首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《International Geology Review》2012,54(13):1443-1463
Fluid inclusions hosted by quartz veins in high-pressure to ultrahigh-pressure (HP-UHP) metamorphic rocks from the Chinese Continental Scientific Drilling (CCSD) Project main drillhole have low, varied hydrogen isotopic compositions (δD?=??97‰ to??69‰). Quartz δ18O values range from??2.5‰ to 9.6‰; fluid inclusions hosted in quartz have correspondingly low δ18O values of??11.66‰ to 0.93‰ (T h?=?171.2~318.8°C). The low δD and δ18O isotopic data indicate that protoliths of some CCSD HP-UHP metamorphic rocks reacted with meteoric water at high latitude near the surface before being subducted to great depth. In addition, the δ18O of the quartz veins and fluid inclusions vary greatly with the drillhole depth. Lower δ18O values occur at depths of ~900–1000 m and ~2700 m, whereas higher values characterize rocks at depths of about 1770 m and 4000 m, correlating roughly with those of wall-rock minerals. Given that the peak metamorphic temperature of the Dabie-Sulu UHP metamorphic rocks was about 800°C or higher, much higher than the closure temperature of oxygen isotopes in quartz under wet conditions, such synchronous variations can be explained by re-equilibration. In contrast, δD values of fluid inclusions show a different relationship with depth. This is probably because oxygen is a major element of both fluids and silicates and is much more abundant in the quartz veins and silicate minerals than is hydrogen. The oxygen isotope composition of fluid inclusions is evidently more susceptible to late-stage re-equilibration with silicate minerals than is the hydrogen isotope composition. Therefore, different δD and δ18O patterns imply that dramatic fluid migration occurred, whereas the co-variation of oxygen isotopes in fluid inclusions, quartz veins, and wall-rock minerals can be better interpreted by re-equilibration during exhumation.

Quartz veins in the Dabie-Sulu UHP metamorphic terrane are the product of high-Si fluids. Given that channelized fluid migration is much faster than pervasive flow, and that the veins formed through precipitation of quartz from high-Si fluids, the abundant veins indicate significant fluid mobilization and migration within this subducted continental slab. Many mineral reactions can produce high-Si fluids. For UHP metamorphic rocks, major dehydration during subduction occurred when pressuretemperature conditions exceeded the stability of lawsonite. In contrast, for low-temperature eclogites and other HP metamorphic rocks with peak metamorphic P–T conditions within the stability field of lawsonite, dehydration and associated high-Si fluid release may have occurred as hydrous minerals were destabilized at lower pressure during exhumation. Because subduction is a continuous process whereas only a minor fraction of the subducted slabs returns to the surface, dehydration during underflow is more prevalent than exhumation even in subducted continental crust, which is considerably drier than altered oceanic crust.  相似文献   

2.
In order to reconstruct the formation and exhumation mechanisms of UHP metamorphic terrains, the Chinese Continental Scientific Drilling Program (CCSD) has been carried out in Donghai of the Dabie-Sulu ultrahigh-pressure (UHP) metamorphic belt, East China. Eclogite, gneiss, amphibolite (retrograded from eclogite), ultramafic rocks, and minor schist and quartzite have been drilled. Aiming to reveal the fluid behaviour in a vertical sequence of an UHP slab, we investigated fluid inclusion and oxygen isotope characteristics of selected drillcores from the main hole and the pilot-holes PP2 and ZK 703 of the CCSD. More than 540 laser-ablation oxygen isotope analyses on garnet, omphacite, quartz, kyanite, amphibole, phengite, rutile, epidote, amphibole, plagioclase, and biotite from various rocks in the depth range of 0–3,000 m (mainly eclogite and gneiss) show that the investigated rocks can be divided into two groups: 18O-depleted rocks (as low as δ18O = −7.4‰ for garnet) indicate interaction with cold climate meteoric waters, whereas 18O-normal rocks (with bulk δ18O > +5.6‰) have preserved the O-isotopic compositions of their protoliths. Meteoric water/rock interaction has reached depths of at least 2,700 m. Oxygen isotope equilibrium has generally been achieved. Isotopic compositions of mineral phases are homogeneous on a mm to cm scale regardless of lithology, but heterogeneous on the scale of a few metres. Oxygen isotope distributions in the vertical sections favour an “in situ” origin of the UHP metamorphic rocks. The very negative δ18O eclogites usually have higher hydroxyl-mineral contents than the normal δ18O rocks, indicating higher water content during UHP metamorphism. Fluid inclusion data suggest that rocks with depleted 18O compositions have had different fluid histories compared to those with normal δ18O values. Rocks with depleted 18O mainly have primary medium-to-high salinity inclusions in omphacite, kyanite and quartz, and abundant secondary low-salinity or pure water inclusions in quartz, indicating a high-salinity-brine-dominated fluid system during peak UHP metamorphism; no carbonic inclusions have been identified in these rocks. By contrast, primary very high-density CO2 inclusions are commonly found in the rocks with normal δ18O values. These observations suggest that fluid and oxygen isotope composition of minerals are related and reflect variable degrees of alterations of the Dabie-Sulu UHP metamorphic rocks.  相似文献   

3.
The oxygen and hydrogen isotope compositions of minerals and whole rock were determined for two types of gneiss (biotite gneiss and granitic gneiss) associated with ultrahigh pressure (UHP) eclogites in the Shuanghe district of the eastern Dabie Mountains. There are significant differences in δ18O between the two gneisses: the UHP biotite gneiss varying from −4.3‰ to 10.6‰ similar to the associated eclogites, whereas the non-UHP granitic gneiss ranges only from −3.8‰ to 1.2‰. The δD values are similar in the two gneisses with −37 to −64‰ for epidote/zoisite, −92 to −83‰ for amphibole, and −63 to −109‰ for biotite/phengite. Hydrogen isotope disequilibrium among the coexisting hydroxyl-bearing minerals is ascribed to retrograde exchange subsequent to amphibolite-facies metamorphism. Oxygen isotopic equilibrium has been preserved among various minerals in both gneisses regardless of the large variation in rock δ18O. Oxygen isotopic geothermometers yield different but regular temperatures corresponding to the closure temperatures of oxygen diffusion in the minerals. The metamorphic temperatures of both eclogite facies and amphibolite facies have been recovered in mineral pairs from the biotite gneiss. The isotopic temperatures for the granitic gneiss are mostly in accordance with amphibolite-facies metamorphism. However, high temperatures of 550 to 650 °C are obtained from those minerals resistant to retrograde oxygen isotope exchange, implying that the granitic gneiss may have experienced higher temperature metamorphism than expected from petrologic thermometers. The 18O-depletion of both gneisses is interpreted to result from meteoric-hydrothermal exchange before/during plate subduction. Therefore, the measured δ18O values of the gneisses reflect the oxygen isotope compositions of their protoliths prior to the UHP metamorphism. It is inferred that the UHP unit is in foreign contact with the non-UHP unit like a tectonic melange, but both of them experienced the two common stages of geodynamic evolution: (1) 18O-depletion prior to the UHP metamorphism, (2) uplifting since the amphibolite-facies metamorphism. Received: 5 May 1998 / Accepted: 27 August 1998  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(11-12):1825-1836
Oxygen isotope data have been obtained for silicate inclusions in diamonds, and similar associated minerals in peridotitic and eclogitic xenoliths from the Finsch kimberlite by laser-fluorination. Oxygen isotope analyses of syngenetic inclusions weighing 20–400 μg have been obtained by laser heating in the presence of ClF3. 18O/16O ratios are determined on oxygen converted to CO2 over hot graphite and, for samples weighing less than 750 μg (producing <12 μmoles O2) enhanced CO production in the graphite reactor causes a systematic shift in both δ13C and δ18O that varies as a function of sample weight. A “pressure effect” correction procedure, based on the magnitude of δ13C (CO2) depletion relative to δ13C (graphite), is used to obtain corrected δ18O values for inclusions with an accuracy estimated to be ±0.3‰ for samples weighing 40 μg.Syngenetic inclusions in host diamonds with similar δ13C values (−8.4‰ to −2.7‰) have oxygen isotope compositions that vary significantly, with a clear distinction between inclusions of peridotitic (+4.6‰ to +5.6‰) and eclogitic paragenesis (+5.7‰ to +8.0‰). The mean δ18O composition of olivine inclusions is indistinguishable from that of typical peridotitic mantle (5.25 ± 0.22‰) whereas syngenetic purple garnet inclusions possess relatively low δ18O values (5.00 ± 0.33‰). Reversed oxygen isotope fractionation between olivine and garnet in both diamond inclusions and diamondiferous peridotite xenoliths suggests that garnet preserves subtle isotopic disequilibrium related to genesis of Cr-rich garnet and/or exchange with the diamond-forming fluid. Garnet in eclogite xenoliths in kimberlite show a range of δ18O values from +2.3‰ to +7.3‰ but garnets in diamondiferous eclogites and as inclusions in diamond all have values >4.7‰.  相似文献   

5.
Sm-Nd isotope tracer techniques are powerful tools in identification of the protolith nature of UHP and HP rocks and can be used to constrain modeling of tectonic processes of continental collision. UHP rocks may have diverse origins, and not all of them carry the same significance for subduction of continental blocks. In this paper, Sm-Nd isotopic data are compiled for UHP and HP rocks, mostly represented by eclogites and garnet peridotites, from the Alpine, Hercynian (Variscan), and Caledonian belts of western Europe; the Pan-African belts of northern Africa; and the Ross belt of Antarctica. These data then are compared with the isotopic characteristics of the UHP rocks from the Dabie orogen of central China. Except for the coesite-bearing quartzitic metasediments of Dora-Maira (Western Alps), which are clearly of continental origin, all HP and UHP rocks (eclogites and ultramafic rocks) from the Alpine, Hercynian, and Pan-African belts have oceanic affinities with the characteristic positive εNd(T) values (= metamorphic initial 143Nd/144Nd ratios). They represent segments of oceanic lithosphere that were subducted, underwent eclogite-facies metamorphism, and later were tectonically transported into orogenic zones during continental collisions. By contrast, the majority of UHP rocks from the European Caledonide and the Dabie orogen have negative εND(T) values, indicating continental affinity. This suggests that these mafic and ultramafic rocks have had a long crustal residence time and that their UHP metamorphism is indicative of subduction of ancient and cold continental blocks, as represented by some Precambrian gneiss terranes containing mafic components including greenschists, amphibolites, or basic granulites.

In the Dabie orogen, none of the UHP eclogites analyzed thus far have shown oceanic affinity; thus they do not represent subducted Tethys Ocean crust. The preservation of ultrahigh εND(0) values (+170 to +260) in eclogites of very low Nd concentrations (average 0.5 ppm) from the Weihai region and of the extraordinarily low δ18O in many eclogites and gneisses, the general absence of syntectonic granites in the Dabie Shan, and the available age data obtained by different techniques all point to a rapid rate of exhumation and the absence of a pervasive aqueous fluid phase during the entire process of subduction and exhumation of the Dabie UHP terrane.  相似文献   

6.
《Geochimica et cosmochimica acta》1999,63(11-12):1787-1804
Rift-related lavas of the North Shore Volcanic Group (NSVG) are intruded by plutonic rocks of the Duluth Complex along the unconformity between the NSVG and the underlying Proterozoic metasedimentary rocks (Animikie Group) and Archean volcano-sedimentary and plutonic rocks. Heat associated with the emplacement of the mafic intrusions generated fluid flow in the overlying plateau lavas. δ18O values for whole rocks from the NSVG and hypabyssal sills range from 5.5 to 17.7‰ and 5.3 to 11.5‰, respectively, and most values are higher than those considered “normal” for basaltic rocks (5.4 to 6.0‰). In general, there is a positive correlation between whole rock δ18O and water content, which suggests that elevated δ18O values are related primarily to secondary mineral growth and isotopic exchange during hydrothermal alteration and metamorphism. δ18OH2O values computed from amygdule-filling minerals such as smectite, chlorite, and epidote found in low- to high-temperature metamorphic zones range from ∼−1 to 6‰ with an average value of ∼3‰. Smectite in the lower-grade zones gives computed δDH2O values between −26 and −83‰, whereas epidote in the higher-grade zones gives δDH2O values of −15 to 6‰. Fluid isotopic compositions computed from epidote and smectite values are suggestive of the involvement of at least two fluids during the early stages of amygdule filling. Fluid δD and δ18O values determined from epidote at the higher metamorphic grades indicate that seawater dominated the deeper portions of the system where greenschist facies assemblages and elevated δ18O values were produced in flow interiors, as well as margins. Smectite isotopic compositions suggest that meteoric water was predominant in the shallower portions of the system. The increase in δ18O values of massive flow interiors with depth is interpreted as a result of rock interaction with a fluid of constant oxygen isotopic composition with increasing temperature. The stable isotopic data are supportive of previous suggestions that seawater was involved in the hydrothermal system associated with the Midcontinent Rift. Although the origin of the seawater remains problematic, it appears that marine incursions may have occurred during the late stages of Portage Lake volcanism, and periodically thereafter.  相似文献   

7.
Palaeotemperature estimates from the oxygen‐isotope compositions of belemnites have been hampered by not knowing ancient seawater isotope compositions well enough. We have tackled this problem using Mg/Ca as a proxy for temperature and here, we present a ~2 Ma record of paired Mg/Ca and δ18O measurements of Jurassic (Early Pliensbachian) belemnites from the Asturian basin as a palaeo‐proxy of seawater oxygen‐isotope composition. From the combined use of the two approaches, we suggest a δ18Ow composition of about ?0.1‰ for the Jamesoni–Ibex zones. This value may have been increased by about 0.6‰ during the Davoei Zone due to the effect of waters with a different δ18Ow composition. These findings illustrate the inaccuracy of using a globally homogeneous ice‐free value of δ18Ow = ?1‰ for δ18Ocarb‐based palaeotemperature reconstructions. Our data suggest that previous palaeotemperatures calculated in the region from δ18O values of belemnites may have been underestimated as the seawater oxygen isotopic composition could have been higher.  相似文献   

8.
Fluid plays a key role in metamorphism and magmatism in subduction zones. Veins in high‐pressure (HP) to ultrahigh‐pressure (UHP) rocks are the products of fluid‐rock interaction, and can thus provide important constraints on fluid processes in subduction zones. This contribution is an integrated study of zircon U–Pb and O–Hf, as well as whole‐rock Nd–Sr isotopic compositions for a quartz vein, a complex vein, and their host eclogite in the Sulu UHP terrane to decipher the timing and source of fluid flow under HP‐UHP metamorphic conditions. The inherited magmatic zircon cores from the host eclogite constrain the protolith age at c. 750 Ma. Their variable εHf(t) values from ?1.11 to 2.54 and low δ18O values of 0.32–3.40‰ reflect a protolith that formed in a rift setting due to the breakup of the supercontinent Rodinia. The hydrothermal zircon from the quartz and the complex veins shows euhedral shapes, relatively flat HREE pattern, slight or no negative Eu anomaly, low 176Lu/177Hf ratios, and low formation temperatures of 660–690 °C, indicating they precipitated from fluids under HP eclogite facies conditions. This zircon yielded similar U–Pb ages of 217 ± 2 and 213 ± 3 Ma within analytical uncertainty, recording the timing of fluid flow during the exhumation of the UHP rock. It is inferred that the fluids might be of internal origin based on the homogeneity of δ18O values of the hydrothermal zircon from the quartz (?2.41 ± 0.13‰) and complex veins (?2.35 ± 0.12‰), and the metamorphic grown zircon of the host eclogite (?2.23 ± 0.16‰). The similar εNd(t) values of the whole rocks also support such a point. Zircon O and whole‐rock Nd isotopic compositions are therefore useful to identify the source of fluid, for they are major and trace components in minerals involved in metamorphic reactions during HP‐UHP conditions. On the other hand, the hydrothermal zircon from the veins and the metamorphic zircon from the host eclogite exhibit variable εHf(t) values. Model calculation suggests that the Hf was derived from the breakdown of major rock‐forming minerals and recycling of the inherited magmatic zircon. The variable whole‐rock initial 87Sr/86Sr ratios might be caused by subsequent retrograde metamorphism after the formation of the veins.  相似文献   

9.
Oxygen isotope studies of the Suzhou granite have been made based on drill-hole samples. In the inner part, the δ18O values are less variable either in the whole-rock, quartz or in feldspar. Oxygen isotopic compositions are in equilibrium between coexisting quartz and feldspar. Data points from the inner part are plotted in a small area in the δ18OQ18Of diagram, indicating that this part has not been affected by meteoric hydrothermal fluids. But the whole-rock δ18O values of the marginal part vary greatly. Oxygen isotopic compositions are in extreme disequilibrium between quartz and feldspar. Data points from the marginal part are displayed with a nearly vertical slope in the δ18OQ18Of diagram, implying that rocks of this part are affected by the meteoric hydrothermal fluids. Extreme water-rock interactions lead to mineralizations of rare-elements (Nb, Ta, as well as Zr, Hf, Th) in the marginal part. Source materials of the Suzhou granite are also discussed in this paper.  相似文献   

10.
The Malani Igneous Suite (MIS) in NW India represents one of the largest and well‐preserved Precambrian felsic igneous provinces, with minor mafic volcanics and dykes. The SIMS (Secondary Ion Mass Spectrometric) zircon U‐Pb geochronology yielded 776.8 ± 4.5 to 758.5 ± 6.9 Ma ages for rhyolites from Jodhpur region and Sindreth Basin while dacite sample from Punagarh Basin was dated to 760.5 ± 10 Ma. Zircons from rhyolitic and dacitic lavas have oxygen isotopic compositions that can be grouped into low δ18OV‐SMOW (4.12 to ‐1.11‰) and high (δ18O = 8.23‐5.12‰) categoroes, respectively. The low δ18O zircons have highly radiogenic Hf isotopic compositions (εHf(t)= +13.0 to +3.6) suggesting high temperature bulk cannibalization of upper level juvenile crust as the essential process for magma generation. Older than 800 Ma xenocrystic zircons in dacite have high δ18O values whereas 795 Ma ones have mantle‐like Hf‐O isotopic compositions, reflecting a significant shift in tectono‐thermal regime in NW India during 800‐780 Ma. A synchronous transition in the South China Block and Madagascar suggests a spatially and temporally linked geodynamic system. Geochemical data in combination with the new isotopic results point towards an overall convergent plate margin setting undergoing localized lithospheric extension. The NW India and South China blocks together with Madagascar and the Seychelles lay either along the periphery of Rodinia or off the supercontinent with the age of convergent plate margin magmatism coinciding with breakup of the supercontinent.  相似文献   

11.
The results of isotope-geochemical studies of carbonates of different mineral types from manganese and host rocks of the Famennian manganiferous formation of Pai-Khoi are reported. Kutnahorite ores are characterized by δ13C values from–6.6 to 1.3‰ and δ18O from 20.0 to 27.4‰. Rhodonite–rhodochrosite rocks of the Silovayakha ore occurrence have δ13C from–5.2 to–2.9 and δ18O from 25.4 to 24.3‰. Mineralogically similar rocks of the Nadeiyakha ore occurrence show the lighter carbon and oxygen isotopic compositions: δ13C from–16.4 to–13.1 and δ18O from 24.8 to 22.5‰. Similar isotopic compositions were also obtained for rhodochrosite–kutnahorite rocks of this ore occurrence: δ13C from–13.0 to–10.4‰ and δ18O from 24.6 to 21.7‰. Siderorodochrosite ores differ in the lighter oxygen and carbon isotopic compositions: δ18O from 18.7 to 17.6‰ and δ13C from–10.2 to–9.3‰, respectively. In terms of the carbon and oxygen isotopic compositions, host rocks in general correspond to marine sedimentary carbonates. Geological-mineralogical and isotope data indicate that the formation of the manganese carbonates was related to the hydrothermal ore-bearing fluids with the light isotopic composition of oxygen and carbon dissolved in CO2. The isotopic features indicate an authigenic formation of manganese carbonates under different isotopegeochemical conditions.  相似文献   

12.
A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well‐preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A PT path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2‐bearing NaCl‐rich solutions, whereas it changed into CO2‐dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low‐salinity fluids were involved. In situ UV‐laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (δ18OVSMOW = c. 6.7‰) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid–rock interactions. Unusual MORB‐like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra‐high‐pressure (UHP) eclogites in the Dabie‐Sulu area. However, the age‐corrected initial εNd(t) is ? 2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism.  相似文献   

13.
Oxygen isotope ratios of quartz inclusions (QI) within garnet from granulite and amphibolite facies gneisses in the Adirondack Mountains, NY were analysed and used to determine metamorphic temperatures. Primary QI for eight of 12 samples have δ18O values significantly lower than matrix quartz (MQ). The primary QI retain δ18O values representative of thermal conditions during garnet crystallization, whereas the δ18O values of MQ were raised by diffusive exchange with other matrix minerals (e.g. mica and feldspar) during cooling. The δ18O differences between QI and MQ show that garnet (a mineral with slow diffusion of oxygen) can armour QI from isotopic exchange with surrounding matrix, even during slow cooling. These differences between δ18O in MQ and QI can further be used to test cooling rates by Fast Grain Boundary diffusion modelling. Criteria for identifying QI that preserve primary compositions and are suitable for thermometry were developed based on comparative tests. Relations between δ18O and inclusion size, distance of inclusion to host–garnet rim, core–rim zonation of individual inclusions, and presence or absence of petrological features (healed cracks in QI, inclusions in contact with garnet cracks lined by secondary minerals, and secondary minerals along the inclusion grain boundary) were investigated. In this study, 61% of QI preserve primary δ18O and 39% were associated with features that were linked to reset δ18O values. If δ18O in garnet is homogeneous and inclusions are removed, laser‐fluorination δ18O values of bulk garnet are more precise, more accurate, and best for thermometry. Intragrain δ18O(Grt) profiles measured in situ by ion microprobe show no δ18O zonation. Almandine–rich garnet (Alm60–75) from each sample was measured by laser‐fluorination mass‐spectrometry (LF‐MS) for δ18O and compared with ion microprobe measurements of δ18O in QI for thermometry. The Δ18O(Qz–Grt) values for Adirondack samples range from 2.66 to 3.24‰, corresponding to temperatures of 640–740 °C (A[Qz–Alm] = 2.71). Out of 12 samples that were used for thermometry, nine are consistent with previous estimates of peak temperature (625–800 °C) based on petrological and carbon–isotope thermometry for regional granulite and upper amphibolite facies metamorphism. The three samples that disagree with independent thermometry for peak metamorphism are from the anorthosite–mangerite–charnockite–granite suite in the central Adirondacks and yield temperatures of 640–665 °C, ~100 °C lower than previous estimates. These low temperatures could be interpreted as thermal conditions during late (post‐peak) crystallization of garnet on the retrograde path.  相似文献   

14.
Abstract Petrological, oxygen isotope and 40Ar/39Ar studies were used to constrain the Tertiary metamorphic evolution of the lower tectonic unit of the Cyclades on Tinos. Polyphase high-pressure metamorphism reached pressures in excess of 15 kbar, based on measurements of the Si content in potassic white mica. Temperatures of 450–500° C at the thermal peak of high-pressure metamorphism were estimated from critical metamorphic assemblages, the validity of which is confirmed by a quartz–magnetite oxygen isotope temperature of 470° C. Some 40Ar/39Ar spectra of white mica give plateau ages of 44–40 Ma that are considered to represent dynamic recrystallization under peak or slightly post-peak high-pressure metamorphic conditions. Early stages in the prograde high-pressure evolution may be documented by older apparent ages in the high-temperature steps of some spectra. Eclogite to epidote blueschist facies mineralogies were partially or totally replaced by retrograde greenschist facies assemblages during exhumation. Oxygen isotope thermometry of four quartz–magnetite pairs from greenschist samples gives temperatures of 440–470° C which cannot be distinguished from those deduced for the high-pressure event. The exhumation and overprint is documented by decreasing ages of 32–28 Ma in some greenschists and late-stage blueschist rocks, and ages of 30–20 Ma in the lower temperature steps of the Ar release patterns of blueschist micas. Almost flat parts of Ar–Ar release spectra of some greenschist micas gave ages of 23–21 Ma which are assumed to represent incomplete resetting caused by a renewed prograde phase of greenschist metamorphism. Oxygen isotope compositions of blueschist and greenschist facies minerals show no evidence for the infiltration of a δ18O-enriched fluid. Rather, the compositions indicate that fluid to rock ratios were very low, the isotopic compositions being primarily controlled by those of the protolith rocks. We assume that the fundamental control catalysing the transformation of blueschists into greenschists and the associated resetting of their isotopic systems was the selective infiltration of metamorphic fluid. A quartz–magnetite sample from a contact metamorphic skarn, taken near the Miocene monzogranite of Tinos, gave an oxygen isotope temperature of 555° C and calculated water composition of 9.1%. The value of δ18O obtained from this water is consistent with a primary magmatic fluid, but is lower than that of fluids associated with the greenschist overprint, which indicates that the latter event cannot be directly related to the monozogranite intrusion.  相似文献   

15.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

16.
Two Rongcheng eclogite‐bearing peridotite bodies (Chijiadian and Macaokuang) occur as lenses within the country rock gneiss of the northern Sulu terrane. The Chijiadian ultramafic body consists of garnet lherzolite, whereas the Macaokuang body is mainly meta‐dunite. Both ultramafics are characterized by high MgO contents, low fertile element concentrations and total REE contents, which suggests that they were derived from depleted, residual mantle. High FeO contents, an LREE‐enriched pattern and trace‐element contents indicate that the bulk‐rock compositions of these ultramafic rocks were modified by metasomatism. Oxygen‐isotope compositions of analysed garnet, olivine, clinopyroxene and orthopyroxene from these two ultramafic bodies are between +5.2‰ and +6.2‰ (δ18O), in the range of typical mantle values (+5.1 to +6.6‰). The eclogite enclosed within the Chijiadian lherzolite shows an LREE‐enriched pattern and was formed by melts derived from variable degrees (0.005–0.05) of partial melting of peridotite. It has higher δ18O values (+7.6‰ for garnet and +7.7‰ for omphacite) than those of lherzolite. Small O‐isotope fractionations (ΔCpx‐Ol: 0.4‰, ΔCpx‐Grt: 0.1‰, ΔGrt‐Ol: 0.3–0.4‰) in both eclogite and ultramafic rocks suggest isotopic equilibrium at high temperature. The P–T estimates suggest that these rocks experienced subduction‐zone ultrahigh‐pressure (UHP) metamorphism at ~700–800 °C, 5 GPa, with a low geothermal gradient. Zircon from the Macaokuang eclogite contains inclusions of garnet and diopside. The 225 ± 2 Ma U/Pb age obtained from these zircon may date either the prograde conditions just before peak metamorphism or the UHP metamorphic event, and therefore constrains the timing of subduction‐related UHP metamorphism for the Rongcheng mafic–ultramafic bodies.  相似文献   

17.
应用氢氧同位素研究矿床成因的一些问题探讨   总被引:10,自引:1,他引:10       下载免费PDF全文
翟建平  胡凯 《地质科学》1996,31(3):229-237
成矿热液的氢、氧同位素组成与其水的类型、水/岩交换的岩石成分和同位素组成、水/岩交换时的温度及水/岩交换程度(W/R比值大小)等诸多因素有关,微生物和有机质也对其有一定的影响。因此,仅通过简单投影的方法将成矿热液的氢、氧同位素值与一些所谓的标准值进行类比,由此就推断出热液中水的来源,这种方法是不可取的;尤其当成矿热液的氢、氧同位素值介于大气降水和岩浆水的值之间时,切忌滥用两种水混合成矿模式,因为实际情况往往并不是这样。本文以胶东乳山金矿床为例,展开了这方面的讨论。  相似文献   

18.
The formation of authigenic Ca-rich rhodochrosite (ACR) in sapropelic sediments of the Gotland Basin, Baltic Sea, is governed by deepwater renewal processes whereby saline water from the North Atlantic flushes the brackish anoxic Baltic Deeps. The carbon and oxygen isotopic compositions of these Mn-carbonates suggest that ACR formation takes place just below the sediment surface and that dissolved compounds from the deepwater column, such as water and bicarbonate molecules, were incorporated in ACR during authigenesis. Porewaters near the sediment surface display δ18O values of −5.4‰ (VSMOW) and are generally depleted in 18O, compared to the oxygen isotopic composition of water in equilibrium with Mn-carbonate solid solutions (ACR δ18O values are −4.6‰). This suggests that early burial diagenetic processes significantly modify the initial isotopic composition of water during Mn-carbonate formation. The reduction of sulfate having δ18O values of +8.4‰ accounts for a permanent enrichment of porewater 18O and observed δ18O values at depth equal to −4.6‰. However, this process does not explain the observed disequilibrium in the oxygen isotopic composition between water and ACR close to the sediment surface where Mn-carbonate formation takes place. Based on isotopic mass balance calculations, we suggest that MnO2 with δ18O values of +8.9‰ released oxygen enriched in 18O into the anoxic porewaters close below the sediment surface. This process should occur after oxygenation events during deepwater renewal when MnO2 accumulates at the surface of anoxic sediments. Manganese carbonates formed in these waters display δ18O values of ∼1.0‰ heavier than values expected solely from the initial deepwater composition. This quantitatively explains the discrepancy between paleosalinities calculated from ACR δ18O based on Mn-carbonate/water isotopic equilibrium fractionation and direct observations for the same period. Our results emphasize the important role of microbial MnO2 reduction during rhodochrosite authigenesis and suggest that Mn(II) activity, rather than alkalinity, is the limiting component for sedimentary Mn-carbonate formation.  相似文献   

19.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

20.
Whole rock trace element and isotopic compositions of different HP–LT metamorphic rocks of the Ile de Groix were analysed to characterise geochemical fingerprints during subduction and exhumation in a late Palaeozoic HP metamorphic terrain. Massive metabasites of hydrothermally altered enriched mid-ocean ridge basalt (E-MORB) origin are in association with banded metabasic rocks of volcano-sedimentary origin and metapelites. Fluid-rock interactions that likely occurred during seafloor hydrothermal alteration and early subduction metasomatism increased δ18O values, as well as K2O, Na2O, MgO, and LILE contents and decreased CaO contents of metabasites. Most metabasites have retained their early-subduction and pre-HP trace element and isotopic composition, even for rocks metamorphosed to lower eclogite-facies P–T conditions. Micaschists also preserved apparent pelitic protolith trace element values and oxygen isotopic compositions. During retrograde metamorphism related to the exhumation, metabasites were rehydrated by fluids in equilibrium with the host rock compositions, which were likely derived from the basic rocks. This style of fluid–rock interaction formed a greenschist facies mineral assemblage. Metabasites that underwent pervasive alteration by seafloor hydrothermal and metasomatism processes prior to peak metamorphism, show greater effects of retrogression and albitisation, probably because they were richer in H2O and Na2O. The variety of metamorphic assemblages on the Ile de Groix is thus directly related to the pre-HP rock composition. The extent of retrogression in the western part of the Ile de Groix primarily reflects stronger metasomatic intensities than in the eastern part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号