首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff.  相似文献   

2.
Climate changes brought on by increasing greenhouse gases in the atmosphere are expected to have a significant effect on the Pacific Northwest hydrology during the 21st century. Many climate model simulations project higher mean annual temperatures and temporal redistribution of precipitation. This is of particular concern for highly urbanized basins where runoff changes are more vulnerable to changes in climate. The Rock Creek basin, located in the Portland metropolitan area, has been experiencing rapid urban growth throughout the last 30 years, making it an ideal study area for assessing the effect of climate and land cover changes on runoff. A combination of climate change and land cover change scenarios for 2040 with the semi‐distributed AVSWAT (ArcView Soil and Water Assessment Tool) hydrological model was used to determine changes in mean runoff depths in the 2040s (2030–2059) from the baseline period (1973–2002) at the monthly, seasonal, and annual scales. Statistically downscaled climate change simulation results from the ECHAM5 general circulation model (GCM) found that the region would experience an increase of 1·2 °C in the average annual temperature and a 2% increase in average annual precipitation from the baseline period. AVSWAT simulation shows a 2·7% increase in mean annual runoff but a 1·6% decrease in summer runoff. Projected climate change plus low‐density, sprawled urban development for 2040 produced the greatest change to mean annual runoff depth (+5·5%), while climate change plus higher‐density urban development for 2040 resulted in the smallest change (+5·2%), when compared with the climate and land cover of the baseline period. This has significant implications for water resource managers attempting to implement adaptive water resource policies to future changes resulting from climate and urbanization. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

4.
The distributed hydrology–soil–vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid‐twenty‐first century. A 60‐year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi‐decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub‐basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain–snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double‐digit increases in winter flows and decreases in summer and fall flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapaj?s River (Brazil), a 477,000 km2 basin in South‐eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km2) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land‐use change and linked to a flow routing scheme. The simulations indicated basin‐wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of ?9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.  相似文献   

6.
Changes in climate and land use can significantly influence the hydrological cycle and hence affect water resources. Understanding the impacts of climate and land‐use changes on streamflow can facilitate development of sustainable water resources strategies. This study investigates the flow variation of the Zamu River, an inland river in the arid area of northwest China, using the Soil and Water Assessment Tool distributed hydrological model. Three different land‐use and climate‐change scenarios were considered on the basis of measured climate data and land‐use cover, and then these data were input into the hydrological model. Based on the sensitivity analysis, model calibration and verification, the hydrological response to different land‐use and climate‐change scenarios was simulated. The results indicate that the runoff varied with different land‐use type, and the runoff of the mountain reaches of the catchment increased when grassland area increased and forestland decreased. The simulated runoff increased with increased precipitation, but the mean temperature increase decreased the runoff under the same precipitation condition. Application of grey correlation analysis showed that precipitation and temperature play a critical role in the runoff of the Zamu River basin. Sensitivity analysis of runoff to precipitation and temperature by considering the 1990s land use and climate conditions was also undertaken. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Basin landscapes possess an identifiable spatial structure, fashioned by climate, geology and land use, that affects their hydrologic response. This structure defines a basin's hydrogeological signature and corresponding patterns of runoff and stream chemistry. Interpreting this signature expresses a fundamental understanding of basin hydrology in terms of the dominant hydrologic components: surface, interflow and groundwater runoff. Using spatial analysis techniques, spatially distributed watershed characteristics and measurements of rainfall and runoff, we present an approach for modelling basin hydrology that integrates hydrogeological interpretation and hydrologic response unit concepts, applicable to both new and existing rainfall‐runoff models. The benefits of our modelling approach are a clearly defined distribution of dominant runoff form and behaviour, which is useful for interpreting functions of runoff in the recruitment and transport of sediment and other contaminants, and limited over‐parameterization. Our methods are illustrated in a case study focused on four watersheds (24 to 50 km2) draining the southern coast of California for the period October 1988 though to September 2002. Based on our hydrogeological interpretation, we present a new rainfall‐runoff model developed to simulate both surface and subsurface runoff, where surface runoff is from either urban or rural surfaces and subsurface runoff is either interflow from steep shallow soils or groundwater from bedrock and coarse‐textured fan deposits. Our assertions and model results are supported using streamflow data from seven US Geological Survey stream gauges and measured stream silica concentrations from two Santa Barbara Channel–Long Term Ecological Research Project sampling sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The objective of this study was to quantify the impacts of land use/land cover (LULC) change on the hydrology of the Jedeb, an agricultural dominated mesoscale catchment, in the Abay/Upper Blue Nile basin, Ethiopia. Two methods have been used. First, the trends of certain daily flow variability parameters were evaluated to detect statistical significance of the change of the hydrologic response. Second, a conceptual monthly hydrological model was used to detect changes in the model parameters over different periods to infer LULC change. The results from the statistical analysis of the daily flows between 1973 and 2010 reveal a significant change in the response of the catchment. Peak flow is enhanced, i.e. response appears to be flashier. There is a significant increase in the rise and fall rates of the flow hydrograph, as well as the number of low‐flow pulses below a threshold level. The discharge pulses show a declining duration with time. The model result depicts a change in model parameters over different periods, which could be attributed to an LULC change. The model parameters representing soil moisture conditions indicated a gradual decreasing trend, implying limited storage capacity likely attributed to increasing agricultural farming practices in the catchment. This resulted in more surface runoff and less infiltration into the soil layers. The results of the monthly flow duration curve analysis indicated large changes of the flow regime. The high flow has increased by 45% between the 1990s and 2000s, whereas the reduction in low flows was larger: a 15% decrease between 1970s and 1980s, 39% between 1980s and 1990s and up to 71% between 1990s and 2000s. These results, could guide informed catchment management practices to reduce surface runoff and augment soil moisture level in the Jedeb catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Most natural disasters are caused by water‐/climate‐related hazards, such as floods, droughts, typhoons, and landslides. In the last few years, great attention has been paid to climate change, and especially the impact of climate change on water resources and the natural disasters that have been an important issue in many countries. As climate change increases the frequency and intensity of extreme rainfall, the number of water‐related disasters is expected to rise. In this regard, this study intends to analyse the changes in extreme weather events and the associated flow regime in both the past and the future. Given trend analysis, spatially coherent and statistically significant changes in the extreme events of temperature and rainfall were identified. A weather generator based on the non‐stationary Markov chain model was applied to produce a daily climate change scenario for the Han River basin for a period of 2001–2090. The weather generator mainly utilizes the climate change SRES A2 scenario driven by input from the regional climate model. Following this, the SLURP model, which is a semi‐distributed hydrological model, was applied to produce a long‐term daily runoff ensemble series. Finally, the indicator of hydrologic alteration was applied to carry out a quantitative analysis and assessment of the impact of climate change on runoff, the river flow regime, and the aquatic ecosystem. It was found that the runoff is expected to decrease in May and July, while no significant changes occur in June. In comparison with historical evidence, the runoff is expected to increase from August to April. A remarkable increase, which is about 40%, in runoff was identified in September. The amount of the minimum discharge over various durations tended to increase when compared to the present hydrological condition. A detailed comparison for discharge and its associated characteristics was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The Puget Sound basin in northwestern Washington, USA has experienced substantial land cover and climate change over the last century. Using a spatially distributed hydrology model (the Distributed Hydrology‐Soil‐Vegetation Model, DHSVM) the concurrent effects of changing climate (primarily temperature) and land cover in the basin are deconvolved, based on land cover maps for 1883 and 2002, and gridded climate data for 1915–2006. It is found that land cover and temperature change effects on streamflow have occurred differently at high and low elevations. In the lowlands, land cover has occurred primarily as conversion of forest to urban or partially urban land use, and here the land cover signal dominates temperature change. In the uplands, both land cover and temperature change have played important roles. Temperature change is especially important at intermediate elevations (so‐called transient snow zone), where the winter snow line is most sensitive to temperature change—notwithstanding the effects of forest harvest over the same part of the basin. Model simulations show that current land cover results in higher fall, winter and early spring streamflow but lower summer flow; higher annual maximum flow and higher annual mean streamflow compared with pre‐development conditions, which is largely consistent with a trend analysis of model residuals. Land cover change effects in urban and partially urban basins have resulted in changes in annual flow, annual maximum flows, fall and summer flows. For the upland portion of the basin, shifts in the seasonal distribution of streamflows (higher spring flow and lower summer flow) are clearly related to rising temperatures, but annual streamflow has not changed much. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Runoff reduction due to environmental changes in the Sanchuanhe river basin   总被引:10,自引:1,他引:9  
Recently, runoff in many river basins in China has been decreasing. Therefore, the role that climate change and human activities are playing in this decrease is currently of interest. In this study, we evaluated an assessment method that was designed to quantitatively separate the effects of climate change and human activities on runoff in river basins. Specifically, we calibrated the SIMHYD rainfall runoff model using naturally recorded hydro-meteorologic data pertaining to the Sanchuanhe River basin and then determined the effects of climate change and human activities on runoff by comparing the estimated natural runoff that occurred during the period in which humans disturbed the basin to the runoff that occurred during the period prior to disturbance by humans. The results of this study revealed that the S1MHYD rainfall runoff model performs well for estimating monthly discharge. In addition, we found that absolute runoff reductions have increased in response to human activities and climate change, with average reductions of 70.1% and 29.9% in total runoff being caused by human activities and climate change, respectively. Taken together, the results of this study indicate that human activities are the primary cause of runoff reduction in the Sanchuanhe River basin.  相似文献   

12.
The impacts of historical land cover changes witnessed between 1973 and 2000 on the hydrologic response of the Nyando River Basin were investigated. The land cover changes were obtained through consistent classifications of selected Landsat satellite images. Their effects on runoff peak discharges and volumes were subsequently assessed using selected hydrologic models for runoff generation and routing available within the HEC‐HMS. Physically based parameters of the models were estimated from the land cover change maps together with a digital elevation model and soil datasets of the basin. Observed storm events for the simulation were selected and their interpolated spatial distributions obtained using the univariate ordinary Kriging procedure. The simulated flows from the 14 sub‐catchments were routed downstream afterwards to obtain the accrued effects in the entire river basin. Model results obtained generally revealed significant and varying increases in the runoff peak discharges and volumes within the basin. In the upstream sub‐catchments with higher rates of deforestation, increases between 30 and 47% were observed in the peak discharge. In the entire basin, however, the flood peak discharges and volumes increased by at least 16 and 10% respectively during the entire study period. The study successfully outlined the hydrological consequences of the eminent land cover changes and hence the need for sustainable land use and catchment management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this article the relative roles of precipitation and soil moisture in influencing runoff variability in the Mekong River basin are addressed. The factors controlling runoff generation are analysed in a calibrated macro‐scale hydrologic model, and it is demonstrated that, in addition to rainfall, simulated soil moisture plays a decisive role in establishing the timing and amount of generated runoff. Soil moisture is a variable with a long memory for antecedent hydrologic fluxes that is influenced by soil hydrologic parameters, topography, and land cover type. The influence of land cover on soil moisture implies significant hydrologic consequences for large‐scale deforestation and expansion of agricultural land. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Climate and land use changes greatly modify hydrologic regimes. In this paper, we modelled the impacts of biofuel cultivation in the US Great Plains on a 1061‐km2 watershed using the Soil and Water Assessment Tool (SWAT) hydrologic model. The model was calibrated to monthly discharges spanning 2002–2010 and for the winter, spring, and summer seasons. SWAT was then run for a climate‐change‐only scenario using downscaled precipitation and a projected temperature for 16 general circulation model (GCM) runs associated with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 scenario spanning 2040–2050. SWAT was also run on a climate change plus land use change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native range grasses, winter wheat, and rye (89% of the basin). For the climate‐change‐only scenario, the GCMs agreed on a monthly temperature increase of 1–2 °C by the 2042–2050 period, but they disagreed on the direction of change in precipitation. For this scenario, decreases in surface runoff during all three seasons and increases in spring and summer evapotranspiration (eT) were driven predominantly by precipitation. Increased summer temperatures also significantly contributed to changes in eT. With the addition of switchgrass, changes in surface runoff are amplified during the winter and summer, and changes in eT are amplified during all three seasons. Depending on the GCM utilized, either climate change or land use change (switchgrass cultivation) was the dominant driver of change in surface runoff while switchgrass cultivation was the major driver of changes in eT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The evaluation of climate change and its side effects on the hydrological processes of the basin can increasingly help in dealing with the challenges that water resource managers and planners face in future courses. These side effects are investigated using the simulation of hydrological processes with the help of physical rainfall‐runoff model. Hydrological models provide a framework for examining the relationship between climate and water resources. This research aims at the investigation of the effect of climate change on the runoff of Gharesou, which is one of the main branches of the “Karkheh” River in Iran during the periods 2040–2069. To achieve this, the distributed hydrological model Soil and Water Assessment Tool (SWAT) – a model that is sensitive to the changes in land, water, and climate – has been used with the aim of evaluating the impact of climate change on the hydrology of the Gharesou Basin. For this reason, first, the continuous distributed model of rainfall‐runoff SWAT for the period 1971–2000 has been calibrated and validated. Next, with the aim of evaluating the impact of climate change and global warming on the basin hydrology for the period 2040–2069, HadCM3‐AR4 global climate model data under the A2 scenario – from the SRES scenario set‐haves been downscaled. Eventually, the downscaled climate data haves been introduced in the SWAT model, and the future runoff changes have been studied. The results showed that the temperature increases in most of the months, and the precipitation rate exhibits a change in the range of ±30%. Moreover, the produced runoff in this period changes from ?90 to 120% during different months.  相似文献   

16.
Human activity is an important agent defining the contemporary hydrologic cycle. We have documented the potential impacts of impoundment, land use change and climate change on the Zambezi River system in southern Africa and found that they can be substantial. A full analysis requires construction and parameterization of a simulation for the entire catchment. This paper develops a strategy for implementing catchment-scale models of the major hydrologic processes operating within the basin. A coherent data set for calibrating the models has also been assembled. The algorithms consist of a Water Balance (WBM) and a Water Transport (WTM) operating at 1/2o spatial scale and at monthly timesteps. These models transform complex patterns of regional climatology into estimates of soil water, evapotranspiration, runoff, and discharge through rivers of various size. The models are dependent on the characteristics of the terrestrial surface, principally soil texture and land cover. A simulated river network is also required. Additional tabular data sets are essential for model testing and calibration. These include subcatchment areas; observed river discharge at selected points; flooding, storage and loss characteristics of major wetlands; floodwave translation; and, volume, surface area, withdrawal and evaporative losses from impoundments. An important design consideration for the numerous impoundments in the Zambezi requires an understanding of the seasonal variation in discharge, in particular how it might respond to climate and land use change. The research strategy offered here lays a framework for addressing such issues. Although the primary focus of this work is hydrologic, we discuss how the model can be extended to consider constituent transport and biogeochemical cycling issues at the continental scale.  相似文献   

17.
The obvious decline in stream flow to the Biliu River reservoir over the period 1990–2005 has raised increasing concerns. Climate change and human activities, which mainly include land use changes, hydraulic constructions and artificial water consumption, are considered to be the most likely reasons for the decline in stream flow. This study centres on a detailed analysis of the runoff response to changes in human activities. Using a distributed hydrological model, (Soil and Water Assessment Tool), we simulated runoffs under different human activity and climate scenarios to understand how each scenario impacts stream flow. The results show that artificial water consumption correlates with the precipitation (wet, normal and dry) of the year in question and is responsible for most of the decrease in runoff during each period and for each different wetness year. A Fuzzy Inference Model is also used to find the relationship between the precipitation and artificial water consumption for different years, as well as to make inferences regarding the future average impact on runoff. Land use changes in the past have increased the runoff by only a small amount, while another middle reservoir (Yunshi) has been responsible for a decrease in runoff since operation began in 2001. We generalized the characteristics of the human activities to predict future runoff using climate change scenarios. The future annual flow will increase by approximately 10% from 2011 to 2030 under normal human activities and future climate change scenarios, as indicated by climate scenarios with a particularly wet year in the next 20 years. This study could serve as a framework to analyse and predict the potential impacts of changes both in the climate and human activities on runoff, which can be used to inform the decision making on the river basin planning and management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Understanding the mechanisms of river runoff variation is important for the effective management of water resources in arid and semi‐arid regions. This study uses long‐term observational data as a basis for examining the effects of human activities and climate change on the runoff variation of Jinghe River Basin, a typical arid inland basin in northwest China. A distributed hydrological model called the Soil and Water Assessment Tool, combined with a sequential cluster method and a separation approach, was used to quantify and distinguish the effects of human activities and climate change on runoff. The hydrological sequence before 1981 can be considered natural. However, human activities have significantly affected runoff since 1981. The runoff reduction caused by human activities between 1981 and 2008 accounted for 85.7% of the total reduction in the downstream of Jinghe River, whereas that caused by climatic variation was only 14.3%. This observation suggests that human activities are the major driver of runoff variation in the basin. Although the role of climate change in driving runoff variation has been identified to be prevalent and dominant in arid regions, this study highlights the importance of human activities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The Aksu River (the international river between China and Kirghiz) has become the main water source for the Tarim River. It significantly influences the Tarim River's formation, development and evolution. Along with the western region development strategy and the Tarim River basin comprehensive devel-opment and implementation, the research is now focused on the Aksu River basin hydrologic charac-teristic and hydrologic forecast. Moreover, the Aksu River is representative of rivers supplied with gla-cier and snow melt in middle-high altitude arid district. As a result, the research on predicting the river flow of the Aksu River basin has theoretical and practical significance. In this paper, considering the limited hydrometeorological data for the Aksu River basin, we have constructed four hydrologic forecast approaches using the daily scale to simulate and forecast daily runoff of two big branches of the Aksu River basin. The four approaches are the upper air temperature and the daily runoff correlation method, AR(p) runoff forecast model, temperature and precipitation revised AR(p) model and the NAM rainfall-runoff model. After comparatively analyzing the simulation results of the four approaches, we discovered that the temperature and precipitation revised AR(p) model, which needs less hydrological and meteorological data and is more predictive, is suitable for the short-term runoff forecast of the Aksu River basin. This research not only offers a foundation for the Aksu River and Tarim Rivers' hydrologic forecast, flood prevention, control and the entire basin water collocation, but also provides the hydrologic forecast reference approach for other arid ungauged basins.  相似文献   

20.
The East River in South China plays a key role in the socio-economic development in the region and surrounding areas. Adequate understanding of the hydrologic response to land use change is crucial to develop sustainable water resources management strategies in the region. The present study makes an attempt to evaluate the possible impacts of land use change on hydrologic response using a numerical model and corresponding available vegetation datasets. The variable infiltration capacity model is applied to simulate runoff responses to several land use scenarios within the basin (e.g., afforestation, deforestation, and reduction in farmland area) for the period 1952–2000. The results indicate that annual runoff is reduced by 3.5 % (32.3 mm) when 25 % of the current grassland area (including grasslands and wooded grasslands, with 46.8 % of total vegetation cover) is converted to forestland. Afforestation results in reduction in the monthly flow volume, peak flow, and low flow, but with significantly greater reduction in low flow for the basin. The simulated annual runoff increases by about 1.4 % (12.6 mm) in the deforestation scenario by changing forestland (including deciduous broadleaf, evergreen needleleaf, and broadleaf, with 15.6 % of total vegetation cover) to grassland area. Increase in seasonal runoff occurs mainly in autumn for converting cropland to bare soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号