首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
西天山敦德铁矿床磁铁矿原位LA-ICP-MS元素分析及意义   总被引:5,自引:3,他引:2  
敦德铁矿床是天山成矿带内新近发现并勘查的一处大型海相火山岩型铁矿床。该矿床的矿石可划分为浸染状、稠密浸染状、条带状和块状4种主要类型。其中的条带状矿石包括磁铁矿_矽卡岩条带和磁铁矿_方解石条带2种亚类型。块状矿石内出现围岩或矽卡岩角砾时则构成角砾状矿石,其磁铁矿的成因无甚差异。根据野外观察和矿相显微研究,认为磁铁矿形成于早期矽卡岩阶段后的退化蚀变阶段,之后又被更晚的硫化物阶段和绿泥石_碳酸盐阶段的矿物叠加。敦德磁铁矿内主要发生了Al、Mn、Mg和Zn的类质同象置换,此外,也含有Ti、Si、Ca等次要元素以及Na、K、V、Cr、Ni、Co等多种可检测到的微量元素。磁铁矿内元素含量在空间上显示出直观的差异,由深部到浅部,Mn、Zn含量升高,Si、Ca、Na、K、Pb、Ba、Sr、Sb、Cu等含量降低。在Ti O2_Al2O3_Mg O图解、Ti O2_Al2O3_(Mg O+Mn O)图解和Ca+Al+Mn_Ti+V图解上,敦德磁铁矿的分析数据均投影于热液交代(矽卡岩)成因区域。综上认为,该矿床的磁铁矿可能为热液充填交代成因。  相似文献   

2.
尼雄矿田滚纠铁矿地处拉萨地块隆格尔-工布江达岩浆弧,是冈底斯成矿带中生代铁铜多金属成矿作用的典型代表。在详细的野外地质调查和室内研究基础上,分析了滚纠铁矿床磁铁矿的成因矿物学特征。电子探针测试和ICP-MS分析表明,磁铁矿主量元素具有富SiO_2,贫TiO_2、V_2O_5的特征;微量元素Ba、Ti相对亏损,Cs、U相对富集,Eu、Lu、Tb、Ho、Tm强烈亏损。磁铁矿的Ti-(V+Cr)和(Ti+V)-(Al+Mn)协变图显示氧逸度、温度对矿物元素含量有明显制约作用,同时w(TiO_2)与w(CaO+MgO)、w(Na_2O+K_2O)表现出明显正相关关系,指示矽卡岩系统中流体-岩石相互作用是磁铁矿地球化学元素变化的主要控制因素。通过研究矿床中矿物生成顺序和磁铁矿中Ti、V元素特征并结合前人流体包裹体测温资料,认为矿区铁矿化阶段为高氧逸度的中高温环境,初步限定磁铁矿成矿温度为300~450℃。矿物的w(Ni)均值为8.98×10~(-6),Ni/Co比值1(变化范围0.15~0.59),Ti/V比值为6.71~25.52,从矿物化学角度进一步印证滚纠铁矿的成矿物质来源于矿区中酸性岩浆流体系统。TiO_2-Al_2O_3-(MgO+MnO)和(Ca+Al+Mn)-(Ti+V)等成因判别图解在矿区具有良好适用性,说明磁铁矿是矽卡岩矿床成矿过程的重要指示矿物。  相似文献   

3.
赞坎铁矿床是塔什库尔干地区一个典型的沉积变质型铁矿,具有多阶段成矿的特征,是塔什库尔干地区铁矿成矿作用演化的典型代表。文章将赞坎铁矿床主要矿石矿物磁铁矿的形成划分为3个世代,分别为条带状磁铁矿、浸染状磁铁矿和粗晶脉状或块状磁铁矿,分别代表3个成矿阶段的产物。电子探针和LAICP-MS原位分析表明,赞坎铁矿从条带状磁铁矿到粗晶块状磁铁矿随着磁铁矿的成矿演化主量元素中Al元素有减少的趋势,而Ti、Mn、Mg、V元素均具有增加的趋势;微量元素中Co、Nb、Hf、Ta等具有减少的趋势,Sc、Ga、Zr、Sn等元素具有增加的趋势。根据以上各成矿阶段中磁铁矿成分变化,并结合前人的研究成果发现,赞坎铁矿早期条带状磁铁矿与火山沉积作用有关,成矿后期特别是在粗晶块状和脉状磁铁矿阶段受岩浆热液影响明显,富铁矿有岩浆热液的参与。  相似文献   

4.
内蒙古赤峰市阿根他拉铁矿是一个可以小规模开采的铁矿与钠长石矿。铁矿所赋存的岩体为原生钠长斑岩,其可能由深部的花岗闪长岩岩浆演化而来。铁矿化可分为两个阶段,第一阶段为黑云母/绿泥石—石英—磁铁矿阶段,为本区主要的铁矿化阶段,形成网脉状—浸染状的磁铁矿矿石。该阶段成矿岩体为斑岩、网脉状矿化、伴生矿化组合与斑岩型矿床可类比及磁铁矿的(Ca+Al+Mn)—(Ti+V)图解位于斑岩型矿床中,表明该阶段具有类似于斑岩型矿床的特征。第二阶段为绿帘石—磁铁矿/赤铁矿阶段,形成可达工业品位的团块状磁铁矿/赤铁矿矿石。该阶段类似于矽卡岩型铁矿的团块状矿石,及磁铁矿的(Ca+Al+Mn)—(Ti+V)图解位于矽卡岩型铁铜矿床中,表明该阶段具有类似于矽卡岩型铁矿床的特征。将如上与钠长斑岩有关,前期表现为类似斑岩型矿床特征,后期表现为类似矽卡岩型铁矿床特征的铁矿,称为钠长斑岩型铁矿。这类铁矿应注重与绿帘石伴生的团块状铁矿的寻找。对比研究表明,钠长斑岩型铁矿明显有别于长江中下游的玢岩铁矿。  相似文献   

5.
智博铁矿床位于新疆西天山阿吾拉勒成矿带东段,主要赋矿围岩为石炭系大哈拉军山组安山岩、玄武质安山岩和火山碎屑岩.该矿床主要有东、中、西3个矿区,其中以东矿区为主矿区.矿体主要呈层状、似层状、厚板状和透镜状.金属矿物以磁铁矿为主,含有少量黄铁矿、赤铁矿和黄铜矿.矿石构造以块状和浸染状构造为主,此外还有角砾状构造、条带状构造、流纹状构造和脉状构造等.矿石结构有他形-半自形结构、板条状结构和海绵陨铁结构等.智博铁矿床蚀变矿物主要有透辉石、钠长石、阳起石、绿帘石、钾长石等,含有少量方解石、石英和绿泥石等.根据矿石和矿物共生关系,将智博铁矿床划分为岩浆期和热液期2个成矿期次.岩浆期可划分为钠长石-透辉石阶段和磁铁矿-阳起石阶段,热液期可划分为钾长石-绿帘石阶段和石英-硫化物阶段.根据智博磁铁矿的电子探针数据,各类磁铁矿矿石中除热液期含黄铁矿致密块状矿石w(FeOT)变化较大外,其他类型磁铁矿的w(FeOT)多集中在90%~95%,又以岩浆期块状矿石中w(FeOT)最高.对其氧化物进行相应的图解,电子探针数据中w(CaO)、w(Al2O3)、w(MnO)、w(K2O)、w(MgO)和w(SiO2)都和w(FeOT)有良好的负相关性,而NiO和TiO2则具有一定的正相关性,V2O3则在岩浆期块状和含磁铁矿脉矿石中含量明显高于其他类型矿石.根据磁铁矿TiO2-Al2O3-MgO成因图解和w(Ca+Al+Mn)-w(Ti+V)成因图解显示,智博铁矿床矿石兼具岩浆型成因特征和热液型成因特征,表明智博铁矿床的形成与岩浆作用和火山热液交代作用有关.  相似文献   

6.
都龙锡锌铟多金属矿床位于著名的滇东南钨锡多金属成矿区之老君山矿集区,成矿与白垩纪大规模花岗岩活动关系密切,沿隐伏花岗岩接触带周边发育石榴子石、透辉-透闪石等矽卡岩蚀变和条带状(似层状)、脉状(囊状)的锡石、闪锌矿及磁铁矿、辉钼矿、黄铁黄铜矿等矿化,形成超大规模的岩浆热液-矽卡岩成矿系统。野外观测及研究发现,早期(矽卡岩期)高温阶段形成的磁铁矿可分为I阶段交代型磁铁矿(I-Mag)和II阶段充填型磁铁矿(II-Mag)两类:前者多呈囊状、条带状,与矽卡岩矿物共生;后者为脉状,与金属硫化矿物共生。利用ICP-AES、ICP-MS对两类磁铁矿进行主、微量元素测试,从I-Mag到II-Mag,Si、Ca、Mn及ΣREE、Pb、Zn、Ti含量增加,Mg及Sn、W、In、V、Cr、Ga含量减少,REE配分型式也由平缓向右倾的逐渐变化。TiO 2-Al 2 O 3-(MgO+MnO)、(Ti+V)-(Ca+Al+Mn)、Ni/Cr-Ti、(Ti+V)-Ni/(Cr+Mn)成因判别图解表明,磁铁矿属岩浆热液-矽卡岩成因类型;Ti、V与Zr、Hf、Nb、Ta,以及Y/Ho(24~3414)、Ni/Co(<2→>2)、Ti/V(<25→>25)、Hf/Zr(003~006→004~005)存在着线性关系和规律变化特征,指示两类型磁铁矿具有相同的物质来源,为同一成矿过程不同阶段的产物。而代表成矿流体REE组成的II-Mag的REE组成继承了老君山花岗岩REE配分趋势和Eu负异常特征,表明磁铁矿与白垩纪老君山花岗岩具有一致的物质来源。Cr-V、(Ti+V)-(Al+Mn)、Ga-Mg及Ga-Sn图解显示相同的成因类型和一致的线性关系,指示磁铁矿主体形成于较高氧逸度和温度(约300℃)的成矿环境下,并且从I-Mag到II-Mag,存在着氧逸度逐渐升高、温度逐渐降低的演化趋势。  相似文献   

7.
蒙库铁矿是新疆规模最大的铁矿床,其成矿过程及成因复杂.据蒙库铁矿床不同地段矿体主要矿物共生组合情况、形成先后顺序及相互穿插关系,结合显微镜下矿石或矿化岩石的结构构造特征,总结了蒙库铁矿成矿作用特征.蒙库铁矿经历3个成矿期:海相火山沉积成矿期、区域变质成矿期和热液交代成矿期.区域变质成矿期包括浸染状-条带状磁铁矿阶段、块状磁铁矿阶段.热液交代成矿期包括钙硅酸盐交代阶段、硫化物阶段和方解石石英脉阶段.区域变质期是铁的重要成矿期,热液交代期是铜矿化期.据此,认为蒙库铁矿属喷流沉积-区域变质-热液交代多期多成因叠加的铁矿床.  相似文献   

8.
西天山智博铁矿床磁铁矿成分特征及其矿床成因意义   总被引:12,自引:7,他引:5  
智博大型磁铁矿床位于新疆西天山阿吾拉勒成矿带东段,赋存于石炭系大哈拉军山组玄武质安山岩、安山岩及火山碎屑岩中。智博铁矿床包括东、中、西以及13号矿体4个矿段。矿体主要呈层状、似层状、透镜状。金属矿物以磁铁矿为主,含少量浸染状黄铁矿,局部可见细脉赤铁矿及零星状黄铜矿。矿石构造以块状和浸染状构造为主,角砾状次之,局部为条带状构造、脉状-网脉状构造;矿石结构包括半自形-他形粒状结构、交代残余结构、板条状结构。智博矿区的蚀变矿物组合以透辉石、钠长石、钾长石、绿帘石、阳起石为主,含有少量方解石、石英、绿泥石及榍石。根据矿物共生组合、矿石结构的观察以及矿物化学分析,识别出岩浆期和热液期2个成矿期,进一步细分为3个成矿阶段:磁铁矿-透辉石-绿帘石阶段(a1),磁铁矿-钾长石-绿帘石阶段(b1),石英-硫化物阶段(b2)。磁铁矿的电子探针成分分析显示,岩浆期矿石中FeOT含量较高,而Al2O3、CaO、MgO、SiO2等氧化物含量较低,热液期矿石则相反。角砾状和部分浸染状磁铁矿中V2O5含量相对较高,与火山岩中含量类似,暗示该矿化阶段的铁质部分来源于围岩;块状以及浸染状磁铁矿FeOT含量大部分在90%以上;角砾状、网脉状、树枝状矿石中磁铁矿的w(FeOT)分布相对比较集中,多数在90%~92%之间;纹层状矿石的w(FeOT)则变化于88%~92%之间,其CaO、SiO2等氧化物平均含量相对增加。TiO2-Al2O3-MgO图解和Ca+Al+Mn vs Ti+V图解均表明智博铁矿床的形成与火山活动和岩浆热液的交代作用有关。  相似文献   

9.
卡门铁矿床位于智利著名的中生代铁-铜-金成矿带内,本文根据矿石组构和矿物共生特征将卡门铁矿床成矿期次划分为硅化阶段、磁铁矿阶段、黄铜矿阶段和晚期热液脉阶段4个阶段。卡门铁矿床磁铁矿有两种类型:含硫化物块状磁铁矿、与阳起石共生磁铁矿,以含硫化物块状磁铁矿为主。电子探针研究表明,该矿床与阳起石共生磁铁矿的Fe O_T含量略高于含硫化物块状磁铁矿;整体上来看,磁铁矿的Fe O_T与Si O_2、Al_2O_3、Mg O呈负相关关系。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)微量元素成分分析表明,卡门磁铁矿轻稀土元素亏损,重稀土元素富集且分馏程度相对较大;Co、Ni元素含量高,与夕卡岩型磁铁矿较为接近,但Ni/Co比值变化较大,与夕卡岩型有明显差异,说明卡门磁铁矿与典型夕卡岩成因的磁铁矿存在一定差别,同时较高的Ni/Co比值反映了其成因与深源物质有关。卡门铁矿床磁铁矿Ti O_2-Al_2O_3-(Mg O+Mn O)三角图表明该矿床具有热液交代特征,与夕卡岩相关;(Ca+Al+Mn)-(Ti+V)成因判别图也显示该矿床有夕卡岩型铁矿特征,但同时也与IOCG型矿床有一定的相似性,这进一步证明卡门铁矿床可能并非典型的夕卡岩矿床,其成矿可能与铁氧化物铜金(IOCG)型成矿过程岩浆热液活动密切相关,这与卡门铁矿床处于智利IOCG成矿带的地质事实一致。  相似文献   

10.
孙策  彭惠娟  熊富浩  侯林 《矿床地质》2020,39(3):523-546
帕莱通铁矿床是老挝万象—呵叻中新生代盆地中最大规模的铁矿床,分为东、西2个矿段,西矿段为豆状、块状富磁铁矿矿体,东部则主要发育角砾状贫赤铁矿矿体。其中,西矿段主要产于新生代富铁质玄武岩中。文章对西矿段中豆状、块状磁铁矿进行了详细的野外地质调查和显微结构分析,发现块状磁铁矿具有细粒他形结构特征,豆状磁铁矿具有球粒同心圆状结构特征。对较为新鲜的磁铁矿进行电子探针(EPMA)以及激光剥蚀电感耦合等离子质谱(LA-ICP-MS)分析显示:帕莱通铁矿床磁铁矿TiO_2-Al_2O_3-MgO三角图落入岩浆岩区域;微量元素富集V、Ti、Cr、Co、Ni及Ga等元素,亏损Sr、Ba及Mg等不相容元素;w(Co)和w(Ni)较高,且较高的Ni/Co比值可以反映成因与深源物质;w(Ti)较高且Ni/Cr比值≤1,在Ti-Ni/Cr图中落入了热液型磁铁矿的范围;Ga-Sn图解表明磁铁矿属于斑岩型热液成因;(Ca+Al+Mn)-(Ti+V)或Ni/(Cr+Mn)-(Ti+V)成因判别图显示该矿床兼具Kiruna型和斑岩型矿床的特征;w(V)表明磁铁矿在较低氧化环境中形成;(Al+Mn)-(Ti+V)形成温度判别图表明磁铁矿形成温度处于300~500℃范围内。文章认为帕莱通铁矿床成矿物质主要源于岩浆演化作用形成的富铁流体,后期由于岩浆热液流体的交代作用,使得磁铁矿具有了热液成因的特征。岩浆型矿床类型在老挝及邻区分布较为广泛,研究帕莱通铁矿的成因,对于总结区域成矿规律,指导同类型矿床找矿预测具有重要意义。  相似文献   

11.
Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore–related granitoid pluton, mineralised endoskarn and vein–type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation–inductively coupled plasma–mass spectrometry. The field and microscope observation reveals that early–stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late–stage magnetite is disseminated or scattered in the ores. Early–stage magnetite contains high contents of Ti, V, Ga, Al and low in Mg and Mn. In contrast, late–stage magnetite is high in Mg, Mn and low in Ti, V, Ga, Al. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+Al+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the(Mg O+Mn O)–Ti O2–Al2O3 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic–hydrothermal process.  相似文献   

12.
莱芜张家洼铁矿位于华北克拉通东缘的鲁西地区,矿石成因类型为夕卡岩型铁矿。矿体赋存在早白垩世高镁闪长岩与奥陶系马家沟组灰岩及白云岩接触带附近。本文通过对莱芜岩浆和热液磁铁矿电子探针(EPMA)以及激光剥蚀电感耦合等离子体质谱(LA ICP MS)分析,探讨磁铁矿微量元素组成及变化规律对成岩和成矿作用的指示,为揭示张家洼铁矿的矿床成因及其成矿流体演化过程提供重要制约。分析结果表明,莱芜岩浆磁铁矿与热液磁铁矿相比明显富集Ti、V、Cr等亲铁元素,相对富集Nb、Ta、Zr、Hf等高场强元素以及Sn、Ga、Ge、Sc等中等相容元素,Mg、Al、Mn、Zn、Co显著富集于热液磁铁矿中。Ti、V、Cr以及Mg、Al、Mn、Zn在岩浆和热液中具有不同的地球化学行为,Ti、V、Cr从熔体中进入磁铁矿主要受温度、分配系数以及fO2控制。Mg、Al、Mn、Zn主要受控于水岩反应和后期绿泥石+碳酸盐脉的交代,这些元素通过类质同象替换富集于热液磁铁矿中。Co在热液磁铁矿中除了受水岩相互作用和后期流体交代的影响外,硫化物的出现会导致Co含量急剧降低。Si、Ca、Na及Sr、Ba在岩浆和热液磁铁矿中的地球化学行为非常一致。Ti Ni/Cr图能够用于区分岩浆和热液磁铁矿,莱芜岩浆磁铁矿中Ti含量较高且Ni/Cr比值≤1,热液磁铁矿Ti含量较低且绝大多数Ni/Cr比值≥1。张家洼热液磁铁矿可分为早、晚两个阶段:早期阶段包括(1)早期原生粒状磁铁矿和(2)早期次生磁铁矿;晚期阶段包括(3)晚期原生磁铁矿和(4)晚期次生磁铁矿。原生磁铁矿具有典型的三联点结构特征;次生磁铁矿受后期热液交代影响表现为多空隙,通常呈不规则状、树枝状、骸晶以及交代残余结构。磁铁矿微量元素生动记录了成矿流体演化过程,从早期到晚期、从原生到次生都显示Mg、Al、Mn、Zn包括Co含量持续升高,表明成矿流体可能朝着富集这些微量元素的方向演化。后期流体的交代导致绿泥石蚀变为磁铁矿,连续水岩相互作用和后期流体的交代以及绿泥石直接蚀变是导致热液磁铁矿富集Mg、Al、Mn、Zn等元素的主要原因。热液磁铁矿晚期孔隙较为发育,孔隙度的增加促使更多的流体和磁铁矿发生反应。热液磁铁矿的微量元素不仅能够反映矿床形成的物理化学条件,而且可以反映围岩性质以及水岩相互作用过程。  相似文献   

13.
The Beiya gold–polymetallic deposit is one of the largest gold deposits in China and is considered to be a typical porphyry-skarn system located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt. Massive magnetite is widespread in the Beiya ore district but its genesis is still the subject of debate. Five representative magnetite types are present in the Beiya deposit, namely magmatic magnetite (M1) from the ore-related porphyry, disseminated magnetite (M2) from the early retrograde alteration, massive magnetite (M3) from the early quartz-magnetite stage, massive magnetite (M4) from the middle quartz-magnetite stage and magnetite (M5) from the late quartz-magnetite stage. Compared with the M1 magnetite, the magnetites from stages M2 to M5 are depleted in Ti, Al and high field strength elements, implying a hydrothermal origin, distinct from the magmatic accessory magnetite in the ore-related porphyry (M1). The concentrations of cobalt in the hydrothermal magnetites decrease gradually from M2 to M5, and can be used to discriminate the magnetite types. The Al + Mn and Ti + V contents of the successively precipitated magnetite grains (M2–M5) suggests that the ore forming temperature decreased from M2 to M4, but increased from M4 to M5, possibly as the result of a new pulse of magma entering the chamber, which may have triggered the gold mineralization. The V content in the hydrothermal magnetite suggests that the oxygen fugacity increased from M2 to M4 but decreased as soon as the sulfides entered the system (M5).  相似文献   

14.
查岗诺尔大型磁铁矿床位于西天山阿吾拉勒东段,赋存于下石炭统大哈拉军山组安山岩及安山质火山碎屑岩之中,主体矿底板夹透镜状的大理岩,矿体主要为层状、似层状、透镜状。根据矿石组构和矿物共生特征,可以划分为岩浆期和热液期两个成矿期,后者包括矽卡岩和石英-硫化物两个亚成矿期,进一步可以细分为6个成矿阶段。岩浆期的磁铁矿∑REE很低,稀土配分模式大致呈轻稀土、重稀土较富集而中稀土亏损的U型,富Ti、V、Cr,表明铁质可能来自安山质岩浆的结晶分异作用; 矽卡岩亚成矿期的磁铁矿∑REE极低,略微富集LREE,其它稀土元素亏损强烈,贫Ti、V,略富集Ni、Co和Cu。矽卡岩亚期的含矿和无矿矽卡岩中的石榴石的稀土配分模式类似,∑REE含量相对较高,呈HREE富集、LREE亏损、弱正Eu异常的分布型式,显示了交代成因石榴石的特征,暗示与其共生的磁铁矿也是通过热液流体与围岩地层的交代反应生成的,铁质来自围岩。结合矿床地质与微量元素地球化学,认为查岗诺尔铁矿可能是岩浆型和矽卡岩型(主要)的复合叠加矿床。  相似文献   

15.
东天山红云滩铁矿赋存于下石炭统雅满苏组火山碎屑岩地层中.矿体主要呈层状、似层状、透镜状.矿石矿物以大量磁铁矿为主,含少量的磁赤铁矿、镜铁矿、黄铁矿和极少量的黄铜矿等.脉石矿物主要有石榴石、透辉石、阳起石、绿帘石、绿泥石、黑云母、钠长石、石英等.矿石构造以块状构造和浸染状构造为主,局部为条带状构造、脉状构造;矿石结构包括半自形-他形粒状结构、交代结构.围岩蚀变对称分带明显,从矿(化)体到两侧围岩,蚀变呈现从深色到浅色的变化现象.根据矿物共生组合、矿石组构的观察,本次工作识别出矽卡岩期和热液期两个成矿期,进一步细分为4个成矿阶段:矽卡岩阶段、退化蚀变阶段(主成矿期)、热液早期阶段及石英-硫化物阶段.电子探针分析表明石榴石端员组分以钙铁榴石-钙铝榴石系列为主,辉石端员组分以透辉石-钙铁辉石为主,角闪石端员组分主要为阳起石和透闪石,这些特点表明矿区矽卡岩为热液交代钙矽卡岩.磁铁矿的主、微量元素特征表明其形成与矽卡岩密切相关.结合成矿地质特征,认为矽卡岩是由富铁岩浆热液流体沿断裂构造运移、交代下石炭统雅满苏组富钙火山碎屑岩地层而形成的,磁铁矿的形成与矽卡岩的退化变质作用有关.  相似文献   

16.
安庆铜铁矿床是产于长江中下游铜(金)、铁成矿带内安庆-贵池矿集区中的一典型矽卡岩矿床,矿体赋存于下三叠统南陵湖组大理岩与月山闪长岩体之间的接触带上。典型剖面系统取样分析显示,矿体与围岩在空间上具有显著的矿物组合分带与岩石化学分带特征,即靠近大理岩带发育致密块状磁铁矿矿石与团块状矽卡岩型矿石,远离大理岩带发育浸染状矽卡岩型矿石,靠近闪长岩带发育透辉石矽卡岩。从大理岩到磁铁矿体, Fe2O3T含量显著增加,之后随着靠近闪长岩体,其含量呈逐渐降低趋势;而CaO显示了与Fe2O3T相反的成分变异特征。矿物与全岩微量元素研究表明,致密块状磁铁矿矿石及团块状矽卡岩型矿石均具有岩浆成因的稀土元素配分模式;而浸染状矽卡岩型矿石显示了交代成因的稀土元素配分特征。矿体地质、矿相学与元素地球化学综合研究表明,矽卡岩成矿经历了矿浆贯入期与热液成矿期,前者包括氧化物阶段和硫化物-碳酸盐阶段,后者包括进化交代阶段、早退化蚀变阶段、石英-硫化物阶段和晚退化蚀变阶段。结合已有的区域岩浆岩成岩机制研究成果,认为安庆铜铁矿床应是矿浆贯入与接触交代复合成因的矽卡岩型矿床,由于高位岩浆房中岩浆不混溶作用形成的富Fe熔浆是该矿床中成矿元素的主要来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号