首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
可渗透反应墙(PRB)是一种高效的地下水污染原位修复技术。不同水文地质条件下,污染场地墙体位置布设合理性影响其修复效果,而利用地下水数值模拟可实现墙体位置优化。文章以某Cr6+污染地下水场地为例,基于Visual Modflow建立了研究区平面二维稳定流数值模型,并通过模型检验。根据墙体的设计尺寸(长20 m×宽2 m×深12 m)及填充材料的渗透系数(80 m/d),利用所建模型分别计算了4种布设方案(墙体尺寸大小和填充材料渗透系数相同,布设位置不同)下墙体的捕获区宽度、粒子滞留时间和通过墙体的Cr6+通量。结果表明:4种布设方案模拟的滞留时间和捕获区宽度取值差异性不大,变异系数小于2%;Cr6+通量差别较大,变异系数高达76.32%,主要由地下水中Cr6+浓度空间分布不均引起。对比分析4种方案的各评价指标,方案2求得的捕获区宽度为21.9 m,粒子滞留时间为4.1 d,Cr6+去除量可达127.7 mg/d,可作为最佳布设方案。本研究建立的地下水流数值模型符合场地实际情况,可有效评估PRB截获污染羽的范围和去除目标污染物的能力,为铬渣类污染场地PRB原位修复工程设计与实施提供技术支撑和参考依据。  相似文献   

2.
Airborne hexavalent chromium is a known human respiratory carcinogen and allergen. Many workers are exposed to hexavalent chromium in various processes which chromium electroplating plants are the most common. In this study, the feasibility of a new control approach to remove this pollutant using chitosan beads as a biosorbent was investigated. Hexavalent chromium sorption was studied relative to pH, pollution concentration, sorbent concentration, temperature, and air velocity using one factor at a time approach and Taguchi experimental design. Polluted air with different chromium mist concentrations (10–5000 μg/m3) was contacted to chitosan beads (3.3–20 g/L), floating in distilled water with adjusted pH (3–7), using an impinger at different temperatures (20 and 35 °C), and various velocities (1.12 and 2.24 m/s). The ANOVA test result showed that, there were statistical significant differences between factor levels except optimized pH levels. The higher ions removal efficiencies were achieved at lower levels of air velocities, pollution concentrations, and higher levels of solution pH values, temperatures, and sorbent concentrations.  相似文献   

3.
Microwave-assisted tetrabutyl ammonium-impregnated sulphate-crosslinked chitosan was synthesized for enhanced adsorption of hexavalent chromium. The adsorbent obtained was extensively characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray studies. Various isotherm models such as Langmuir, Freundlich and Dubinin–Radushkevich were studied to comprehend the adsorption mechanism of hexavalent chromium by the adsorbent. Maximum adsorption capacity of 225.9 mg g?1 was observed at pH 3.0 in accordance with Langmuir isotherm model. The sorption kinetics and thermodynamic studies revealed that adsorption of hexavalent chromium followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. A column packed with 1 g of adsorbent was found to give complete adsorption of Cr(VI) up to 900 mL of 200 mg L?1 solution which discerns the applicability of the adsorbent material for higher sample volumes in column studies. The effective adsorption results were obtained due to both ion exchange and ion pair interaction of adsorbent with hexavalent chromium. Greener aspect of overall adsorption was regeneration of the adsorbent which was carried out using sodium hydroxide solution. In the present study, the regenerated adsorbent was effectively reused up to ten adsorption–desorption cycles with no loss in adsorption efficiency.  相似文献   

4.
为了研究不同类型的生物炭对模拟地下水中去除Cr(Ⅵ)的影响,选用杨木、柳木、桃木和松木为原料,分别在300℃和600℃热解温度下,制备不同粒径、经氯化铁改性的和未改性的20种生物炭,设计了一系列批实验,探究不同种类的生物炭对模拟地下水中Cr(Ⅵ)的去除效果;并采用傅里叶变换红外光谱(FTIR)和X射线近边吸收光谱(XANES)研究了生物炭去除Cr(Ⅵ)的机理。结果表明:在300℃下热解制成的改性生物炭,对Cr(Ⅵ)去除率均达到了99.0%以上;和粒径2 mm的生物炭相比,粒径<0.5 mm的生物炭对Cr(Ⅵ)有更好的去除效果;拟一级动力学方程较好地描述了300℃热解温度下杨木铁改性生物炭(FeCl3BC300Y)对Cr(Ⅵ)的去除过程。XANES分析结果表明,FeCl3BC300Y中的铬以三价的形态(Cr(Ⅲ))存在,FTIR分析表明羟基和羧基参与了Cr(Ⅵ)的去除。生物炭通过氧化还原和络合作用去除Cr(Ⅵ)。铁改性生物炭有望作为可渗透反应墙的填充材料,成为修复Cr(Ⅵ)污染地下水的新型材料。  相似文献   

5.
崔永高 《工程地质学报》2017,25(4):1001-1009
上海20世纪70年代含铬废水排放量大,其中六价铬毒性大、溶解度高、迁移性强,极易随水淋溶污染地下水系统。开展高效、经济的土壤和地下水中铬污染修复方法的研究,具有重要的现实意义。本文系统地综述了铬污染场地修复技术现状,包括还原稳定、渗透反应墙、电动修复、生物修复等,重点探讨了上海地区污染深度大于4m的低渗透性的铬污染场地电动反应墙联合修复技术的发展趋势。  相似文献   

6.
In this paper, the photocatalytic decontamination of hexavalent chromium and tri-ethyl phosphate, two important wastewater contaminants, are studied by the ultraviolet / nano-titanium dioxide process. The pH value and synergic effect between the oxidation of tri-ethyl phosphate and the reduction of hexavalent chromium were investigated in different concentrations of tri-ethyl phosphate and hexavalent chromium. Furthermore, the effects of ultraviolet and nano-titanium dioxide were investigated in a solution which contained tri-ethyl phosphate and hexavalent chromium. Results of adsorptions showed that hexavalent chromium was adsorbed better in acidic pH while the better adsorption for tri-ethyl phosphate was occurred in alkalinity pH. The reduction rate of hexavalent chromium was higher in acidic solutions while it was obtained at natural pH for tri-ethyl phosphate. In co-adsorption of hexavalent chromium and triethyl phosphate pollutants, tri-ethyl phosphate slightly increased adsorption of hexavalent chromium, but hexavalent chromium had no influence on the adsorption of tri-ethyl phosphate on nano-titanium dioxide particles. In contrast, triethyl phosphate has an improving effect on the reduction reaction rate of hexavalent chromium which increases with the interaction of the concentration of tri-ethyl phosphate in mixture. The same is true for the oxidation rate of tri-ethyl phosphate.  相似文献   

7.
This paper evaluates the potential use of a fine-grained soil obtained from a site in West Bengal, India, as a suitable landfill liner material for the containment of hexavalent chromium from tanning waste sludge. The physico-chemical properties of the soil were determined. The soil adsorption affinity for hexavalent chromium was also assessed through adsorption batch and breakthrough column tests. The zero point charge (pHzpc) of the soil was found to be 7.3. The batch kinetics and column tests results indicated that the soil liner possesses a relatively good hexavalent chromium adsorption capacity at natural or slightly alkaline condition. The adsorption results showed that the hexavalent chromium uptake by the soil follows both Langmuir and Freundlich adsorption isotherms. This study also illustrated that the hexavalent chromium breakthrough curve in the column experiment reached equilibrium concentration after 3.5 pore volumes (900 h). Overall, this study showed that the fine-grained soil has the potential for usage as a landfill liner or as a component of a landfill barrier system to prevent chromium contamination from the tannery waste disposal.  相似文献   

8.
渗透反应格栅(permeable reactive barrier,PRB)在国外被广泛应用于场地尺度的地下水污染修复,因其无须外源动力、不占地面空间、运行成本低等优势在国内受到广泛关注。不同场地水文地质条件、污染物类型、污染羽分布具有差异性,前期场地调查、反应材料的筛选、反应墙尺寸结构的设计对于PRB的有效运行至关重要。本文以PRB修复河南某Cr(Ⅵ)污染场地为例,详细阐述场地调查、材料筛选、材料反应参数确定、PRB结构优化等方面的研究过程及成果,可为后续PRB修复技术的应用提供参考。研究结果表明:PRB修复技术适用于该场地,铸铁与活性炭混合材料为最佳修复材料;反应门长40 m(反应材料厚2 m,上下游分别为2 m厚砾石层),东西两侧隔水墙长为60 m的U型漏斗-门系统型PRB,可有效捕获并修复污染羽,工程成本远低于连续反应墙式PRB,为该场地修复最优PRB结构类型。  相似文献   

9.
混合PRB介质处理渗滤液污染地下水的可行性研究   总被引:6,自引:0,他引:6  
宗芳  赵勇胜  董军  马莉  李爽 《世界地质》2006,25(2):182-186
反应介质的选择是可渗透反应墙(PRB)系统原位处理污染地下水的一个关键问题。本实验采用两种混合介质A(陶粒与活性炭的混合物)和B(沸石与活性炭的混合物),对修复被渗滤液污染的地下水的可行性进行了研究。结果表明,混合介质A和B对CODCr的平均去除率分别达到了71.8%和63.4%;对NH4 的平均去除率分别为13.5%和58.7%;对重金属的去除,反应介质B则优于A。因此,PRB反应介质的选择要根据污染物的性质而定。  相似文献   

10.
Here, a novel one-dimensional composite of poly(m-phenylenediamine)s coating on filamentous Streptomyces was successfully constructed via a controllable polymerization reaction. The synthesized composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Their adsorption isotherm and kinetics for aqueous hexavalent chromium were also systematically examined. The results of scanning electron microscopy analysis indicated that the obtained composites based on Streptomyces were showed a uniform and stable one-dimensional morphology with distinct core–shell configuration. Moreover, the Langmuir isotherm model (R 2 > 0.96) and pseudo-second-order equation (R 2 = 0.9996) described well the equilibrium adsorption behavior and kinetics of hexavalent chromium adsorption by the composites. In addition, bath adsorption experiments demonstrated the highest adsorption capacity of hexavalent chromium by the composites reached 320.03 mg g?1 in an acid solution, which was 5.6 times as that of the pure Streptomyces filaments. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses suggested that the adsorption of hexavalent chromium by the composites possibly involved the protonation, redox, and chelation reactions. Therefore, a promising application of these composites in treating acid hexavalent chromium-contaminated wastewater is expectable.  相似文献   

11.
Hexavalent chromium has been proved to be the reason of several health hazards. This study aimed at evaluating the application of pomegranate seeds powder for chromium adsorption (VI) from aqueous solution. Chromium adsorption percentage (VI) increased with increasing the adsorbent dosage. Chromium adsorption capacity (VI), at pH = 2 and 10 mg/L initial metal concentration, decreased from 3.313 to 1.6 mg/g through increasing dosage of adsorbent from 0.2 to 0.6 g/100 ml. The adsorption rate increased through increase in chromium initial concentration (VI). However, there was a removal percentage reduction of chromium (VI). Chromium adsorption kinetics by different models (pseudo-first-order, modified pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, Boyd kinetic) was investigated as well. Studies on adsorption kinetic indicated that the experimental data were matched by pseudo-second-order model (R 2 = 0.999) better. Obtained results demonstrated the pomegranate seeds can be used as an effective biomaterial and biosorbent for hexavalent chromium adsorption from aqueous solutions.  相似文献   

12.
Permeable Reactive Barrier for Groundwater Pollution Remediation: An Review   总被引:2,自引:0,他引:2  
As an in situ, simple and passive technology, Permeable Reactive Barrier (PRB) is becoming widely used in groundwater remediation. Based on its definition and development process, the development of PRB can be divided into two stages: The traditional zero-valent iron PRB before 2000 and the PRB composed of novel mixed media after 2000. With the rapid worsening of groundwater pollution, the increasing application of PRB and the rapid development of materials science, the development of PRB technology in future will be mainly focused on the investigation of mixed and novel media, the design of mixed PRBs, the combination of PRB technology with other remediation technology, and the long term monitoring and management of PRB projects.  相似文献   

13.
A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (<1 μm) cubic highly crystalline precipitates on the flyash, although this new crystalline zeolite growth did not occur rapidly enough to enable productive zeolite formation. Surface area measurements showed that biofilm growth on the medium could be a major factor in the comparative reduction of surface area between real and synthetic contaminant groundwaters. The modified flyash was found to be a highly sorptive granular material that did not inhibit microbiological activity, however, leaching tests revealed that the medium would fail as a long-term barrier material.  相似文献   

14.
Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.  相似文献   

15.
刘静静  曾南石  徐文炘 《矿产与地质》2012,26(2):165-167,176
文章以垃圾渗滤液为研究对象,分别用铁粉、改性膨润土、活性炭及其混合物为反应介质,设计4种不同介质配比的PRB反应器进行实验研究。结果表明,PRB对垃圾渗滤液有较好的处理效果,其中,以还原铁粉、改性膨润土为介质的反应器,对氨氮的去除效率最大为97.58%,以还原铁粉、活性炭为介质的反应器对COD的去除效率为84.87%,对总磷的去除效率最大为80%。  相似文献   

16.
In this work, a low-cost lignocellulosic adsorbent with high biosorption capacity is proposed, suitable for the efficient removal of hexavalent chromium from water and wastewater media. The adsorbent was produced by autohydrolyzing Scots Pine (Pinus Sylvestris) sawdust. The effect of the autohydrolysis conditions, i.e., pretreatment time and temperature, on hexavalent chromium biosorption was investigated using energy-dispersive X-ray spectroscopy (EDS) and UV–visible spectrophotometry. The Freundlich, Langmuir, Sips, Radke-Prausnitz, Modified Radke-Prausnitz, Tóth, UNILAN, Temkin and Dubinin-Radushkevich adsorption capacities and the rate constant values for pseudo-first- and pseudo-second-order kinetics indicated that the autohydrolyzed material exhibits significantly enhanced hexavalent chromium adsorption properties comparing with the untreated sawdust. The Freundlich’s adsorption capacity K F increased from 2.276 to 8.928 (mg g?1)(L mg?1)1/n , and the amount of hexavalent chromium adsorbed at saturation (Langmuir constant q m) increased from 87.4 to 345.9 mg g?1, indicating that autohydrolysis treatment at 240 °C for 50 min optimizes the adsorption behavior of the lignocellulosic material.  相似文献   

17.
`土壤-地下水耦合数值模拟是定量刻画水流和溶质运移的主要手段。现有大范围场地尺度的研究受到数据采集难度及模拟计算量的限制,多是将土壤和地下水分成两个系统,这种方式不利于模型之间的计算反馈,易出现计算误差,因此将土壤和地下水作为整体系统研究具有重要意义。为精确刻画实际场地土壤-地下水系统中污染物迁移规律,揭示变饱和反应溶质迁移模型的参数敏感性,以某铬污染场地为研究对象,基于现场试验及前人研究所获数据,采用Galerkin有限元法建立三维土壤-地下水模型,定量描述六价铬在土壤-地下水中的迁移规律。在此基础上,通过改变补给条件,研究潜水面在土壤-地下水系统中的波动。并讨论阻滞系数和反应常数对溶质运移的影响。结果表明:在土壤中,污染物最大水平迁移距离为场地东南侧300 m;地下水中污染晕最大分布面积约为1.632 km2;垂向上土壤中的六价铬仅需15.6 h即可下渗至潜水面,第6天贯穿含水层。当潜水面随着补给量变化而波动时,地下水中六价铬会随水流进入土壤,影响土壤中污染分布。对溶质运移参数的讨论显示,当反应常数由0增大至10?6 s-1时,迁移出场区边界时地下水中污染物浓度约减少2000 mg/L,较难迁移至涟水河。基于FEFLOW的数值模型,能够解决各系统之间交互性差的问题,提供较为精确的模拟结果。  相似文献   

18.
铀污染地下水分布于世界多国,其危害备受关注。本文基于溶胶-凝胶法制备方解石负载羟基磷灰石复合材料(CLHC),通过静态与动态对比试验,探讨了PRB活性介质对水中铀离子的吸附机理和去除效果。试验结果表明,制备的CLHC表面被羟基磷灰石覆盖,对铀离子具有较强的吸附能力。当U的初浓度为5.0 mg/L、试验周期为2 h、溶液pH值为4、CLHC用量为0.5 g/L时,CLHC可以吸附水中所有的铀离子。CLHC对铀离子的吸附过程可以用Langmuir等温吸附模型、粒子内扩散吸附动力学模型和准二级吸附动力学模型较好地进行描述。石英砂负载羟基磷灰石与CLHC相比,后者具有更强的吸附能力,而且具有更长的使用寿命。CLHC在吸附铀的过程中没有价态变化,其对铀离子的吸附主要为离子交换的化学吸附。本研究的成果可为可渗透反应墙被应用于铀污染地下水修复提供试验依据。  相似文献   

19.
Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, in contrast to the traditionally used calcium alginate beads. Our adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h, and the removal efficiency of chromium(VI) was found to be 95 %. The adsorption data were applied to Langmuir, Freundlich, Dubinin–Redushkevich (D–R), and Temkin isotherm equations. Both Langmuir and Freundlich isotherm constants indicated a favorable adsorption. The value of mean sorption energy calculated from D–R isoterm indicates that the adsorption is essentially physical. The high maximum chromium(VI) adsorption capacity was determined from the Langmuir isotherm as 36.5 mg/g dry alginate beads. The chromium(VI) adsorption data were analyzed using several kinetic models such as the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, and the rate constants were quantified. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium(VI) from contaminated waters.  相似文献   

20.
利用硅藻土负载羟基氧化铁颗粒作吸附剂对六价铬进行吸附和解吸附实验,探讨了硅藻土负载羟基氧化铁对六价铬的吸附机制和固体浓度效应。实验结果表明:在实验条件下,当吸附剂的用量从0.05 g增加到0.2 g时,六价铬的吸附量从23940.124μg/g降低到8575.415μg/g,吸附剂对Cr6+的吸附存在明显的固体浓度(Cs)效应。吸附滞后角随着Cs 的增加而减小,吸附反应的可逆性增大。将实验数据分别用Languir和Freundlich吸附模型进行拟合,发现Freundl-ich吸附模型对实验数据拟合效果较好,表明该吸附反应以单分子层吸附为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号