2–10 keV band of 1.1 ± 0.27 × 10−13 erg s−1 cm−2, corresponding to a luminosity of 1.8 × 1044 erg s−1 ( q 0 = 0.5, H 0 = 50 km s−1 Mpc−1). It is also marginally detected in the ROSAT 0.5–2 keV band with a flux 5.8 × 10−15 erg s−1 cm−2. Both the ASCA data alone and the combined ROSAT/ASCA data show a very hard X-ray spectrum, consistent with either a flat power law (α < 0.1) or photoelectric absorption with a column of n H > 4 × 1022 cm−2 (α = 1). The optical spectrum shows the high-ionization, narrow emission lines typical of a Seyfert 2 galaxy. We suggest that this object may be typical of the hard sources required to explain the remainder of the X-ray background at hard energies.  相似文献   

3.
The quality of astronomical spectroscopic data now available is so high that interpretation and analysis are often limited by the uncertainties of the laboratory data base. In particular, the limit with which space–time variations in the fine structure constant α can be constrained using quasar spectra depends on the availability of more accurate laboratory rest wavelengths. We recently measured some transitions in magnesium by high-resolution Fourier transform spectroscopy for this purpose, and we now report measurements on some ultraviolet resonance lines of Zn  ii (2062 and 2026 Å), Cr  ii (2066, 2062 and 2056 Å) and Ni  ii (1751, 1741, 1709 and 1703 Å). Apart from the last line, which is very weak, the uncertainty of these measurements is 0.002 cm−1 (0.08 må) for the lines around 2000 Å and 0.004 cm−1 (0.12 må) for the lines around 1700 Å.  相似文献   

4.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

5.
An analysis of the spatial fluctuations in 15 deep ASCA SIS0 images has been conducted in order to probe the 2–10 keV X-ray source counts down to a flux limit ∼ 2 × 10−14 erg cm−2 s−1. Special care has been taken in modelling the fluctuations in terms of the sensitivity maps of every one of the 16 regions (5.6 × 5.6 arcmin2 each) into which the SIS0 has been divided, by means of ray-tracing simulations with improved optical constants in the X-ray telescope. The very extended 'sidelobes' (extending up to a couple of degrees) exhibited by these sensitivity maps make our analysis sensitive to both faint on-axis sources and brighter off-axis ones, the former being dominant. The source counts in the range (2−12) × 10−14 erg cm−2 s−1 are found to be close to a Euclidean form which extrapolates well to previous results from higher fluxes and are in reasonable agreement with some recent ASCA surveys. However, our results disagree with the deep survey counts by Georgantopoulos et al. The possibility that the source counts flatten to a sub-Euclidean form, as is observed at soft energies in ROSAT data, is only weakly constrained to happen at a flux < 1.8 × 10−12 erg cm−2 s−1 (90 per cent confidence). Down to the sensitivity limit of our analysis, the integrated contribution of the sources the imprint of which is seen in the fluctuations amounts to ∼ 35 ± 13 per cent of the extragalactic 2–10 keV X-ray background.  相似文献   

6.
An upper limit of the column density of the C5 linear molecule in translucent interstellar clouds is estimated from high-resolution ( R =80 000) and very high signal-to-noise ratio (∼1000) echelle spectra. It is 1012 cm−2 per E ( B − V )=1 (two orders of magnitude lower than that of C2).  相似文献   

7.
Radiative lifetimes of 17 excited levels in Zr  i , in the energy interval 29 000–40 974 cm−1, have been investigated using the time-resolved laser-induced fluorescence method. The levels belong to the 4d25s5p, 4d35p and 4d5s25p electronic configurations and were excited in a single-step process from either the ground term, 4d25s2 a 3F, or from the low-lying 4d25s2 a 3P and a 5F terms. For three levels, we confirm previous measurements while for 14 of the levels the lifetimes have been measured for the first time. The experimental results are compared to theoretical calculations performed with a multiconfiguration relativistic Hartree–Fock method including core-polarization effects. Theoretical transition probabilities of astrophysical interest, scaled by the experimental lifetimes, for the depopulating channels of the investigated levels are also presented.  相似文献   

8.
The high resolution laboratory spectrum of hot water vapour has been recorded in the 500–13 000 cm−1 wavenumber range and we report on the analysis of the 4750–13 000 cm−1 (0.769–2.1 μm) portion. The emission spectrum was recorded using an oxy-acetylene welding torch and a Fourier transform spectrometer. Line assignments in the laboratory spectrum as well as in an absorption spectrum of a sunspot umbra were made with the help of the BT2 line-list. Our torch spectrum is the first laboratory observation of the 9300 Å'steam bands' seen in M-stars and brown dwarfs.  相似文献   

9.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

10.
We report the discovery of type I X-ray bursts from the low-mass X-ray binary  4U 1708 − 40  during the 100-ks observation performed by BeppoSAX on 1999 August 15–16. Six X-ray bursts have been observed. The unabsorbed 2–10 keV fluxes of the bursts range from ∼3 to  9 × 10−10 erg cm−2 s−1  . A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate     , which may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of  4U 1708 − 40  , where no bursts have been observed; we find persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts.  相似文献   

11.
Extensive photometric and spectroscopic observations of SN 1994aj until 540 d after maximum light have been obtained. The photometry around maximum suggests that the SN belongs to the Type II Linear class, with a peak absolute magnitude of M V∼−17.8 (assuming H 0=75 km s−1 Mpc−1). The spectra of SN 1994aj were unusual, with the presence of a narrow line with a P Cygni profile on top of the broad Balmer line emission. This narrow feature is attributed to the presence of a dense superwind surrounding the SN. At 100–120 d after maximum light the SN ejecta start to interact with this circumstellar material. The SN luminosity decline rates slowed down [γ R =0.46 mag (100 d)−1], becoming less steep than the average late luminosity decline of normal SN II [∼1 mag (100 d)−1]. This dense ( ˙M / u W∼1015 g cm−1) wind was confined to a short distance from the progenitor ( R out=∼5×1016 cm), and results from a very strong mass-loss episode ( ˙M =10−3 M⊙ yr−1), which terminated shortly before explosion (∼5–10 yr).  相似文献   

12.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

13.
We have used the ATNF Mopra antenna and the SEST antenna to search in the directions of several class II methanol maser sources for emission from six methanol transitions in the frequency range 85–115 GHz. The transitions were selected from excitation studies as potential maser candidates. Methanol emission at one or more frequencies was detected from five of the maser sources, as well as from Orion KL. Although the lines are weak, we find evidence of maser origin for three new lines in G345.01+1.79, and possibly one new line in G9.62+0.20.
The observations, together with published maser observations at other frequencies, are compared with methanol maser modelling for G345.01+1.79 and NGC 6334F. We find that the majority of observations in both sources are consistent with a warm dust (175 K) pumping model at hydrogen density ∼106 cm−3 and methanol column density ∼ 5×1017 cm−2. The substantial differences between the maser spectra in the two sources can be attributed to the geometry of the maser region.  相似文献   

14.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

15.
We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), carried out in a broad X-ray band covering 0.1–300 keV only 15 d after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments which measured a flux F x≃1.8×10−11 erg cm−2 s−1 in the 0.1–10 keV range and a 2 σ upper limit F x<6.7×10−12 erg cm−2 s−1 in the 15–60 keV range. We attribute the emission to shocked nebular ejecta at a plasma temperature kT ≃6 keV . At six months no bright component emerged in the 15–60 keV range, but a bright central supersoft X-ray source appeared. The hot nebular component previously detected had cooled to a plasma temperature kT <1 keV . There was strong intrinsic absorption of the ejecta in the first observation and not in the second, because the column density of neutral hydrogen decreased from N (H)≃1.7×1023 to N (H)≃1021 cm−2 (close to the interstellar value). The unabsorbed X-ray flux also decreased from F x=4.3×10−11 to F x≃10−12 erg cm−2 s−1 .  相似文献   

16.
We report the discovery of a 7.3 M J exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118−0262485 with a period of 2.243 752 d and orbital eccentricity   e = 0.09  . A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 ± 0.5 M J and a radius of 1.28 ± 0.08 R J. This leads to a mean density of about 4.6 g cm−3 making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of  160 ± 20  pc. Spectral analysis of the host star reveals a temperature of  6475 ± 100 K, log  g = 4.07  cm s−2 and   v sin  i = 4.9 ± 1.0  km s−1, and also a high lithium abundance,  log  N (Li) = 2.84 ± 0.05  . The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5–1.0 Gyr.  相似文献   

17.
We propose a model for the source of the X-ray background (XRB) in which low-luminosity active nuclei ( L  ∼ 1043 erg s−1) are obscured ( N  ∼ 1023 cm−2) by nuclear starbursts within the inner ∼ 100 pc. The obscuring material covers most of the sky as seen from the central source, rather than being distributed in a toroidal structure, and hardens the averaged X-ray spectrum by photoelectric absorption. The gas is turbulent with velocity dispersion ∼ few × 100 km s−1 and cloud–cloud collisions lead to copious star formation. Although supernovae tend to produce outflows, most of the gas is trapped in the gravity field of the star-forming cluster itself and the central black hole. A hot ( T  ∼ 106 − 107 K) virialized phase of this gas, comprising a few per cent of the total obscuring material, feeds the central engine of ∼ 107 M⊙ through Bondi accretion, at a sub-Eddington rate appropriate for the luminosity of these objects. If starburst-obscured objects give rise to the residual XRB, then only 10 per cent of the accretion in active galaxies occurs close to the Eddington limit in unabsorbed objects.  相似文献   

18.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

19.
The origin of rovibrational H2 emission in the central galaxies of cooling flow clusters is poorly understood. Here we address this issue using data from our near-infrared spectroscopic survey of 32 of the most line-luminous such systems, presented in the companion paper by Edge et al.
We consider excitation by X-rays from the surrounding intracluster medium (ICM), ultra-violet (UV) radiation from young stars, and shocks. The   v = 1–0  K -band lines with upper levels within  104 K  of the ground state appear to be mostly thermalized (implying gas densities  ≳105 cm−3  ), with the excitation temperature typically exceeding 2000 K, as found earlier by Jaffe, Bremer & van der Werf. Together with the lack of strong   v = 2–0  lines in the H -band, this rules out UV radiative fluorescence.
Using the cloudy photoionization code, we deduce that the H2 lines can originate in a population of dense clouds, exposed to the same hot  ( T ∼ 50 000 K)  stellar continuum as the lower density gas which produces the bulk of the forbidden optical line emission in the Hα-luminous systems. This dense gas may be in the form of self-gravitating clouds deposited directly by the cooling flow, or may instead be produced in the high-pressure zones behind strong shocks. Furthermore, the shocked gas is likely to be gravitationally unstable, so collisions between the larger clouds may lead to the formation of globular clusters.  相似文献   

20.
We present Chandra and XMM–Newton observations of 12 bright  [ f (2–10 keV) > 10−13 erg cm−2 s−1]  sources from the ASCA search for the High Energy Extragalactic Population (SHEEP) survey. Most of these have been either not observed or not detected previously with the ROSAT mission, and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating the optical counterpart of the X-ray sources with accuracy. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects) and broad-line (BL) active galactic nuclei (AGN) (five objects), with one source remaining unidentified. Our sources cover the redshift range 0.04–1.29, spanning luminosities from 1042 to  1045 erg s−1  (2–10 keV). The NL sources have preferentially lower redshift (and luminosity) compared to the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a roughly equal number of obscured  ( N H > 1022 cm−2)  and unobscured  ( N H < 1022 cm−2)  sources. There is a clear tendency for obscured sources to be associated with NL AGN and unobscured sources with BL ones. However, there is a marked exception with the highest obscuring column observed at a BL AGN at a redshift of z = 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号